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Abstract

In this report, we present the X-Value Adjustments and we introduce a simulation
approach to compute these adjustments. We present the steps for the calculation of
the Credit Value Adjustment (CVA) on interest rate derivatives as a practical example.
An important part of the report will focus on the di↵erent methods to compute the
expected future exposure. In this context, we consider two methods based on Monte
Carlo simulations in order to compute the expected exposure. We study also the G2++
interest rate model used for the simulations and we detail the calibration process and
apply it on market data.
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Sammanfattning

I den här rapporten presenterar vi definitioner och formler för X-värdes justeringar,
XVA (eng. X Value Adjustment), samt en simuleringsbaserad teknik för att beräkna
dessa justeringar. Som ett praktiskt exempel presenteras stegen för beräkning av CVA
(eng. Credit Value Adjustment) för räntederivat. En viktig del av rapporten fokuserar
p̊a de olika metoderna för att beräkna den förväntade framtida exponeringen (eng. ex-
pected future exposure). Vi studerar tv̊a metoder baserade p̊a Monte Carlo-simuleringar.
Ocks̊a G2++-modellen som används för simuleringarna presenteras, liksom detaljerna i
kalibreringsprocessen och denna tillämpas sedan p̊a marknadsdata
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Chapter 1

Introduction

Before the financial crisis of 2007-2008, the standard approaches to pricing and fair value
measurement of portfolios and trading books were based on the assumption of risk-free
counterparties and rates. However, the crisis highlighted the importance of counterparty
risk and showed that pricing approaches should be revised. In fact, the losses due to the
deterioration in the creditworthiness of a counterparty during the financial crisis exceeded
the losses arising from actual defaults, according to The Basel Committee on Banking
Supervision (BCBS) [5].

Therefore, the regulators gradually introduced new valuation adjustments in order to
take into account the e↵ects of credit, funding and capital costs and, as a consequence,
the pricing of derivatives has become more and more complicated. These adjustments,
named X Value Adjustments (XVA) , are considered today among the main Profit &
Losses centers of investment banks, and they a↵ect many areas such as modeling, pricing,
risk management, regulation . . . .

The objective of this thesis is to study the di↵erent valuation adjustments and present
a formal framework in order to compute the XVAs. As a practical case, We will outline
di↵erent approaches to calculating the Credit Value Adjustment (CVA) and counterparty
exposure. The main methods studied in this report are simulation-based approaches. In
addition, the calculations and comparison will be performed for interest rate derivatives.
Therefore, we will present in this report the interest rate model used to compute the CVA
which is the two-Additive-Factor Gaussian Model (G2++).

Finally, we will show the di↵erent results of the calculations for interest rate swaps and
swaptions, discuss the e�ciency and accuracy of the methods and present the possible
improvements.
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Chapter 2

X-Value Adjustments

In this chapter, di↵erent valuation adjustments will be presented. First, we will derive the
expressions of the Credit Value Adjustment (CVA) and Debit Value Adjustment (DVA)
following the approach presented by Jon Gregory in [6]. Then, we will introduce the
adjustments related to other risks such as funding risk.

2.1 Credit Value Adjustment (CVA)

First, We consider X a set of derivatives positions with a maximum maturity date T, and
we note:

• B(t), the value of the Money Market Account at time t, defined as:

B(t) = e
R
t

0 r(s)ds (2.1)

where r is the instantaneous spot interest rate.

• D(t, s), the discount factor from time t to time s, defined as:

D(t, s) =
B(t)

B(s)

where t  s.

• V risky(t, T ), the risky value of X at time t.
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CHAPTER 2. X-VALUE ADJUSTMENTS

• V (s, T ), the risk-free value (which doesn’t take into account default risk) at time s
of the derivatives cash flows between s and T for t < s < T .

• V
t

(s, T ), the discounted value of V (s, T ) at time t, defined as:

V
t

(s, T ) = D(t, s)V (s, T ) (2.2)

• G
t

, the filtration containing all the market information up to time t

• F
t

, a sub-filtration similar to G
t

but does not contain events related to defaults.

The Credit Value Adjustment (CV A) is defined as the di↵erence between the risk-free
portfolio value and the true portfolio value that takes into account the possibility of
counterparty default.

CV A(t, T ) = V (t, T )� V risky(t, T ) (2.3)

To introduce the counterparty risk, we suppose that we have a bilateral contract on the
set of derivatives X with a counterparty cpty and that only the counterparty can default.
We have, then, two cases to consider:

• The Counterparty does not default before maturity T

In this case, the payo↵ is the risk-free value of the positions:

CF no default = V
t

(t, T )

• The Counterparty defaults before maturity T

We define ⌧ as the default time of the counterparty. In this case, the payo↵ is
composed of two terms:

– the cash flows paid before the default time ⌧ : V
t

(t, ⌧)

– the cash flows paid after the default time ⌧ :

⇤ If the value of the positions is positive, we receive a recovery amount
Rcpty ⇥ V

t

(⌧, T ) where Rcpty is the recovery rate of the counterparty.

⇤ If the value of the positions is negative, we still have to pay the value.

Then, we have:

CF default = V
t

(t, ⌧) +Rcpty ⇥max(V
t

(⌧, T ), 0) + min(V
t

(⌧, T ), 0)
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CHAPTER 2. X-VALUE ADJUSTMENTS

Therefore, the risky value of X is given, under the risk-neutral measure Q, by:

V risky (t, T ) = EQ

⇥
CF no defaultI{⌧ > T}+ CF defaultI {⌧  T} |G

t

⇤

where I{A} is the indicator function of the event A defined as:

I{A} :=

(
1 if the event A happens,

0 if the event A does not happen.
(2.4)

We replace CF no default and CF default by their values:

V risky(t, T ) =EQ [V
t

(t, T )I{⌧ > T}|G
t

] +

EQ

⇥�
V
t

(t, ⌧) +Rcpty ⇥max(V
t

(⌧, T ), 0) + min(V
t

(⌧, T ), 0)
�
I {⌧  T} |G

t

⇤

Using the relationship min(x, 0) = x�max(x, 0), we obtain:

V risky(t, T ) =EQ [V
t

(t, T )I{⌧ > T}|G
t

] +

EQ

⇥�
V
t

(t, ⌧) + V
t

(⌧, T ) + (Rcpty � 1)⇥max(V
t

(⌧, T ), 0)
�
I {⌧  T} |G

t

⇤

We know that V
t

(t, T ) = V
t

(t, ⌧) + V
t

(⌧, T ). Then:

V risky(t, T ) =EQ [V
t

(t, T )I{⌧ > T}|G
t

] +

EQ

⇥�
V
t

(t, T ) + (Rcpty � 1)⇥max(V
t

(⌧, T ), 0)
�
I {⌧  T} |G

t

⇤

Using V
t

(t, T )I{⌧ > T}+ V
t

(t, T )I{⌧  T} = V
t

(t, T ), we finally obtain:

V risky(t, T ) = V
t

(t, T )� EQ

⇥
(1�Rcpty)max(V

t

(⌧, T ), 0)I{⌧  T}|G
t

⇤

Considering the CVA formula in (2.2), we have:

CV A(t, T ) = EQ

⇥
(1�Rcpty)max(V

t

(⌧, T ), 0)I{⌧  T}|G
t

⇤
(2.5)

To derive the classic CVA formula, we suppose that the recovery rate Rcpty obtained by
the surviving counterparty is deterministic. Then, we can write:

CV A(t, T ) = (1�Rcpty)EQ [max(V
t

(⌧, T ), 0)I{⌧  T}|G
t

]

= (1�Rcpty)EQ

⇥
EQ [max(V

t

(s, T ), 0)I{s  T}|{⌧ = s} _ F
t

] |G
t

⇤

= (1�Rcpty)EQ

⇥
I{⌧  T}EQ [max(V

t

(s, T ), 0)|{⌧ = s} _ F
t

] |G
t

⇤
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Introducing the risk-neutral cumulative distribution function �(t) of the default time ⌧ ,
the previous equation can be rewritten as:

CV A(t, T ) = LGDcpty

Z
T

t

EQ [max(V
t

(s, T ), 0)|{⌧ = s} _ F
t

] d�(s) (2.6)

where LGDcpty = (1�Rcpty) is the Loss Given Default of the counterparty.

To simplify Equation (2.6), we assume that the default event {⌧ = s} and the exposure
V
t

(s, T ) are independent. We recall also that V
t

(s, T ) = D(t, s)⇥ V (s, T ).

Finally, we obtain the classic CVA formula :

CV A(t, T ) = LGDcpty

Z
T

t

EQ [D(t, s)max(V (s, T ), 0)|F
t

] d�(s) (2.7)

2.2 Debit Value Adjustment (DVA)

The Debit Value Adjustment (DVA) is defined as the di↵erence between the risk-free
portfolio value and the true portfolio value that takes into account the possibility of the
institution’s own default. It can be seen as the CVA from the counterparty point of view.

To derive the expression for DVA, we follow the same approach as for the CVA in the
previous section. However, we suppose, this time, that the institution can default and
that the counterparty can not default. We find the following expression for the Debit
Value Adjustment:

DV A(t, T ) = LGDinst

Z
T

t

EQ [D(t, s)min(V (s, T ), 0)|F
t

] d�inst(s) (2.8)

Where LGDinst is the Loss Given Default of the institution and �inst is the risk-neutral
cumulative distribution function for the default time of the institution.

2.3 Simple expressions for CVA and DVA

2.3.1 Credit Default Swap

A Credit Default Swap (CDS) is a contract which provides protection to the buyer over
the credit risk associated with an underlying asset. The buyer of the CDS makes a series
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of payments (CDS spread) to the seller. In exchange, he expects to receive a payo↵ if a
credit event such as bankruptcy, restructuring and failure to pay, occurs.

2.3.2 The CVA and DVA expressions

Ruiz [9] showed that we can simplify the CVA and DVA expressions by introducing the
credit spread at time t of the Credit Default Swap (CDS) of the counterparty spreadcpty

t

and of the institution spreadinst
t

. Using the derivation presented in the Appendix A, we
have the following formulas:

CV A(t, T ) =

Z
T

t

spreadcpty
s

EPE(s, T )ds (2.9)

and

DV A(t, T ) =

Z
T

t

spreadinst
s

ENE(s, T )ds (2.10)

Where

• EPE(s, T ) = EQ[D(t, s)max(V (s, T ), 0)] is the Expected Positive Exposure be-
tween time s and T .

• ENE(s, T ) = EQ[D(t, s)min(V (s, T ), 0)] is the Expected Negative Exposure be-
tween time s and T .

2.4 Other Value adjustments

In addition to the CVA and the DVA, there are other valuation adjustments accounting
for hedging, collateral and funding risk.

2.4.1 Hedging Valuation Adjustment (HVA)

Hedging Valuation Adjustment (HVA) is defined as the additional funding adjustment
due to the di↵erence in cash needed from the trade that we have with a counterparty and
the hedging position that we buy in the market. Following the same formulation of the

12
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CVA and DVA expression in Equation (2.9) and (2.10), we have:

HV A(t, T ) =

Z
T

t

EPEhedge(s, T )spreadborrow
s

ds

+

Z
T

t

ENEhedge(s, T )spreadlend
s

ds

where spreadborrow
s

and spreadlend
s

are the spread at time s over the risk-free rate at which
we can borrow and lend cash, and EPEhedge (resp. ENEhedge) is the expected positive
(resp. negative) exposure of the extra cash needed for the hedging positions.

2.4.2 Collateral Valuation Adjustment (ColVA)

Collateral Valuation Adjustment (ColVA) is due to the funding of the net collateral, that is
posted and received constantly between financial institutions. The collateral requirements
are strongly dependent on the agreements and contract specifications such as margin
requirements, etc.

ColV A(t, T ) =

Z
T

t

EPEcollateral(s, T )(spreadborrow
s

+ spreadpost
s

)dt

+

Z
T

t

ENEcollateral(s, T )spreadlend
s

ds

where spreadpost
s

is the spread at time s over the risk-free rate that we are charged on
collateral posted, and EPEcollateral (resp. ENEcollateral) is the expected positive (resp.
negative) exposure of the collateral.

2.4.3 Liquidity Valuation Adjustment (LVA)

LVA is defined as an adjustment that we must add to the risk-neutral value of a portfolio
of trades in order to account for the real liquidity constrains that we face in the funding
and credit market. For example, collateralization requires sometimes a huge amount of
cash or liquid assets, and there is also a high pressure on the liquidity risk management
in the current regulations.

As a consequence, The Funding Valuation Adjustment can be defined as the sum of the
three previous adjustments:

FV A(t, T ) = HV A(t, T ) + ColV A(t, T ) + LV A(t, T ) (2.11)
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Chapter 3

XVA Calculation: Application to
CVA

3.1 XVA General Formula

We can see from the results in chapter 2 that the XVA have the similar expressions i.e.
they can be written on the following form:

XV A(t, T ) =

Z
T

t

spread(s)⇥ Expected Exposure(s, T )ds (3.1)

where the properties of the spread and the exposure depend on which XVA we want to
compute. For example, we use the exposure of the contract positions for CVA and DVA,
the exposure of the hedge positions for HVA and the exposure of the collateral for ColVA.
(See Chapter 2 for more details)

As a consequence of these similarities, we decide to focus, in the remaining part of the
report, on the CVA calculation for interest rate derivatives as a practical example of the
XVA calculations.

