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Sammanfattning

Portföljoptimering med maximal prediceringsgrad.

Modern portföljteori har sitt ursprung i Harry Markowitz arbete på 50-
talet. Teorin ger investerare kvantitativa verktyg för att sammansätta och 
utvärdera tillgångsportföljer på ett systematiskt sätt. Huvudsakligen går 
Markowitz idé ut på att komponera en investeringsportfölj genom att lösa 
ett kvadratiskt optimeringsproblem.

Det här examensprojektet har utgångspunkt i Maximally Predictable 
Portfolio-ramverket, utvecklat av Lo och MacKinley som ett alternativ till 
Markowitz problemformulering, i syfte att välja ut investeringsportföljer. 
En av fördelarna med att använda den förra metoden är att den tar 
hänsyn till uppskattningsfelen från prognostisering av framtida 
avkastning. Vår investeringsstrategi är att köpa och behålla dessa 
portföljer under en tidsperiod och bedöma deras prestanda. Resultaten visar 
att det mha. MPP-optimering är möjligt att konstruera portföljer med hög 
avkastning och förklaringsvärde baserat på historisk data. Trots sina 
många lovande funktioner är framgången med MPP-portföljer kortlivad. 
Baserat på vår bedömning drar vi slutsatsen att investeringar på 
aktiemarknaden uteslutande på grundval av optimeringsresultatet inte är 
en lukrativ strategi.

Nyckelord: Portföljoptimering, linjär optimering, multifaktormodel





Abstract

Harry Markowitz work in the 50’s spring-boarded modern portfolio theory.
It gives investors quantitative tools to compose and assess asset portfolios
in a systematic fashion. The main idea of the Mean-Variance framework
is that composing an optimal portfolio is equivalent to solving a quadratic
optimization problem.

In this project we employ the Maximally Predictable Portfolio (MPP)
framework proposed by Lo and MacKinlay, as an alternative to Markowitz’s
approach, in order to construct investment portfolios. One of the benefits of
using the former method is that it accounts for forecasting estimation errors.
Our investment strategy is to buy and hold these portfolios during a time
period and assess their performance. We show that it is indeed possible to
construct portfolios with high rate of return and coefficient of determination
based on historical data. However, despite their many promising features,
the success of MPP portfolios is short lived. Based on our assessment we
conclude that investing in the stock market solely on the basis of the opti-
mization results is not a lucrative strategy.

Keywords: Portfolio optimization, linear programming, multi-factor model
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Chapter 1

Introduction

Harry Markowitz’ work in the 50’s spring-boarded modern portfolio theory.
It gave investors quantitative tools to compose and assess asset portfolios in a
systematic fashion. First, Markowitz quantified return and risk of a security,
using the statistical measures of its expected return and standard deviation.
Second, Markowitz suggested that investors should consider return and risk
together, and determine the allocation of funds among investment alterna-
tives on the basis of their return-risk trade-off [1]. Essentially, Markowitz
proposition was that composing an optimal portfolio is equivalent to solving
a constrained quadratic optimization problem, e.g. risk minimization given
a utility constraint (Section 2.4).

Perhaps, the striking simplicity of the model is the reason why it became
so popular among researchers [1]. In order to produce the set of optimal
weights, it requires both a covariance matrix and a vector of means as input.
Since the nature of the inputs is random, they need to be estimated with
standard techniques. However, estimation errors in the forecasts have been
shown to significantly impact the resulting portfolio weights, which in turn
puts reliability of the model in question [1]. Furthermore, the model does
not take into account individual investor guidelines such as transaction cost
constraints and risk profile. The many criticisms concerning reliability and
applicability of the original model have been hindering its broader adoption
in the industry. However, they also spurred extensive research in the field
resulting in various approaches to alleviate those issues.

One such approach that deals with estimation uncertainty was proposed
by Lo and MacKinley [2]. Maximally Predictable Portfolio (MPP) frame-
work builds on the idea of predictability maximization, that stems from sub-
stantial evidence for forecasting ability of various risk-premium models (e.g.
Capital Asset Pricing Model, Fama-French three-factor Model) to predict
asset returns [2]. Despite considerable variation among assets and over time,
predictability, defined in terms of sensitivity to different market risk-premia,
is indeed present, and both statistically and economically significant [2].
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Two complications arise in the MPP framework. First, forecasting as-
set returns requires a suitable information structure. Multi-linear factor
modelling is a well-studied and well-established tool, and of particular in-
terest is the model proposed by Eugene Fama and Kenneth French (Section
2.3). Second, the objective function in the MPP model is a fraction, with
quadratic terms in both numerator and denominator. This type of problems
are known as convex-convex fractional programming problems, solution to
these involve mathematical theory beyond what is taught at a university
masters program. Luckily, this problem has already been studied in aca-
demic research, and a solution method is reviewed in detail in Chapter 2.

The goal of this thesis project is to answer the following questions:

• Can the framework of Maximally Predictable Portfolio be used to gen-
erate excess returns in the Swedish stock market?

• Are the obtained results valid as an investment strategy?

The scope of the project is limited to answering the above questions in
the setting of the Swedish stock market (Large Cap, Mid Cap, Small Cap)
during the period January 1, 2012 - December 31, 2018. Only stocks with
available historical data will be used in analysis.
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Chapter 2

Theory

2.1 Portfolio metrics

Let [0, T ] be the historical time period of interest. Let N denote the number
of equidistant sub-periods in [0, T ]. Define ∆t = T

N as the duration of each
sub-period [tk−1, tk], i.e. ∆t = tk−tk−1, k = 1, . . . , N . Note, that tk = k∆t,
t0 = 0 and tN = T .

2.1.1 Asset and portfolio return

Let random variable Si,tk be the price of i-th portfolio asset at time tk and
let Ci,tk be random variable representing the cash flow associated with that
asset at time tk. Then, random variable Ri,k of the return of i-th portfolio
asset from sub-period k is given by

Ri,k =
Si,tk + Ci,tk − Si,tk−1

Si,tk−1

. (2.1)

If no cash flow occurs in the sub-period, the asset’s return in sub-period k
is

Ri,k =
Si,tk − Si,tk−1

Si,tk−1

. (2.2)

The cumulative return of i-th asset the interval [0, T ], also known as perfor-
mance, is calculated as

Ri =
N∏
k=1

(1 +Ri,k)− 1. (2.3)

Given a set of portfolio weights
{
wi
}p
i=0

, where wi corresponds to asset i,
the portfolio return in sub-period k is
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Rpf,k =
p∑
i=0

wiRi,k, (2.4)

while the cumulative portfolio return over time interval [0,T ] is

Rpf =
p∑
i=0

wiRi, (2.5)

2.1.2 Volatility

Portfolio volatility is a measure of market price risk, defined as standard
deviation of portfolio returns:

σpf =
√
V ar(Rpf ) (2.6)

Note, that here Rpf denotes the random vector of portfolio returns. For
calculation purposes, the unbiased estimator of variance is used:

σpf =

√√√√ 1
N − 1

N∑
k=1

(rpf,k − r̄pf )2 (2.7)

r̄pf = E
[
Rpf

]
= 1
N

N∑
k=1

rpf,k. (2.8)

2.1.3 Beta

The key idea of Modern Portfolio Theory is that diversification reduces risk.
Specifically, it reduces unsystematic, or idiosyncratic risk, i.e. risk that
is endemic to a particular asset and not portfolio as a whole. Beta is a
measure of systematic risk, irreducible through diversification, that arises
from general exposure to markets. Market beta, that is, beta of a portfolio
consisting of all assets traded on the market, is exactly 1. Portfolio beta
indicates the sensitivity of an asset portfolio to general market movements.
A large portfolio beta value, either positive or negative, indicates strong
correlation with market, whereas a beta value close to 0 is characteristic of
a market-agnostic portfolio.

Let βpf denote portfolio beta, Rpf and Rbm denote random variable of
portfolio and benchmark returns respectively. Typically, a benchmark is
some market index, e.g. OMXS30, SIXPRX etc. Then

βpf = Cov(Rpf , Rbm)
V ar(Rbm) = 1

N − 1

N∑
k=1

(rpf,k − r̄pf )(rbm,k − r̄bm)
σ2
bm

(2.9)

4



2.1.4 Sharpe ratio

Sharpe ratio, also known as risk-adjusted return, is a measure of investment
efficiency, formally defined as the ratio of expected excess return to total
risk:

SR =
E
[
Rpf −Rrf

]
σpf

(2.10)

where Rrf is the annual risk-free rate. Sharpe ratio is a relative performance
metric, which makes it useful in assessing portfolios with different return and
risk profiles.

2.1.5 Tracking error

Let ∆ := Rpf − Rbm be random variable of excess return of portfolio over
some benchmark. Tracking error is a realtive risk measure, that is defined
as volatility of ∆:

TE =
√
V ar(∆) (2.11)

For calculation purposes, the unbiased estimator of variance is used.

TE =

√√√√ 1
N − 1

N∑
k=1

(δk − δ̄)2 (2.12)

δ̄ = E
[
∆
]

= 1
N

N∑
k=1

δk (2.13)

Here, δ are observations of ∆.

2.1.6 Information ratio

In essence, Information ratio is the relative counterpart of Sharpe ratio,
which is an absolute measure of investment efficiency. Information ratio is
used to gauge the ability of fund manager to outperform benchmark. It is
defined as ratio of excess portfolio return over some benchmark to Tracking
error of same investment:

IR =
E
[
∆
]

TE
. (2.14)

2.2 Multi-linear regression and Coefficient of de-
termination

Multi-linear regression is a standard tool in statistics used to determine the
linear relationship between a dependent variable and a set of independent
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variables. Formally, given a set of n observations (F1,1, F1,2, . . . , F1,p, R1),
(F2,1, F2,2, . . . , F2,p, R2), . . . , (Fn,1, Fn,2, . . . , Fn,p, Rn), where

{
Fk,i

}p
k=1

are
the explanatory variables for a given outcome Ri, and assuming, that the
true relationship between the dependent and the independent variables is
given by

Ri = β0 + β1F1,i + β2F2,i + . . . βpFp,i + εi = βTFi + εi, (2.15)

where the ε represents model error such that E[εi] = 0 and V ar(εi) = σεi .
The objective is to find the regression coefficients β = (β1, β2, . . . , βp)T , such
that the squared sum of model errors εk

n∑
i=1

ε2
i =

n∑
i=1

(
Ri − βTFi

)2
, (2.16)

in matrix notation

||ε||22 = ||R− Fβ||22 (2.17)

is minimized:

β∗ = argmin
β
||R− Fβ||22 (2.18)

Solution to problem (2.18), known as Ordinary Least Squares estimator, is
given by

β∗ = (F TF )−1F TR. (2.19)

It is common to assess the quality of the OLS regression by comparing how
much the initial variation in the sample can be reduced by regressing onto
independent variables. The coefficient of determination R2 is defined as a
ratio of model variance to the total variance of the dependent variable. Let
R̂ denote the predicted values, based on the solution (2.19):

R̂ = Fβ∗ (2.20)

Then, coefficient of determination is given by

R2 = V ar(R̂)
V ar(R) (2.21)
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2.3 Fama-French three-factor model

The Fama-French three-factor model (FF3M) was introduced in Fama and
French (1993) as an extension of the Capital Asset Pricing Model (CAPM).
The difference between CAPM and FF3M is that the former has a theoretical
foundation, stemming from Markowitz’ original work, while the latter is an
ad hoc model that was introduced because it better fits the empirical data.

The main takeaway of CAPM is that an optimal portfolio is a combi-
nation of risk-free asset and market portfolio. Risk-free asset is typically
represented by government bonds. Market portfolio is combination of all
risky assets available in the market, that is typically represented by some
suitable market index. In CAPM setting, expected return of an investment
portfolio, denoted by Rpf , is a linear function of expected excess market
return Rm:

E[Rpf ] = α+Rrf + β × (E[Rm]−Rrf ). (2.22)

Forecasting portfolio return is a matter of calculating portfolio beta from
betas of individual assets. The significance of beta is discussed in Section
2.1.

Validity of the model (2.22) builds on following assumptions [3]:

• All investors have homogeneous expectations, i.e. they expect the same
probability distribution of returns.

• All investors want to invest in an optimal portfolio based on
Markowitz’s mean-variance framework, i.e. for a given expected return,
they target the portfolio with the lowest volatility.

• All investors can lend and borrow any amount of money at the risk-free
rate.

• All investors have the same one-period horizon.

• All assets are infinitely divisible.

• There are no taxes and transaction costs.

• There is no inflation or any change in interest rates or inflation is fully
anticipated.

• Capital markets are efficient, i.e. they are in equilibrium.

FF3M extends model (2.22) with two additional factors, that represent
observed phenomena in the market. Researchers found, that, with regards
to returns, (1) small firms outperformed big firms, (2) firms with high book-
to-market value outperformed firms with low book-to-market value. Fama
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and French showed, that these factors were significant predictors of portfolio
performance. Denote the difference in rate of return between small and big
firms with Rsmb. Denote the difference in rate of return between firms
with high book-to-market value and low book-to-market value with Rhml.
According to FF3M, expected return of an investment portfolio is given by
equation

E[Rpf ] = α+Rrf+β1×(E[Rm]−Rrf )+β2×E[Rsmb]+β3×E[Rhml]. (2.23)

Beta parameters in (2.23) can be viewed as sensitivities to respective
factors. However, they are not as significant as the beta in the original
model (2.22).