3.2 CVA Approximation

We recall that the CVA can be computed using the formula (starting from for t0 = 0)

CV A(0, T ) = LGD

Z
T

0

EQ [D(0, t)max(V (t, T ), 0)|F0] d�(t) (3.2)
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CHAPTER 3. XVA CALCULATION: APPLICATION TO CVA

To simplify the calculation of the CVA, we introduce a time partition t = t0 < t
i

< ... <
t
n

= T . Then, The formula (3.2) can be approximated and rewritten as

CV A(0, T ) = (1�R)
n�1X

t=0

(�(t
i

)� �(t
i+1))E

Q[D(0, t
i

)max(V (t
i

, T ), 0)] (3.3)

where �
t

is the cumulative distribution function of the default time ⌧ of the counterparty.

15



Chapter 4

CVA Calculation Framework

In order to compute the CVA, we use the summation formula presented in (3.2). As a
consequence, we need to take into account the three following factors:

• Loss given default of the contract

• Default probability of the counterparty

• Expected exposure

Therefore, we will present in this chapter the models used to compute each one of these
factors, and we will introduce the structure used to implement and integrate the CVA
calculation components.

4.1 Loss Given Default

The Loss Given Default (LGD) is defined as the percentage amount that would be lost if
the counterparty were to default, and is expressed as

LGD = 1�R (4.1)

were R is the recovery rate. The LGD depends on many attributes such as the sector
of the entity, and the seniority (rank) of the derivatives. It is generally estimated using
historical analysis on recovery rates. In this project, we suppose a constant recovery rate
R of 40% which is considered by many as a market standard.

16



CHAPTER 4. CVA CALCULATION FRAMEWORK

4.2 Default Probability

To compute the default probability of a counterparty, we use an intensity default model
based on the presentation of Brigo and Mercurio [2].

We assume the existence of a deterministic default intensity �
t

, also known as the hazard
rate. Supposing that the counterparty survived up to time t, the default probability of
the entity in a infinitesimal interval from time t to t+ dt is given by:

P (t < ⌧  t+ dt) = �
t

dt (4.2)

We suppose that the default time ⌧ of the counterparty is driven by a Poisson process i.e.
the cumulative distribution function of ⌧ can be written as

�(t) = 1� e�
R
t

0 �

u

du (4.3)

To compute the default probability, we only need to find the instantaneous hazard rate
�
t

. One of the most popular methods to compute this rate is the use of the the Credit
Triangle relation (used also in Appendix A) :

spread
t

= (1�R)�
t

(4.4)

where spread
t

is the spread of the Credit Default Swap (CDS) on the counterparty, and
R is the recovery rate of the same counterparty.

As a numerical experiment, we suppose a deterministic piece-wise constant hazard rate
function �

t

with
�
t

i

= 0.01⇥ i

for t
i

= i years and i 2 [0, 30].

The resulting default intensity and default probability are shown in Figure 4.1
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Figure 4.1: Default intensity and default probability for a deterministic piece-wise con-
stant hazard rate function
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4.3 Expected Exposure

The Calculation of the expected (positive or negative) exposure can be considered as
the most important (and also the most di�cult) part of the CVA Calculation and, as a
consequence, it will represent the main part of the project. Therefore, we will focus in the
remaining part of the report on the methods and ways to compute the expected exposure.

4.3.1 Calculation Approaches

The expected exposure can be computed using three di↵erent approaches:

Parametric approach

This objective of this approach is to approximate the future expected exposure using a
number of simple parameters. An example of the parametric approaches is the Add-on
method which is based on the following formula:

FutureExposure = CurrentExposure+ Add-on

The add-on can include time horizon, assets classes and volatilities parameters.

Semi-Analytical approaches

These methods are based on identifying the risk factors driving the exposure and making
simple assumptions related to these factors in order to derive the distribution of the
exposure.

An example of this approach is the method of approximating the exposure of an interest
rate swap by a series of interest rate swaptions, introduced by Sorensen and Bollier [10]
in 1994.

Simulation Approach

The Monte Carlo simulation method is the most widely used approach and also the
most time-consuming method to compute the expected future exposure. It includes the
following steps:

19



CHAPTER 4. CVA CALCULATION FRAMEWORK

Step 1: Identifying the risk factors driving the exposure

Step 2: Choosing an appropriate time grid for the simulation

Step 3: Generate market scenarios by simulating the identified factors

Step 4: Evaluate the positions at each time point of the grid

Step 5: Aggregating and post-processing: take into account netting sets, collateral
postings, thresholds . . .

Comparison of the Approaches

Table 4.1 summarizes the advantages and the limitations of the three approaches. We
choose to base our exposure calculations on a Monte Carlo simulation approach. In fact,
This method can be di�cult to implement but its genericity can prove to be very useful,
especially when dealing with di↵erent types of derivatives. We will show, in chapter 6,
the implementation steps for this the method and also introduce an alternative approach
based on the American Monte Carlo method in order to improve the performance and
the calculation speed.
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CHAPTER 4. CVA CALCULATION FRAMEWORK

4.4 Structure and Framework

in this report, we choose to focus on the implementation of a CVA calculation framework
for interest rate derivatives as a practical example of the XVA calculations. The framework
includes four main components which are described in this section.

4.4.1 Interest Rate Modelling

The interest rate model is implemented and calibrated in this component using market
data such as swaption prices and volatilities. It is based on the G2++ Interest rate
model. The generated interest rates, discount factors and curves represent the core of the
derivatives pricing in the steps that follow.

4.4.2 Simulation Component

This component implements Monte Carlo simulations in order to generate multiple ”states”
of the market used to value the portfolio. A direct Monte Carlo approach and an alter-
native one based on the American Monte Carlo approach are implemented as well.

4.4.3 Valuation and Expected Exposure Calculation

In this part, the portfolio will be priced using valuation formulas and approximation based
on the paths generated in the simulation component. The complexity pricing will depend
on the complexity of the derivatives and the availability of closed formulas.

4.4.4 CVA Integration

This is the final component of the framework. It is responsible for the integration of the
computed exposures with the recovery rates and the default probabilities which can be
obtained from the credit market data (CDS spreads).
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Chapter 5

The G2++ Interest Rate Model

In this chapter, we present the interest rate model used for the CVA calculations. We
consider the G2++ interest-rate model where the instantaneous short-rate process is given
by the sum of two correlated Gaussian factors, in addition to a deterministic function that
is properly chosen so as to exactly fit the current term structure of discount factors. This
chapter is inspired by the G2++ model presentation in [2].