2.4 Mean-Variance optimization
Let Ri be a random variable representing the rate of return of a risky asset
Si, i = 1, . . . , n. Let wi be the portion of the portfolio capital invested
in asset Si. For simplicity assume no short-selling. Additionally, impose
upper bound on individual allocation, αi. Furthermore, let µi = E[Ri]
denote the average rate of return of asset Si and let σij = Cov(Ri, Rj)
denote the covariance between the i-th and j-th rate of return, where σii =
σ2
i = V ar(Ri) and σij = σji. Assume, that an investor is risk-averse in the

sense that he or she prefers low σi:s, and seeks to minimize the risk of an
investment portfolio, but at the same time requires some minimal return on
investment, ρ. Assume further, that Ri ∼ N(µi, σi). Then the set of optimal
portfolio weights {wi}ni=1 is obtained by solving the following optmization
problem:

minimize
w

n∑
i=1

n∑
j=1

σijwiwj

subject to
n∑
i=1

wi = 1

n∑
i=1

wiµi ≥ ρ

0 ≤ wi ≤ αi, i = 1, . . . , n.

(2.24)

2.5 Maximally Predictable Portfolio

Consider a collection of n risky assets with returnsRt := (R1,t, R2,t, . . . , Rn,t)T .
Assume, that Rt is a jointly stationary and ergodic process with finite ex-
pectation µ = (µ1, µ2, . . . , µn)T and finite autocovariance matrix. Denote
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by Zt vector of de-meaned asset returns, i.e. Zt = Rt − µ. Let Ẑt denote
some forecast of Zt based on information set available at time t − 1, and
denote it Ft−1, i.e. ,

Ẑt = E[Zt|Ft−1]. (2.25)

We then may express Zt as

Zt = E[Zt|Ft−1] + εt = Ẑt + εt, (2.26)

Assume, that εt is a conditionally homoskedastic process with zero mean
and that the information set Ft is well behaved enough to ensure that Ẑt is
also a stationary and ergodic process. Included in Ft−1 are ex-ante observ-
able economic variables, e.g. dividend yield, interest rate spreads, or other
leading economic indicators [2]. As in previous section, assume that an in-
vestor is risk-averse and wishes to diversify portfolio allocation in order to
achieve some minimal return. Then, the set of optimal portfolio weights
w = (w1, w2, . . . , wn)T that maximizes the coefficient of determination of an
investment portfolio is the solution of optimization problem

maximize
w

R2 = V ar(ẐT
t w)

V ar(ZT
t w)

subject to
n∑
i=1

wi = 1

n∑
i=1

wiµi ≥ ρ

0 ≤ wi ≤ αi, i = 1, . . . , n.

(2.27)

2.6 Mean absolute deviation

Mean absolute deviation (MAD) of a random variable R is defined as

MAD(R) = E
[∣∣∣R− E[R]

∣∣∣]. (2.28)

For a normally distributed random variable, MAD is proportional to
standard deviation, as following theorem shows.

Theorem 2.1. If R ∼ N(µ, σ), then

MAD(R) =
√

2
π
σ. (2.29)

Proof. By definition of the expected value of a random variable,
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E
[∣∣∣R− E[R]

∣∣∣] = 1√
2πσ

ˆ ∞
−∞
|r − µ| exp

− (r − µ)2

2σ

dr
= 1√

2πσ

ˆ ∞
0

(r − µ) exp
{
− (r − µ)2

2σ

}
dr

= 1√
2πσ

ˆ ∞
0

t exp
{
− t2

2σ

}
dt

=
√

2
π
σ.

(2.30)

2

This result holds when R is multivariate normal as well [4].

2.7 Optimization problem

First, note that since by definition of standard deviation of a random variable

σ(R) =
√
V ar(R),

maximization of the quotient between variances of two random variables
is equivalent to maximization of the quotient of their respective standard
deviations, i.e. ,

maximize V ar(R̂)
V ar(R) if and only if maximize σ(R̂)

σ(R)

The result of Theorem 2.1 implies further, that when R̂, R are normally
distributed,

maximize V ar(R̂)
V ar(R) if and only if maximize MAD(R̂)

MAD(R)

Finally, maximization of a quotient is equivalent to minimization of its in-
verse, i.e. ,

maximize MAD(R̂)
MAD(R) if and only if minimize MAD(R)

MAD(R̂)
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Then, model (2.27) can be reformulated as

minimize
w

E
[∣∣∣RT

t w − E[RT
t w]

∣∣∣]
E
[∣∣∣R̂T

t w − E[R̂T
t w]

∣∣∣]
subject to

n∑
i=1

wi = 1

n∑
i=1

wiµi ≥ ρ

0 ≤ wi ≤ αi, i = 1, . . . , n.

(2.31)

Note that the change of variable from Zt in (2.27) to Rt in (2.37) was made
for notational convenience and consistency with the rest of the chapter.

Model (2.31) can be simplified further. Since RT
t w =

∑n
i=1wiRi,t, it

is instructive to look at the individual wiRi,t terms. Let F1, F2 and F3
represent the three factors in model (2.23) and note, that setting β0 =
α+Rrf results in a regression equation similar to (2.15):

wiRi,t = wiβ0 + wiβi,1F1,t−1 + wiβi,2F2,t−1 + wiβi,3F3,t−1 + wiεi,t

E[wiRi,t] = wiβ0 + wiβi,1E[F1,t−1] + wiβi,2E[F2,t−1] + wiβi,3E[F3,t−1],
(2.32)

which yields

wiRi,t − E[wiRi,t] = wiβi,1(F1,t−1 − F̄1) + wiβi,2(F2,t−1 − F̄2)
+ wiβi,3(F3,t−1 − F̄3) + wiεi,t

= wi

3∑
k=1

βi,k(Fk,t−1 − F̄k) + wiεi,t

F̄k = E[Fk,t−1].

(2.33)

Thus,

RT
t w − E[RT

t w] =
n∑
i=1

wi

3∑
k=1

βi,k(Fk,t−1 − F̄k) +
n∑
i=1

wiεi,t

=
3∑

k=1
βk(w)(Fk,t−1 − F̄k) + εt(w)

(2.34)

where βk(w) =
∑n
i=1wiβi,k and εt(w) =

∑n
i=1wiεi,t.