5.1 Definition

The dynamics of the instantaneous-short-rate process under the risk-adjusted measure Q
is given by

r(t) = x(t) + y(t) + �(t) (5.1)

r(0) = r0 (5.2)

where the processes x(t) and y(t) satisfy for t > 0

dx(t) = �ax(t)dt+ �dW1(t) (5.3)

dy(t) = �by(t)dt+ ⌫dW2(t) (5.4)

where x(0) = 0, y(0) = 0, and (W1,W2) is a two-dimensional Brownian motion with
instantaneous correlation ⇢ as from

dW1(t)dW2(t) = ⇢dt

and r0, a, b, �, ⌫ are positive constants and where �1  ⇢  1. The function � is determin-
istic and well defined in the time interval [0, T ] with T a given time horizon. In particular
�(0) = r0.
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CHAPTER 5. THE G2++ INTEREST RATE MODEL

5.2 Remarks

a) Short rate conditional law

Integrating the formulas (5.3) and (5.4) yields,

r(t) =x(s)e�a(t�s) + y(s)e�b(t�s)

+ �

Z
t

s

e�a(t�u)dW1(u) + ⌫

Z
t

s

e�b(t�u)dW2(u) + �(t)
(5.5)

This means that the instantaneous-short-rate process, conditional on F
s

, is normally
distributed with

E[r(t)|F
s

] =x(s)e�a(t�s) + y(s)e�b(t�s) + �(t) (5.6)

V ar[r(t)|F
s

] =
�2

2a

⇥
1� e�2a(t�s)

⇤
+

⌫2

2b

⇥
1� e�2b(t�s)

⇤

+ 2⇢
�⌫

a+ b

�
1� e�(a+b)(t�s)

� (5.7)

b) Conditional law of the integral

We consider the following integral

I(t, T ) =

Z
T

t

[x(u) + y(u)]du (5.8)

It can be shown that I(t, T ) , conditional to F
t

, is normally distributed with

M(t, T ) = E[I(t, T )|F
t

] =
1� e�a(T�t)

a
x(t) +

1� e�b(T�t)

b
y(t) (5.9)

and

V (t, T ) =V ar[I(t, T )|F
t

]

=
�2

a2


T � t+

2e�a(T�t)

a
�+

e�2a(T�t)

2a
� 3

2a

�

+
⌫2

b2


T � t+

2e�b(T�t)

b
�+

e�2b(T�t)

2b
� 3

2b

�

+ 2⇢
�⌫

ab


T � t+

e�a(T�t) � 1

a
+

e�b(T�t) � 1

b
� e�(a+b)(T�t) � 1

a+ b

�

(5.10)

c) Fitting the spot curve

The model fits the currently-observed term structure of discount factors if and only
if, for each T ,

�(T ) = fM(0, T )+
�2

2a2
(1�e�aT )2+

⌫2

2b2
(1�e�bT )2+⇢

�⌫

ab
(1�e�aT )(1�e�bT ) (5.11)

where fM(0, T ) is the observed forward rate at time T.
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CHAPTER 5. THE G2++ INTEREST RATE MODEL

5.3 Derivatives pricing

5.3.1 Zero-coupon bond

Under the no arbitrage condition, the pricing formula at time t of a zero-coupon bond
maturing at T is given by:

P (t, T ) = EQ


exp

✓
�
Z

T

t

r(u)du

◆
|F

t

�
(5.12)

This equation can be rewritten, using Remark b), as:

P (t, T ) = exp


�
Z

T

t

�(u)du�M(t, T ) +
1

2
V (t, T )

�
(5.13)

Where the functions M and V are defined in (5.9) and (5.10).

Using Equation (5.11), we obtain the following pricing formula for the zero-coupon bond:

P (t, T ) =
P (0, T )

P (0, t)
exp


�M(t, T )� 1

2
[V (0, T )� V (0, t)� V (t, T )]

�
(5.14)

Where P (0, T ) and P (0, t) are taken from the currently-observed market spot curve.

We define the following functions:

A(t, T ) =
P (0, T )

P (0, t)
exp


1

2
[�V (0, T ) + V (0, t) + V (t, T )]

�
(5.15)

and

B(z, t, T ) =
1� e�z(T � t)

z
(5.16)

Using these functions, we can express the zero-coupon price as a relatively simple function
of the G2++ factors x(t) and y(t):

P (t, T ) = A(t, T ) exp [�B(a, t, T )x(t)� B(b, t, T )y(t)] (5.17)
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5.4 Option on a zero-coupon bond

The price of a European call option with strike K and maturity T , written on a zero-
coupon bond with with face value N and maturity S at time t 2 [0, T ], is given by:

ZBC(t, T, S,N,K) =NP (t, S)F

"
ln NP (t,S)

KP (t,T )

⌃(t, T, S)
+

1

2
⌃(t, T, S)

#

�KP (t, T )F

"
ln NP (t,S)

KP (t,T )

⌃(t, T, S)
� 1

2
⌃(t, T, S)

# (5.18)

where

⌃(t, T, S)2 =
�2

2a3
[1� e�a(S�T )]2[1� e�2a(T�t)]

+
⌫2

2b3
[1� e�b(S�T )]2[1� e�2b(T�t)]

+ 2⇢
�⌫

ab(a+ b)
[1� e�a(S�T )][1� e�b(S�T )][1� e�(a+b)(T�t)]

and F denotes the standard normal cumulative distribution function.

The price of a corresponding put option is given by:

ZBP (t, T, S,N,K) =�NP (t, S)F

"
ln KP (t,T )

NP (t,S)

⌃(t, T, S)
� 1

2
⌃(t, T, S)

#

+KP (t, T )F

"
ln KP (t,T )

NP (t,S)

⌃(t, T, S)
+

1

2
⌃(t, T, S)

# (5.19)

5.4.1 Caps and floors

The price at time t of a cap with strikeX, nominal valueN , set of times T = {T0, T1, . . . , Tn

}
and year fractions ⌧ = {⌧0, ⌧1, . . . , ⌧n} is given by:

Cap(t, T , ⌧, N,X) =
nX

i=1

�N(1 +X⌧
i

)P (t, T
i

)F

 
ln P (t,T

i�1)
(1+X⌧

i

)P (t,T
i

)

⌃(t, T
i

, T
i�1)

� 1

2
⌃(t, T

i

, T
i�1)

!

+
nX

i=1

NP (t, T
i�1)F

 
ln P (t,T

i�1)
(1+X⌧

i

)P (t,T
i

)

⌃(t, T
i

, T
i�1)

+
1

2
⌃(t, T

i

, T
i�1)

!

(5.20)
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and the price of the corresponding floor is

Flr(t, T , ⌧, N,X) =
nX

i=1

N(1 +X⌧
i

)P (t, T
i

)F

 
ln (1+X⌧

i

)P (t,T
i

)
P (t,T

i�1)

⌃(t, T
i

, T
i�1)

+
1

2
⌃(t, T

i

, T
i�1)

!

+
nX

i=1

�NP (t, T
i�1)F

 
ln (1+X⌧

i

)P (t,T
i

)
P (t,T

i�1)

⌃(t, T
i

, T
i�1)

� 1

2
⌃(t, T

i

, T
i�1)

! (5.21)

5.5 Swaptions

In this section, we give the analytical formula for pricing European swaptions. The
formula expression is quite complicated, but it is important to write it as it is used for
the calibration of the G2++ model parameters in the following section.

We consider a European swaption with strike rate X, maturity T and nominal value
N , which gives the holder the right to enter at time t0 = T an interest rate swap with
payment times T = {t1, t2, . . . , tn} , t1 > T where he pays at the fixed rate X and receives
LIBOR set in arrears (at the start of each swap period). We define ⌧

i

the year fraction
from t

i�1 and t
i

, i = 1, 2, . . . , n.

ES(0, T, T , N,X) =

NP (0, T )

Z +1

�1

e�(x�µ

x

�

x

)2/2)

�
x

p
2⇡

"
F (�h1(x))�

nX

i=1

�
i

(x)eki(x)F (�h2(x))

#
dx,

(5.22)

where

h1(x) =
y⇤ � µ

y

�
y

p
1� ⇢2

xy

� ⇢
xy

(x� µ
x

)

�
y

p
1� ⇢2

xy

h2(x) =h1(x) + B(b, T, t
i

)�
y

q
1� ⇢2

xy

�
i

(x) =c
i

A(T, t
i

)e�B(a,T,t
i

)x

k
i

(x) =� B(b, T, t
i

)


µ
y

� 1

2
(1� ⇢2

xy

)�2
y

B(b, T, t
i

) + ⇢
xy

�
y

x� µ
x

�
x

�

�
x

=�
1� e�2aT

2a

�
y

=⌫
1� e�2bT

2b

⇢
xy

=
⇢�⌫

(a+ b)�
x

�
y

⇥
1� e�(a+b)T

⇤
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with c
i

= X⌧
i

for i = 1, . . . , n� 1, c
n

= 1+X⌧
n

and the deterministic functions A and B
are defined in Equations (5.15) and (5.16), and

µ
x

=� (
�2

a2
+ ⇢

�⌫

ab
)(1� e�aT ) +

�2

2a2
(1� e�2aT )

+ ⇢
�⌫

b(a+ b)
(1� e�(a+b)T )

µ
y

=� (
⌫2

b2
+ ⇢

�⌫

ab
)(1� e�bT ) +

⌫2

2b2
(1� e�2bT )

+ ⇢
⌫�

a(a+ b)
(1� e�(a+b)T )

Finally, y⇤ = y⇤(x) denotes the unique solution of the following equation:
nX

i=1

c
i

A(T, t
i

)e�B(a,T,t
i

)x�B(b,T,t
i

)y⇤ = 1

5.6 Simulation Scheme

Given a time grid t0, t1, t2, ..., tN , we can simulate the short rate using the following equa-
tions:

x
k+1 = e�a�t

kx
k

+ �

r
1� e�2a�t

k

2a
z1
k+1 (5.23)

y
k+1 = e�b�t

ky
k

+ �

r
1� e�2b�t

k

2b
(⇢z1

k+1 +
p
1� ⇢2z2

k+1) (5.24)

�
k+1 = fM(0, t

k+1) +
�2

2a2
(1� e�at

k+1)2 +
⌫2

2b2
(1� e�bt

k+1)2 + ⇢
�⌫

ab
(1� e�at

k+1)(1� e�bt

k+1)

(5.25)
and finally

r
k+1 = x

k+1 + y
k+1 + �

k+1 (5.26)

with z1
k

⇠ N(0, 1), and z2
k

⇠ N(0, 1) two independent random variables and�t
k

= t
k+1�t

k

for 0  k  N .

5.7 Calibration

To calibrate the G2++ Interest rate model, we choose a calibration portfolio composed
of N instruments such as swaptions or caps (we choose 50 swaptions in our tests) and we
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try to minimize the following cost function:

f(a, b, �, ⌫, ⇢) =
NX

i=1

(V G2++
i

(a, b, �, ⌫, ⇢)� V Market

i

)2 (5.27)

where

• a, b, �, ⌫, ⇢ are the G2++ parameters to calibrate.

• V G2++
i

is the value of the product i calculated with the G2++ model (for the
swaptions, we use formula (5.22)).

• V Market

i

is the value of the product i obtained using market data.

In our tests, we used the Black volatilities given by Bloomberg in order to compute the
market price of the swaptions.

As we one see directly from the figure 5.1, the Black volatility is relatively higher for
small exercise date (namely maturity of swaption) and small tenor (of underlying swap).
Therefore, we will use more swaptions with small exercise date and small tenor in the
portfolio for calibration to have a better fit for the surface.

Figure 5.1: Black volatility surface
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5.8 Numerical results

In order to test our implementation of the G2++ model, we calibrated the G2++ pa-
rameters using the method described in the previous section and then, we compares the
pricing results for swaptions obtained by Monte-Carlo simulations based on the scheme
presented in section 5.6, with the results given by the closed formulas presented in section
5.3.

Calibration results.

The calibration portfolio contained 50 swaptions from di↵erent maturity and expiry dates.
We tried to minimize the cost function stated in 5.27 using the Levenberg-Marquardt
algorithm. We find the following parameters :

a = 0.59499, sigma = 0.00429, b = 0.15408, eta = 0.00196, rho = -0.97238

Figure 5.2 presents the market price and the calibrated G2++ prices of a set of swaptions
contained in the calibration portfolio. As we can see from the figure, the two swaption
prices are very close.

Figure 5.2: Market prices and the calibrated G2++ prices of swaptions
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Figure 5.3 shows 50 simulated paths of the short-rate r of the G2++ model using the
calibrated parameters.

Figure 5.3: 50 simulated paths of the short-rate r of the G2++ model
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Swaption pricing

We used the Monte-Carlo method to price swaptions of di↵erent strike rates by simulating
10000 paths of the short interest rate. Figure 5.4 shows the di↵erence between Monte
Carlo pricing and the one using the swaption closed formula.

Figure 5.4: Di↵erence between Monte Carlo and the closed formula pricing for swaptions
with di↵erent strike rates

We computed also the prices of swaptions with di↵erent payment frequencies using the
two methods i.e. closed formula and Monte Carlo methods. The results are presented in
figure 5.5.
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Figure 5.5: Di↵erence between Monte Carlo and the closed formula pricing for swaptions
with di↵erent frequencies
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Chapter 6

Expected Exposure

6.1 Introduction

As stated in chapter 4, the method that we used to calculate the CVA is based on a Monte
Carlo simulation approach. To do so, we used the CVA approximation formula presented
previously :

CV A(0, T ) = (1�R)
n�1X

t=0

(�(t
i

)� �(t
i+1))E

Q[D(0, t
i

)max(V (t
i

, T ), 0)] (6.1)

where �
t

is the cumulative distribution function of the default time ⌧ of the counterparty.