Because of relation (2.26),

R̂T
t w − E[R̂T

t w] =
3∑

k=1
βk(w)(Fk,t−1 − F̄k)

βk(w) =
n∑
i=1

wiβi,k

(2.35)
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Assuming equal probability of outcomes pt = 1
T , the objective function in

(2.31) can be expressed as

E
[∣∣∣RT

t w − E[RT
t w]

∣∣∣]
E
[∣∣∣R̂T

t w − E[R̂T
t w]

∣∣∣] =
∑T
t=1

∣∣∣∑3
k=1 βk(w)(Fk,t−1 − F̄k) + εt(w)

∣∣∣∑T
t=1

∣∣∣∑3
k=1 βk(w)(Fk,t−1 − F̄k)

∣∣∣
(2.36)

The reformulated optimization problem is as follows:

minimize
w

∑T
t=1

∣∣∣∑3
k=1 βk(w)(Fk,t−1 − F̄k) + εt(w)

∣∣∣∑T
t=1

∣∣∣∑3
k=1 βk(w)(Fk,t−1 − F̄k)

∣∣∣
subject to

n∑
i=1

wi = 1

n∑
i=1

wiµi ≥ ρ

0 ≤ wi ≤ αi, i = 1, . . . , n

βk(w) =
n∑
i=1

wiβi,k

εt(w) =
n∑
i=1

wiεi,t

(2.37)

It has been shown, that the optimal solution to 2.37 is equivalent to the
optimal solution of following optimization problem [5]:

minimize
T∑
t=1

(ut + vt)

subject to
T∑
t=1

(ξt + ηt) = 1

ut − vt =
3∑

k=1
βk(y)(Fk,t−1 − F̄k) + εt(y)

ξt − ηt =
3∑

k=1
βk(y)(Fk,t−1 − F̄k)

0 ≤ ξt ≤ atzt
0 ≤ ηt ≤ bt(1− zt)
ut ≥ 0, vt ≥ 0
zt ∈ {0,1}
(y, y0) ∈ Y
t ∈ [1, T ]

(2.38)
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Set Y is the set that satisfies all of the relations below:

y0 = 1∑T
t=1 pt

∣∣∣∑3
k=1 βk(w)(Fk,t−1 − F̄k)

∣∣∣
y = y0w

βk(y) =
n∑
i=1

yiβi,k, k = 1, . . . ,K

εt(y) =
n∑
i=1

yiεi,t, t = 1, . . . , T

n∑
i=1

r̃iyi ≥ ρy0

n∑
i=1

yi = y0

0 ≤ yi ≤ αy0, i = 1, . . . , n
y0 ≥ 0

(2.39)

at and bt are given by

at = max

max


3∑

k=1
βk(y)(Fk,t−1 − F̄k)

∣∣∣∣ (y, y0) ∈ Y

, 0


bt = −min

min


3∑

k=1
βk(y)(Fk,t−1 − F̄k)

∣∣∣∣ (y, y0) ∈ Y

, 0


(2.40)

Solving problem 2.38 yields among other things values (y∗, y∗0), from which
we get optimal portfolio weights w∗ = y∗

y∗
0
.
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Chapter 3

Methodology

All parts of the system were built in Python [6]. Following packages (in
latest version) were used:

• Selenium - web scraping

• Beautiful soup - parsing and cleaning scraped data

• Pandas datareader - API requests

• Pandas, Numpy, Scikit - essential data analysis packages

• Gurobi - linear and non-linear optimization

• Plotly - plotting graphs

The strategy is to find optimal portfolios based on the data from year 2017,
buy these portfolios in the beginning of 2018 and assess their performance
at the end of 2018.

3.1 Data acquisition

A list of all currently traded Small, Mid and Large Cap companies was
scraped from OMX NASDAQ webpage [7]. Historical monthly adjusted
closing price data for the period January 1, 2012 - December 31, 2018 was
downloaded and stored for each asset in the above list from Alpha Vantage
Free API, which required a private API key [8]. Stocks with insufficient
histrical data were discarded from the analysis, which brought the total
number of assets from 355 down to 255. The Fama-French European mar-
ket monthly factor data for the period in question was obtained through
Kenneth French’s website [9].
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3.2 Data analysis

Demeaned monthly returns were calculated from adjusted closing price data
according to (2.2). The result was then split into a training set, consisting
of 60 observations accounting for the first five years of observations (2012-
2016), and a test set, consisting of 12 observations accounting for the last
year of observations (2017). Regression model (2.23) was fitted on the train-
ing set and then used to predict returns. Predictions were then compared to
the test set. Regression coefficients , residuals, MSE- and R2-scores as well
as predicted returns were saved and stored locally. The outlined procedure
was performed for each stock.

Next, regression coefficients, residuals, factor data and return predictions
were used as input to the optimizer specified in accordance with (2.38), with
T = 12 and n = 255. This yielded portfolio weights as output. In total,
nine portfolios were constructed using different values of maximal allocation
parameter a and minimal annual rate of return ρ (Table 3.1). Essentially, a
regulates the size of the portfolio in terms of total numbers of assets, while
ρ represents the "greedyness" of the investor.

Table 3.1: List of portfolios based on choice of parameters a and ρ.

Portfolio a (%) ρ (%)
MPP 1 20 5
MPP 2 20 10
MPP 3 20 20
MPP 4 10 5
MPP 5 10 10
MPP 6 10 20
MPP 7 5 5
MPP 8 5 10
MPP 9 5 20

3.3 Portfolio assessment

As benchmark, the Six Portfolio Return Index was chosen. SIXPRX reflects
the market progress of companies listed on the Stockholm Stock Exchange,
subject to the restriction that no company may weigh over ten per cent.
Returns received by the shareholders in the form of dividends are reinvested
in SIXPRX [10].

Portfolio metrics were calculated using formulas in Section 2.1:

• Return - Equation (2.4)

• Performance - Equation (2.3)
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• Volatility - Equations (2.7), (2.8)

• Beta - Equation (2.9)

• Sharpe ratio - Equation (2.10)

• Tracking error - Equations (2.12),(2.13)

• Information ratio - Equation (2.14)

Since period of interest spanned a single year, using regular formulas was
equivalent to using the annualized counterparts. Metrics were calculated for
each portfolio in Table 3.1.
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Chapter 4

Results

MPP portfolios consisted of various combinations of 70 different stocks (Fig-
ure A.1). Portfolios were comprised of no more than 30 assets. Stocks were
analyzed in terms of coefficient of determination and annual return in 2017.
Table 4.1 shows stocks with best/worst predictability in the market (4.1a,
4.1c) versus those selected by optimization algorithm (4.1b, 4.1d) during
that period. Table 4.2 presents annual return of stocks in analogous fash-
ion.

Table 4.1: Best and worst stocks in terms of predictability (R2) in the market
(Tables (a), (c)) and in portfolio selection (Tables (b), (d)). Rank column
indicates relative position in descending order. Analysis based on financial
data from 2017.