We presented the calculation methods for the loss given default and the default proba-
bility of a counterparty. The last term left to compute is the expected future exposure
EQ[max(V (t

i

, T ), 0)]. However, the di�culty of the exposure calculation depends highly
on the complexity of the derivatives that compose the portfolio. In this section, we present
two methods that we used to compute the expected exposure.
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6.2 Direct approach

The first method is the traditional Monte Carlo approach which is based on:

Step 1: Simulate the risk factors paths (short rate r for interest rate derivatives)
using a fixed time grid t0 = 0, t1, t2, . . . , tn = T .

Step 2: Value the term V k(t
i

, T ) at each time step t
i

and for each simulated paths
k, 0  k < N .

Step 3: Calculate the expected exposure (and expected positive exposure respec-
tively) at each time step t

i

by averaging the terms V k(t
i

, T ) (resp. max(V k(t
i

, T ), 0))
for all k 2 [0, N � 1].

This direct method works well with portfolios containing derivatives with available an-
alytical pricing formulas. For example, the expected exposure of a simple interest rate
swap can be calculated by valuing the swap at each time step for each path using the
swap valuation formula (i.e. finding the value max(V k(t

i

, T ), 0) at each time step t
i

and
for each simulated paths k) and then, averaging the exposures. Another example is the
equity European call option. In this case, we can use the Black-Scholes formula to com-
pute the exposure at each time step and simulated path and then, average the exposures
to obtain the expected exposure at each time step. We can also compute potential future
exposure (PFE) (defined as the maximum expected exposure over a specified period of
time calculated at some given level of confidence) by calculating the appropriate quantile
of the exposures.

However, the traditional direct Monte Carlo approach does not work very well with com-
plex derivatives. For example, let us consider a derivative which does not have an available
analytical pricing formula. The valuation will require a numerical method like PDE or
Monte carlo method which will require more computing resources and execution time. We
can illustrate this di�culty by considering a Monte Carlo valuation method. To calculate
the CVA in this case, we will, first, simulate N paths for the risk factors and then we will
need to perform a Monte Carlo Simulation at each time step and for each path in order to
estimate V k(t

i

, T ) which leads to the so-called “Monte Carlo on Monte Carlo”, and this
can make it impossible to compute the CVA in a reasonable time frame.

In order to solve this problem, we will introduce an alternative method to compute the
CVA based on the American Monte Carlo Method.
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6.3 American Monte Carlo (AMC)

6.3.1 Introduction

The American Monte Carlo, also known as Least-Squares Monte Carlo or Regression
Monte Carlo, is a simulation method that combines Monte Carlo simulation with least-
squares regression. The first application of this method (as it was introduced by Longsta↵
and Schwartz in 2001 [8]) was to price path-dependent derivatives such as American and
Bermudian options. Later, Antonov et al. [1] and Cesari et al. [4] showed that the
regression-based method can be extended to the calculation of expected exposures and
CVA.

6.3.2 Example: Pricing of American options

Problem formulation:

The objective of this example is to evaluate a path-dependent derivative (for example an
American option) on an underlying S i.e. to compute:

V0(S0) = sup
⌧2[0;T ]

EQ[D(0, ⌧)h(S
⌧

)] (6.2)

where h is the payo↵ function of the derivative.

The first approximation is to transform the problem into a discrete optimal stopping
problem. We consider a set of possible stopping times t0 = 0, t1, t2, . . . , tM = T . We then
have:

V0(S0) = sup
⌧2{t0,t1,t2,...,t

M

}
EQ[D(0, ⌧)h(S

⌧

)] (6.3)

The algorithm relies on the dynamic programming principle going backward:

• for t = T
V
T

(S
T

) = h(S
T

) (6.4)

• for 0  t
m

 t
M�1

U
t

m

(S
t

m

) = EQ[D(t
m

, t
m+1)Vt

m+1(St

m+1)|Ft

m

]

V
t

m

(S
t

m

) = max(h(S
t

m

), U
t

m

(S
t

m

))
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where U
t

m

(S
t

m

) denotes the continuation value i.e. the value of holding on to the option
at time t

m

.

Going backward, we find the value V0(S0)

V0(S0) = EQ[D(0, ⌧ ⇤)h(S
⌧

⇤)] (6.5)

where ⌧ ⇤ = inf {t
m

2 {t0, . . . , tM} : U
t

m

(S
t

m

)  h(S
t

m

)}

Longsta↵ & Schwartz algorithm principle

The algorithm can be summarized in the following steps:

Step 1: Generate the grid points (S
t

m

(n)) with n = 1, . . . , N ;m = 0, . . . ,M and N is
the number of paths

Step 2: At time t
M

= T compute the option value V
t

M

(S
t

M

) = h(S
T

)

Step 3: For time step t
m

 t
M�1:

• Compute an approximation of the continuation value Uapprox

t

m

(S
t

m

(i)) for each
path i 2 [0, N ]

• Evaluate the cash-flow for each path i

V approx

t

m

(S
t

m

(i)) =

⇢
h(S

t

m

) if Uapprox

t

m

(S
t

m

(i))  h(S
t

m

(i))
D(t

m

, t
m+1)Vt

m+1(St

m+1(i)) else

Step 4: For each path we consider

⌧ ⇤ = inf
�
t
m

2 {t0, . . . , tM} : Uapprox

t

m

(S
t

m

)  h(S
t

m

)
 

Step 5: The price estimator is given by

V approx

0 (S0) =

P
N

i=1 D(0, ⌧ ⇤(i))h(S
⌧

⇤(i)(i))

N

Conditional expectation approximation

The main di�culty of the algorithm is the approximation of the continuation value
Uapprox

t

m

(S
t

m

(i)) in step 3 (which is a conditional expectation). The method proposed
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by Longsta↵ & Schwartz is based on the assumption that the conditional expectation

EQ[D(t
m

, t
m+1)Vt

m+1(St

m+1)|Ft

m

]

can be represented as a linear combination of a countable set of F
t

m

-measurable basis func-
tions. A typical approximation is realized using least-square regression to state variables.
We then have:

EQ[D(t, T )V
t

(S
T

)|F
t

] ⇡
X

i

↵
i

L
i

(x1(t), x2(t), . . .)

where

• ↵
i

are regression coe�cients computed by solving a classical least-square minimiza-
tion.

• x1(t), x2(t), . . . are model states at time t.

• L
i

are the basis functions.

6.3.3 Application to CVA Calculation

As stated in the introduction to this chapter, we need to compute the expectation

EQ[max(V (t
i

, T ), 0)]

for each time step t
i

for i = 1, . . . , n, in order to calculate the CVA.