Asset P rank R2 rank
INVE-B.ST 12.904 105 0.533 1
INVE-A.ST 12.150 110 0.504 2
BELE.ST -15.786 200 0.451 3
INDU-C.ST 22.250 74 0.446 4
SEB-A.ST 6.356 127 0.426 5
LIAB.ST -5.168 167 0.412 6
DURC-B.ST 54.194 20 0.380 7
LUND-B.ST 11.868 112 0.377 8
STE-R.ST 32.657 49 0.371 9
ENEA.ST -15.365 198 0.371 9

(a) Ten stocks with highest pre-
dictability in the market.

Asset P rank R2 rank
LIAB.ST -5.168 167 0.412 6
BMAX.ST -9.197 180 0.307 32
TELIA.ST 5.065 131 0.298 38
XANO-B.ST 46.986 26 0.282 46
CAST.ST 15.432 96 0.281 47
QLRO.ST 109.249 5 0.270 52
BEGR.ST 19.904 84 0.261 56
BIOT.ST 87.514 9 0.255 59
EOLU-B.ST 27.175 63 0.252 61
REJL-B.ST -18.347 209 0.250 63

(b) Ten stocks with highest pre-
dictability in MPP portfolios.

Asset P rank R2 rank
HTRO.ST 108.108 6 0.000 255
TRENT.ST -1.923 158 0.005 254
PROF-B.ST 73.904 12 0.007 252
HPOL-B.ST 0.361 151 0.007 252
RAIL.ST -18.457 210 0.009 251
SMF.ST -23.875 218 0.011 250
ORTI-B.ST -21.119 215 0.014 249
STRAX.ST 2.459 139 0.016 247
CTT.ST 60.468 19 0.016 247
IS.ST -5.357 169 0.018 246

(c) Ten stocks with lowest pre-
dictability in the market.

Asset P rank R2 rank
HTRO.ST 108.108 6 0.000 255
TRENT.ST -1.923 158 0.005 254
PROF-B.ST 73.904 12 0.007 252
RAIL.ST -18.457 210 0.009 251
SMF.ST -23.875 218 0.011 250
STRAX.ST 2.459 139 0.016 247
CTT.ST 60.468 19 0.016 247
IS.ST -5.357 169 0.018 246
NAXS.ST 1.721 145 0.022 242
SWEC-A.ST -16.231 203 0.025 238

(d) Ten stocks with lowest pre-
dictability in MPP portfolios.
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Table 4.2: Best and worst stocks in terms of performance (cumalative re-
turns) (P ) in the market (Tables (a), (c)) and in portfolio selection (Ta-
bles (b), (d)). Rank column indicates relative position in descending order.
Analysis based on financial data from 2017.

Asset P rank R2 rank
G5EN.ST 212.836 1 0.049 216
CRAD-B.ST 134.855 2 0.109 163
HMED.ST 114.163 3 0.023 241
NOLA-B.ST 112.587 4 0.081 189
QLRO.ST 109.249 5 0.270 52
HTRO.ST 108.108 6 0.000 255
CORE-A.ST 97.555 7 0.080 191
SCA-A.ST 94.344 8 0.206 94
BIOT.ST 87.514 9 0.255 59
SCA-B.ST 79.812 10 0.210 89

(a) Ten stocks with highest per-
formance in the market.

Asset P rank R2 rank
G5EN.ST 212.836 1 0.049 216
CRAD-B.ST 134.855 2 0.109 163
NOLA-B.ST 112.587 4 0.081 189
QLRO.ST 109.249 5 0.270 52
HTRO.ST 108.108 6 0.000 255
CORE-A.ST 97.555 7 0.080 191
SCA-A.ST 94.344 8 0.206 94
BIOT.ST 87.514 9 0.255 59
PROF-B.ST 73.904 12 0.007 252
ORTI-A.ST 70.810 14 0.040 223

(b) Ten stocks with highest per-
formance in MPP portfolios.

Asset P rank R2 rank
ACTI.ST -83.349 255 0.202 95
VSSAB-B.ST -75.626 254 0.114 159
FING-B.ST -73.339 253 0.114 159
INVUO.ST -70.435 252 0.050 215
OASM.ST -69.987 251 0.120 156
ICTA.ST -66.240 250 0.045 221
PREC.ST -58.750 249 0.094 175
STAR-B.ST -56.477 248 0.029 234
EPIS-B.ST -52.612 247 0.105 166
MOB.ST -51.404 246 0.081 189

(c) Ten stocks with lowest perfor-
mance in the market.

Asset P rank R2 rank
VSSAB-B.ST -75.626 254 0.114 159
FING-B.ST -73.339 253 0.114 159
PREC.ST -58.750 249 0.094 175
VRG-B.ST -33.333 235 0.090 182
SMF.ST -23.875 218 0.011 250
RAIL.ST -18.457 210 0.009 251
REJL-B.ST -18.347 209 0.250 63
SWEC-A.ST -16.231 203 0.025 238
BILI-A.ST -16.199 202 0.176 116
TETY.ST -15.319 196 0.157 131

(d) Ten stocks with lowest perfor-
mance in MPP portfolios.

Table 4.3 shows, that eight out of nine portfolios had considerable co-
efficient of determination. MPP9 had the highest R2-score and MPP2 had
lowest, 0.5798 and 0.2683 respectively. Portfolios with high predictability
had outperformed market index in 2017. MPP1 had highest annual return
and MPP2 had lowest, 0.3706 and 0.0290 respectively. In terms of risk,
MPP1 performed worst, with σ = 0.0433 and TE = 0.0362. MPP7 had
lowest volatility, 0.02, and MPP9 had lowest Tracking error, 0.0306. MPP9
had highest risk-adjusted returns, SR = 1.0144 and IR = 0.5565. Worst in
this regard was MPP2, with σ = 0.0615 and IR = −0.1805. Overall, MPP
portfolios showed low market correlation. In this category, MPP2 did best
with β = −0.0081 and MPP6 worst with β = 0.1003.

The investment strategy was to buy the optimal portfolios in the be-
ginning of 2018 and assess them at the end of the year in similar fashion
as in previous period. With the exception of MPP2, all portfolios under-
performed the market (Table 4.4). MPP2 was the only portfolio with pos-
itive result in 2018. It yielded 0.0106 in returns, and 0.0623 and 0.2277
in risk-adjusted returns. Worst in this regard was MPP7, with −0.1123,
−0.45344 and −0.3378 respectively. MPP8 had lowest risk, σ = 0.0197
and TE = 0.0168. MPP3 had highest risk, σ = 0.0418 and TE = 0.0368.
Market correlation increased considerably in all portfolios. Interestingly,
MPP3 went from having lowest correlation in 2017 to highest in 2018 with
β = 1.2143. On the other hand, MPP6 reverted from having highest cor-
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relation in 2017 to lowest in 2018 with β = 0.6287. Note, that results for
MPP6 and MPP9 were incomplete due to missing data. In 2018 UFLX.ST
(Uniflex Sverige AB) was delisted from the stock market due to a merger
with POOL-B.ST (Poolia AB).