To do this, we generate N forward paths, and we use the approximation:

EQ[max(V (t
i

, T ), 0)] =
NX

k=1

max(V k(t
i

, T ), 0)

N

where V k(t
i

, T ) is the value of the derivatives at time t
i

for the path k. This value can be
expressed as follows:

V k(t
i

, T ) = EQ[⌫(t
i

, T )|xti = xk

t

i

]

where ⌫(t
i

, T ) is the cash flows in the time interval [t
i

, T ] of the positions and xk

t

i

is the
value of the state variable generated at of the state variables xk

t

i

. (In the case of interest
rate derivatives, the state variable is the spot interest rate r).This expectation can be
di�cult to estimate if there is no available pricing formula. In this case, we will need an
inner Monte Carlo in order to estimate V k(t

i

, T ).

Instead, we can use the same approximation method as in the Longsta↵-Schwartz algo-
rithm, and compute the conditional expectation using regression. In fact, we can obtain
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the positions value ⌫k(t
i

, T ) at time point t
i

along path k using a backward induction.
Then, we estimate V k(t

i

, T ) for each backward step by regressing the values ⌫k(t
i

, T )
against the state variables xk

t

i

for k 2 [1, N ]

Broadie and Glasserman [3] observed that using the same set of simulated sample paths
for estimating the conditional expectation function (i.e. finding the value of the regression
coe�cient for each time step ) and computing the expected exposure, can lead to a bias
in the calculations. Therefore, we decide to add a preliminary simulation in order to
estimate the regression coe�cient before the principal simulation where the continuation
values (and the exposures) are calculated. As a consequence, the American Monte Carlo
consists of three main steps:

• Forward Phase 1: simulation of the underlying asset/model di↵usion with N
paths and computing the state variables xk

t

i

for each path k and time point t
i

.

• Backward Phase: calculation of the values ⌫k(t
i

, T ) and computing the coe�cients
associated to the basis functions by performing a regression of ⌫k(t

i

, T ) against xk

t

i

.

• Forward Phase 2: second simulation of P paths using the di↵usion model. Calcu-
lation of V k(t

i

, T ) using the regression coe�cients obtained in the backward phase
and taking the average of the values of all paths to approximate the exposure.

6.4 Numerical Results

6.4.1 Swap exposure

First, we consider a interest rate payer swap. The swap characteristics are given in the
appendix B.1. We note that we in this calculations used a Multi-Curve framework as
we worked with two di↵erent interest rate curves, a discount based on the OIS curve
(Overnight indexed swap) and a forecast one based on EURIBOR.

We use the direct approach to compute the exposure profiles using the calibrated param-
eters presented in the calibration section. Figure 6.1 shows the swap expected positive
exposure (EPE) and potential future exposures (PFE) for di↵erent confidence levels.

We also compute the expected positive exposure using the American Monte Carlo (AMC)
approach. Figure 6.2 shows the di↵erence between the expected exposure results obtained
using the direct approach and the expected exposure calculated using the AMC with
di↵erent regression functions:
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Figure 6.1: Expected positive exposure (EPE) and Potential future exposures (PFE) for
di↵erent confidence levels

Figure 6.2: Di↵erence between the American Monte Carlo method and the traditional
Monte Carlo. x (resp. y) represent the instantaneous short-rate r of the discount (resp.
forecast) interest rate model

We can see that, for the swap exposures calculations, the American Monte Carlo approach
produces di↵erent results depending on the choice of the regression functions. In fact, we
observe that the calculations that include the constant coe�cient ↵0 give results closer to
the traditional Monte Carlo than the other choices of regression functions.
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6.4.2 European Swaption exposure

In this section, we consider an European swaption (Call) on an underlying receiver swap.
The properties of the swaption and the underlying swap are given in the appendix B.2 .

In this case, we can not use the direct approach to estimate the future exposures because
there is no available valuation formula, and performing a nested Monte Carlo is very
time-consuming.

Using the same test as for the swaps, we compute the expected exposures for di↵erent
regression functions. The results are shown in Figure 6.3.

Figure 6.3: The swaption expected future exposures for di↵erent regression functions. x
(resp. y) represent the instantaneous short-rate r of the discount (resp. forecast) interest
rate model

We observe that the di↵erence between the exposure calculation that used only 2 regres-
sion functions and the other regressions is relatively significant. In fact, we can say that
the number of regression functions is an important factor for the accuracy and the per-
formance of the American Monte Carlo method as we need to choose a su�cient number
of functions in order to get accurate results. However, choosing a high number of basis
functions can lead to an overfitting and a decrease in the performance of the method.

Figure 6.4 shows the potential future exposures curves using the first set of basis functions
(1,r

discount

,r
forecast

).
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Figure 6.4: The swaption expected positive exposure (EPE) and Potential future expo-
sures (PFE) for di↵erent confidence levels

6.4.3 G2++ model parameters

In this section, we see hohw the parameters of th g2++ model e↵ect the expected exposure
calculations.

To do so, we compute the EPE of the swap, described in the first test, using di↵erent
settings of the interest rate model parameters.

First, we study the impact of the correlation ⇢ of the G2++ model. we consider 3 di↵erent
sets of parameters:

• Set 1: a = 0.5, � = 0.1, b = 0.8, ⌘ = 0.1, ⇢ = -0.9

• Set 2: a = 0.5, � = 0.1, b = 0.8, ⌘ = 0.1, ⇢ = 0.9

• Set 2: a = 0.5, � = 0.1, b = 0.8, ⌘ = 0.1, ⇢ = 0

Figure 6.5 shows the calculated EPE for these sets.

We study also the impact of the parameters � and ⌘ of the G2++ model. Figure 6.6
shows the calculated EPE the following sets of parameters:
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Figure 6.5: EPE for sets 1,2 and 3

• Set 4: a = 0.5, � = 0.1, b = 0.8, ⌘ = 0.1, ⇢ = -0.9

• Set 5: a = 0.5, � = 0.3, b = 0.8, ⌘ = 0.3, ⇢ = -0.9

• Set 6: a = 0.5, � = 0.5, b = 0.8, ⌘ = 0.5, ⇢ = -0.9

Figure 6.6: EPE for sets 4,5 and 6
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Chapter 7

Conclusion

In this report, we introduced the definitions and expressions for the X-value adjustments
and we investigated the di↵erent approaches to compute the CVA, as an application of
the XVA calculations. We presented the American Monte Carlo (AMC) used initially for
pricing American options, and we showed that it can be a good alternative to solve the
Nested Monte Carlo problem that we face when we use a simulation approach to compute
the CVA. In fact, the AMC generates the swaption exposure profile in a short time
(3.5 seconds), while the traditional direct MC takes about 1h to compute the exposures.
However, the accuracy and performances of the AMC depends highly on the choice of
the basis functions used in the regression step, as shown in the numerical experiments.
For example, there are some regression functions that work well with some models and
payo↵s, but are not adapted to other types of derivatives.