Table 4.3: Comparison between market (SIXPRX) and optimal portfolios
in terms of performance (P ), risk (σ, TE), risk-adjusted returns (SR, IR)
and correlation (β). Based on financial data from 2017.

R2 P σ β SR TE IR
SIXPRX - 0.0948 0.0290 1.0000 0.2517 - -
MPP1 0.4779 0.3706 0.0433 0.0845 0.6053 0.0362 0.5224
MPP2 0.2683 0.0290 0.0287 -0.0081 0.0615 0.0307 -0.1805
MPP3 0.4814 0.2035 0.0349 0.0743 0.4312 0.0328 0.2363
MPP4 0.4814 0.3407 0.0409 0.0756 0.5930 0.0330 0.5135
MPP5 0.4592 0.2973 0.0402 0.0668 0.5340 0.0336 0.4205
MPP6 0.4935 0.2217 0.0356 0.1003 0.4592 0.0322 0.2803
MPP7 0.5413 0.1960 0.0200 0.0698 0.7262 0.0315 0.2284
MPP8 0.5307 0.2096 0.0238 0.0401 0.6508 0.0330 0.2476
MPP9 0.5798 0.3432 0.0240 0.0990 1.0144 0.0306 0.5565

Table 4.4: Comparison between market (SIXPRX) and optimal portfolios
in terms of performance (P ), risk (σ, TE), risk-adjusted returns (SR, IR)
and correlation (β). Based on financial data from 2018. Portfolios marked
with (*) had missing data.

P σ β SR TE IR
SIXPRX -0.0442 0.0352 1.0000 -0.0904 - -
MPP 1 -0.1102 0.0315 0.8839 -0.2758 0.0354 -0.1555
MPP 2 0.0106 0.0312 1.2143 0.0623 0.0225 0.2277
MPP 3 -0.0735 0.0418 0.8336 -0.1283 0.0368 -0.0591
MPP 4 -0.1041 0.0318 1.0402 -0.2590 0.0233 -0.2170
MPP 5 -0.0895 0.0307 0.8122 -0.2339 0.0231 -0.1733
MPP 6* -0.0528 0.0316 0.6287 -0.1286 0.0257 -0.0342
MPP 7 -0.1123 0.0202 1.0006 -0.4534 0.0177 -0.3378
MPP 8 -0.0822 0.0197 0.7246 -0.3416 0.0168 -0.2114
MPP 9* -0.0831 0.0212 0.8421 -0.3108 0.0225 -0.1515
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Chapter 5

Discussion

5.1 Fama-French three-factor model

By examination of Tables 4.1a and 4.1c it is evident, that forecasting ability
of model 2.23 is unsatisfactory. For instance, only two stocks, INVE-A.ST
and INVE-B.ST (Investor AB), had R2 > 0.5, while most of the assets had
coefficient of determination below 0.3. Furthermore, a comparison between
values in Tables 4.2a and 4.2c suggests, that the model is better at predicting
positive returns than negative returns.

One possible explanation to poor performance is, that factor data used
in the analysis was based on much broader European market. Since calcu-
lation of factors is based on fiscal data that is not readily available cost free
for Swedish firms, a choice was made to use available European data. On
a broader scale, recall that model (2.23) is an extension of CAPM that was
developed to better suit empirical data. In later years, several researchers
from the field of behavioral finance gave possible explanations to phenomena
that the Fama-French aims to capture. Namely, that small firms outperform
big firms (SMB), and that firms with high book-to-market value outperform
those with low corresponding value (applied asset). However, ad-hoc nature
of this model raises question of its validity. Perhaps, a three-factor model
is an insufficient investment tool. Indeed, recently the authors extended
their previous work by addition of two factors, accounting for profitabil-
ity and investment activity of firms (wikipedia). On the other hand, in
the development of the concept of maximally predictable portfolio, Lo and
MacKinley used own seven-factor model. The above mentioned models were
not subject of the analysis, therefore no remark can be made about their
predictive power. But, Occam’s razor states that, the simplest is most likely.
In this view, the Fama-French model is not incomplete, e.g. missing factors,
but rather it is based on wrong assumption of market equilibrium. In other
words, poor predictions confirm that financial time-series are non-stationary.
From the point of view of a risk-averse investor, this raises question of suit-
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ability of the model.

5.2 Maximally predictable portfolio-optimization

In this project we maximized coefficient of determination R2 for portfolio
returns constrained by a minimal return requirement. It is therefore reason-
able to analyze the results in terms of these quantities. However, it is also
important to view the results from a perspective of a real world investor.

Judging by data in Table 4.3, it is safe to say, that MPP9 was the best
portfolio out of the nine in Table 3.1. It had the best trade-off between
return and risk, although correlation with market was among the highest
observed. MPP2 was the worst among portfolios; specifically, it deviated
strongly in terms of R2-score and performance from the rest. Overall, MPP
optimization did yield portfolios with considerable predictability and excess
return. Perhaps the most surprising feature of MPP portfolios was the
low beta values across the board. It seems as if maximizing predictability
implicitly minimizes market correlation.

Smaller portfolios had more risk than bigger portfolios, that is, the effect
of diversification was observed. Indeed, small portfolios (a = 20) consisted
of 16 assets, medium portfolios (a = 10) consisted of 19 assets, but large
portfolios (a = 5) consisted of 29 assets. Increase in return parameter ρ in
smaller portfolios yielded worse annual performance. On the contrary, in
big portfolios being "greedy" led to increased cumulative return. Portfolios
with ρ = 10, did worse in terms of R2-score but better in terms of beta than
the rest within a portfolio group.

Great performance of MPP9 was accounted by the composition of the
portfolio. Table A.13 shows that MPP9 managed to capture some of the top
performing stocks in 2017. What really stands out however is the R2-score
of individual assets. The data suggests, that MPP optimization yields port-
folios with high predictability regardless of coefficient of determination of
individual assets. Comparison between Tables 4.1a and 4.1b indicates, that
the optimizer does not explicitly prioritize stocks with high predictability,
which lends more strength to this conclusion.

5.3 Strategy assessment

From an investors point of view, 2017 was a lucrative year. The net market
return was positive, but it was lowered considerably by poor results during
summer and late autumn/winter. Nevertheless, it is fair to say that the over-
all market climate was positive. Figure 5.1 suggests, that the exceptional
performance of optimal portfolios (except MPP2) was accounted by fairly
consistent positive result at the end of each month. Figure 5.2 illustrates
this point further. The top performing portfolios (MPP1, MPP4, MPP9)
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outperformed the market from the start. The rest of portfolios did eventu-
ally catch up and outperform market much thanks to not being affected by
market downturns.

Figure 5.1: Monthly returns of optimal portfolios and index (%) in 2017.
Data from Table A.1.

Figure 5.2: Monthly performance of optimal portfolios and index (%) in
2017. Data from Table A.2.

Figure 5.3 indicates, that market sentiment turned negative in 2018.
Market returns were considerably lower and negative development towards
the end of the year lead to a negative annual result. The same can be
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said about optimal portfolios. Data suggests no clear advantage of MPP
portfolios over index, with exception of MPP2 that showed great initial
result and ended on plus side. In fact, Figure 5.4 suggests greater correlation
with market movements. This confirms findings in Table 4.4, that shows
substantial increase in portfolio betas in 2018.

Figure 5.3: Monthly returns of optimal portfolios and index (%) in 2018.
Data from Table A.3.

Figure 5.4: Monthly performance of optimal portfolios and index (%) in
2018. Data from Table A.4.

This last point provides further significance to beta-neutrality of MPP
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portfolios being a key feature.
The inversion of performance was observed even for other MPP portfo-

lios. What caused this effect? As Table A.3 indicates, market development
in 2018 was very weak. At the same time portfolio betas increased drasti-
cally from 2017 to 2018 (Tables 4.3, 4.4), in other words portfolios became
more sensitive to market fluctuations. A possible explanation to poor per-
formance of large portfolios, e.g. MPP9, is that their decline was caused
by being exposed at a larger extent to a declining market, despite diversifi-
cation. The small portfolios, e.g. MPP3, had a limited exposure and were
able to avoid the broad market decline.

5.4 Suggestions for further research

Forecasting stock returns is a central part of the method outlined in this
paper. A major weakness of the Fama-French model is its assumption of
stationarity of financial time series. A more suitable alternative is autore-
gressive integrated moving average (ARIMA) model. It can be used to obtain
a stationary time series through appropriate amount of differencing. Pres-
ence of seasonal effects in stock market [3] further motivate employment of
a seasonal ARIMA model. An added bonus of using these type of model
is that it does not require additional data, e.g. factor data, in the analysis,
which is can be quite difficult to obtain for a non-institutional investor.

In the original paper Lo and MacKinley do not explicitly assume that
the return process follows normal distribution [2]. For instance, Student’s
t-distribution is superior to normal distribution in terms of modelling asset
returns [11]. However, derivation of the problem (2.38) is made under as-
sumption of normality (recall substitution of variance with mean absolute
deviation). This was made in order to simplify convex-convex quadratic
fractional problem (2.27) to a linear problem. Luckily, the general case has
been studied and a algorithmic strategy can be developed on the basis of
available research [12].

The outcomes of the project were aligned with results of previous re-
search [2, 5, 12]. Namely, that markets contain substantial predictability
that can be used to compose profitable portfolios that beat the market.
What is new is that maximum predictability of a portfolio can be under-
stood in terms of market-neutrality. Indeed, the data clearly suggest that
low beta is a distinctive feature of MPP portfolios. However, the limited
time frame of the project demands further analysis before such claim can be
asserted. A suggestion is thus to develop and test this model for several time
periods with different duration, preferably in different market conditions.

Lastly, the performance of Gurobi solver was outstanding, the nine op-
timization problems were solved in under 10s. This suggests that the solver
can handle large scale problems in reasonable time. Thus a comparison
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between using monthly versus using daily data would be interesting in de-
termining the optimal setup for the optimization problem.
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Chapter 6

Conclusion

The goal of this project was to develop an algorithmic strategy based on
MPP framework. We were curious to see if the success of past research
could be replicated in present day Swedish market. In part it did. Solving
the optimization problem using historical data from recent years yielded
portfolios with exceptional returns and risk profiles. Indeed, these portfolios
had relatively high coefficient of determination despite the fact that the
assets they were comprised of did not. Another interesting feature that was
not discussed in the academic papers is the low beta that was characteristic
of MPP portfolios. Thus, the first thesis question was answered affirmatively.

Unfortunately, the promising results did not last particularly long. The
Swedish stock market was "bearish" in 2018, most likely due to concerns
regarding to the mortgage market and post-election turbulence in later part
of the year. In this setting almost all of the benefits of MPP portfolios
vanished. With regards to our findings, we concluded that the strategy
performed unsatisfactory.
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Appendix A

Tables and figures

Table A.1: Monthly returns of optimal portfolios and index (%). Based on
financial data from 2017.

Date SIXPRX MPP1 MPP2 MPP3 MPP4 MPP5 MPP6 MPP7 MPP8 MPP9
Jan 1.250 5.975 -0.898 4.086 5.048 4.954 4.149 1.468 3.318 4.249
Feb 2.950 0.568 -0.472 0.196 1.091 0.656 1.074 -0.411 -0.967 1.718
Mar 2.140 0.444 1.915 -0.303 0.584 0.173 -0.532 2.914 1.368 1.172
Apr 4.360 7.411 -0.695 5.211 6.192 6.050 5.305 2.811 4.500 5.467
May 1.720 -0.064 0.902 -0.516 0.367 -0.051 -0.266 1.106 -0.057 0.995
Jun -1.960 0.900 -0.134 -0.031 0.860 0.863 -0.505 -0.987 0.438 0.051
Jul -3.020 2.765 1.374 1.627 2.546 2.093 1.741 3.698 2.464 3.130
Aug -0.860 2.048 -0.856 1.301 2.215 1.894 2.040 -0.396 -0.059 2.385
Sep 5.600 2.939 1.135 1.696 2.616 2.274 1.615 3.123 2.552 2.827
Oct 2.120 1.019 0.047 0.349 1.246 0.943 0.655 0.199 0.102 1.428
Nov -3.490 2.304 0.493 1.185 2.097 1.874 1.058 1.454 1.671 1.951
Dec -1.260 5.956 0.096 4.058 5.019 4.801 4.053 3.198 4.020 4.638

Table A.2: Monthly performance of optimal portfolios and index (%). Cal-
culated from Table (A.1) and (2.3).