In addition, the number of basis functions needed, in order to reach a given level of
accuracy, increases for problems with higher dimension. Therefore, the choice of the set
of basic functions will become more di�cult.

More sophisticated methods based on regression have been developed in order to improve
the accuracy and performance of the American Monte Carlo such as localized regression
and the Stochastic Grid Bundling Method (SGBM) introduced by Jain and Oosterlee
[7], which propose a bundling approach i.e. partitioning the state space into several
non-overlapping groups in order to reduce the approximation error.
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Appendix A

A derivation for CVA and DVA
expressions

The CVA and DVA derivations presented here are inspired by the presentation in [9].

The fair value of a financial product is given by the expectation of the present value of
its future cash flows under the risk-neutral measure Q :

V0 = EQ(
X

i

PV (CashF low
i

)) (A.1)

Let’s consider a derivative that have a future cash flow x
t

dt between t and t+ dt, then

X

i

PV (CashF low
i

) =

Z
T

0

e�
R
t

0 r

u

dux
t

dt (A.2)

with r is the instantaneous risk-free interest rate and T is the maturity of the derivative.
We have then,

V0 = EQ(

Z
T

0

e�
R
t

0 r

u

dux
t

dt) (A.3)

To introduce the counterparty risk, we suppose that we have a bilateral contract on this
derivative with a counterparty. If we assume that both counterparties have survived up
to the time point t, there are four events that can happen in the time interval from t to
t+ dt:

• Event 1: The two counterparties survive up to t+ dt.

• Event 2: We survive up to t+ dt, but our counterparty defaults.
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• Event 3: Our counterparty survives up to t+ dt, but we default.

• Event 4: Both counterparties default during the time interval between t and t+ dt.

To compute the probabilities of these events, we suppose that there exists a deterministic
default intensity �. The default probability of a counterparty in the interval [t, t + dt] is
given by

�
t

dt

and the survival probability for the time interval [t, t + dt], if the entity survived up to
the time point t is given by

e�
R
t+dt

t

�

u

du

Consequently, the probabilities of the four events are given in the following table,

Event Probability in [t, t+ dt]

Event 1 e�
R
t+dt

t

�

our

u

due�
R
t+dt

t

�

cpty

u

du

Event 2 e�
R
t+dt

t

�

our

u

du�cpty

t

dt

Event 3 e�
R
t+dt

t

�

cpty

u

du�our

t

dt
Event 4 �our

t

�cpty

t

dt

In order to obtain the final probabilities, the values in the previous table should be
multiplied by the probability of the two entities having survived up to time t given by
e�

R
t

0 (�
our

u

+�

cpty

u

)du . We note that if we consider an infinitesimal time step dt, we have
e�

R
t+dt

t

�

u

du ' 1.

We denote by R the deterministic recovery rate obtained by the surviving counterparty
if a default occurs. The cash flows for each event are given in the following table,

Event Cash flow
Event 1 x

t

dt
Event 2 �(1�Rcpty)max(V

t

, 0)
Event 3 �(1�Rour)min(V

t

, 0)
Event 4 �(1�Rcpty)max(V

t

, 0)� (1�Rour)min(V
t

, 0))

We know that the expectation of a random variable Z can be written in the following
way:

E(Z) =
X

i

P
i

Z
i

(A.4)
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with P
i

is the probability of the event i and Z
i

is the value of Z if the event i takes
place. Using this formula for the expectation of the present value and the approximation
e�

R
t+dt

t

�

u

du ' 1, we obtain,

V0 =EQ[

Z
T

0

Drisky

0,t x
t

dt]�

EQ[

Z
T

0

Drisky(0, t)�cpty

t

(1�Rcpty)max(V
t

, 0)dt]�

EQ[

Z
T

0

Drisky(0, t)�our

t

(1�Rour)min(V
t

, 0)dt]�

EQ[

Z
T

0

Drisky(0, t)�cpty

t

�our

t

((1�Rcpty)max(V
t

, 0)� (1�Rour)min(V
t

, 0))dt]

(A.5)

with the risky discount factor Drisky(0, t) = e�
R
t

0 (ru+�

our

u

+�

cpty

u

)du

The second term of the equation is known as the CVA (Credit Valuation Adjustment),
while the third term is known as DVA (Debit Valuation Adjustment).

CV A0 = EQ[

Z
T

0

Drisky(0, t)�cpty

t

(1�Rcpty)max(V
t

, 0)dt] (A.6)

DV A0 = EQ[

Z
T

0

Drisky(0, t)�our

t

(1�Rour)min(V
t

, 0)dt] (A.7)

It is often assumed that the fourth event has a negligible probability i.e joint default
probability is nearly zero if the correlation between our default event and the counterparty
default is not relevant (it will become relevant if we have two similar institutions in the
same country for example).

Assuming that the discount factors and V
t

are independent of the default events, we can
simplify the equations to:

CV A0 = (1�Rcpty)

Z
T

0

�cpty

t

EQ[Drisky(0, t)max(V
t

, 0)]dt (A.8)

DV A0 = (1�Rour)

Z
T

0

�our

t

EQ[Drisky(0, t)min(V
t

, 0)]dt (A.9)
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We can also neglect the riskiness of the discount factors if the counterparties have good
credit ratings. We have, then, the following formulas

CV A0 = (1�Rcpty)

Z
T

0

�cpty

t

EPE
t

dt (A.10)

DV A0 = (1�Rour)

Z
T

0

�our

t

ENE
t

dt (A.11)

with

• EPE
t

= EQ[D(0, t)max(V
t

, 0)] is the Expected Positive Exposure

• ENE
t

= EQ[D(0, t)min(V
t

, 0)] is the Expected Negative Exposure.

Finally, we can approximate (1 � R)�
t

by using the credit spread of the Credir Default
Swap (CDS) of the entity spread

t

.

CV A0 =

Z
T

0

spreadcpty
t

EPE
t

dt (A.12)

DV A0 =

Z
T

0

spreadour
t

ENE
t

dt (A.13)
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Appendix B

Properties of the derivatives used in
the numerical experiments

The valuation date of the derivatives is: March 22, 2018

B.1 Interest Rate Swap

The properties of the swap are:

• Start date: March 22, 2018

• 20 years maturity

• 1 year frequency for the fixed leg

• 3 months EURIBOR payment frequency

• Notional of 100000000

• Fixed rate of 1.5%

B.2 European Call Swaption

The properties of the underlying receiver swap are:
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APPENDIX B. PROPERTIES OF THE DERIVATIVES USED IN THE
NUMERICAL EXPERIMENTS

• Start date: September 12, 2019

• 10 years maturity

• 1 year frequency for the fixed leg

• 3 months EURIBOR payment frequency

• Nominal of 100000000

• Fixed rate of 1.5%

The exercise date of European swaption is September 9, 2019
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