Date SIXPRX MPP1 MPP2 MPP3 MPP4 MPP5 MPP6 MPP7 MPP8 MPP9
Jan 1.250 5.975 -0.898 4.086 5.048 4.954 4.149 1.468 3.318 4.249
Feb 4.237 6.577 -1.366 4.290 6.194 5.643 5.267 1.051 2.319 6.040
Mar 6.468 7.050 0.523 3.974 6.814 5.825 4.708 3.996 3.719 7.283
Apr 11.110 14.983 -0.176 9.392 13.428 12.228 10.263 6.919 8.387 13.147
May 13.021 14.909 0.724 8.828 13.844 12.171 9.970 8.101 8.326 14.273
Jun 10.805 15.943 0.589 8.793 14.823 13.139 9.415 7.034 8.800 14.331
Jul 7.459 19.149 1.972 10.563 17.746 15.507 11.319 10.993 11.481 17.909
Aug 6.535 21.589 1.099 12.002 20.354 17.694 13.590 10.553 11.415 20.722
Sep 12.501 25.162 2.247 13.902 23.502 20.370 15.425 14.006 14.259 24.135
Oct 14.886 26.438 2.295 14.299 25.041 21.506 16.181 14.233 14.376 25.908
Nov 10.876 29.351 2.800 15.654 27.663 23.783 17.410 15.894 16.287 28.364
Dec 9.479 37.056 2.898 20.348 34.070 29.725 22.169 19.600 20.962 34.317
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Table A.3: Monthly returns of optimal portfolios and index (%). Based on
financial data from 2018. Portfolios marked with (*) had missing data.

Date SIXPRX MPP1 MPP2 MPP3 MPP4 MPP5 MPP6* MPP7 MPP8 MPP9*
Jan 1.570 0.451 2.540 3.474 -1.177 1.072 3.001 0.463 0.511 -1.451
Feb -0.730 -5.691 0.720 -4.896 -2.033 -4.876 -4.433 -1.279 -2.595 -0.889
Mar -1.290 -1.585 1.847 -1.964 -1.239 -2.053 -1.230 -1.570 -1.352 -0.871
Apr 4.390 9.676 7.691 8.818 8.078 6.894 5.066 6.121 4.438 7.466
May -0.110 -0.421 0.911 -2.279 0.983 0.564 -3.286 2.350 0.766 2.898
Jun 0.300 2.519 -0.241 -1.780 -0.822 -2.328 -0.807 -3.059 0.811 0.203
Jul 4.120 -0.848 3.419 0.610 1.381 1.148 4.559 4.742 3.046 1.270
Aug 2.580 4.218 4.287 -0.987 1.667 2.634 -0.764 -0.804 -1.835 1.172
Sep 0.090 -3.047 1.236 -2.204 -3.331 -2.346 -0.822 -1.715 -0.748 -3.607
Oct -7.150 -3.683 -9.665 -5.046 -9.795 -4.257 -1.949 -7.242 -5.035 -5.969
Nov -1.560 -7.209 -6.033 6.451 1.605 0.843 -0.147 -2.862 -0.706 -3.195
Dec -6.030 -4.807 -4.381 -6.626 -5.215 -5.916 -4.062 -6.139 -5.384 -4.933

Table A.4: Monthly performance of optimal portfolios and index (%). Cal-
culated from Table (A.3) and (2.3). Portfolios marked with (*) had missing
data.

Date SIXPRX MPP1 MPP2 MPP3 MPP4 MPP5 MPP6* MPP7 MPP8 MPP9*
Jan 1.570 0.451 2.540 3.474 -1.177 1.072 3.001 0.463 0.511 -1.451
Feb 0.829 -5.266 3.278 -1.592 -3.185 -3.857 -1.564 -0.822 -2.097 -2.326
Mar -0.472 -6.767 5.185 -3.525 -4.385 -5.830 -2.775 -2.379 -3.420 -3.177
Apr 3.897 2.254 13.275 4.982 3.339 0.662 2.150 3.596 0.866 4.052
May 3.783 1.823 14.306 2.590 4.355 1.230 -1.206 6.031 1.638 7.067
Jun 4.094 4.388 14.031 0.764 3.497 -1.127 -2.003 2.787 2.462 7.285
Jul 8.383 3.503 17.929 1.379 4.926 0.008 2.464 7.662 5.583 8.648
Aug 11.179 7.869 22.985 0.378 6.675 2.642 1.681 6.796 3.645 9.921
Sep 11.279 4.583 24.505 -1.834 3.122 0.234 0.845 4.965 2.870 5.957
Oct 3.323 0.731 12.472 -6.787 -6.979 -4.033 -1.121 -2.637 -2.310 -0.367
Nov 1.711 -6.531 5.686 -0.774 -5.486 -3.225 -1.266 -5.423 -3.000 -3.551
Dec -4.422 -11.024 1.056 -7.349 -10.415 -8.950 -5.277 -11.229 -8.223 -8.309

Table A.5: Asset allocation of portfolio MPP1.

Asset Weight (%) Performance (%) rank R2 rank
VICP-A.ST 7.722 33.927 44 0.040 223
SMF.ST 15.662 -23.875 218 0.011 250
SENS.ST 7.630 12.682 107 0.028 235
SCA-A.ST 10.389 94.344 8 0.206 94
QLRO.ST 2.673 109.249 5 0.270 52
PROF-B.ST 11.198 73.904 12 0.007 252
PREC.ST 5.300 -58.750 249 0.094 175
ORTI-A.ST 0.758 70.810 14 0.040 223
MIDW-A.ST 3.160 -5.181 168 0.089 184
MCAP.ST 0.093 29.683 56 0.088 186
ENDO.ST 9.552 -9.836 182 0.063 205
EAST.ST 2.500 22.472 73 0.154 133
BIOT.ST 13.889 87.514 9 0.255 59
BEGR.ST 4.445 19.904 84 0.261 56
ANOT.ST 5.028 -3.333 160 0.046 219
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Table A.6: Asset allocation of portfolio MPP2.

Asset Weight (%) Performance (%) rank R2 rank
VSSAB-B.ST 0.253 -75.626 254 0.114 159
VRG-B.ST 8.398 -33.333 235 0.090 182
TRENT.ST 12.903 -1.923 158 0.005 254
SWEC-A.ST 10.119 -16.231 203 0.025 238
SMF.ST 8.999 -23.875 218 0.011 250
SENS.ST 4.760 12.682 107 0.028 235
RROS.ST 0.166 -7.911 179 0.051 213
RAIL.ST 0.794 -18.457 210 0.009 251
ORTI-A.ST 1.643 70.810 14 0.040 223
NAXS.ST 13.532 1.721 145 0.022 242
LUPE.ST 20.000 -0.997 154 0.185 109
BONG.ST 9.095 10.465 117 0.087 187
AXFO.ST 2.923 15.337 97 0.197 100
ANOT.ST 2.925 -3.333 160 0.046 219
AGRO.ST 3.492 21.250 78 0.032 230

Table A.7: Asset allocation of portfolio MPP3.

Asset Weight (%) Performance (%) rank R2 rank
XANO-B.ST 2.625 46.986 26 0.282 46
VICP-A.ST 3.061 33.927 44 0.040 223
TRENT.ST 1.748 -1.923 158 0.005 254
STRAX.ST 20.000 2.459 139 0.016 247
SMF.ST 7.941 -23.875 218 0.011 250
SENS.ST 5.783 12.682 107 0.028 235
PROF-B.ST 6.126 73.904 12 0.007 252
PREC.ST 6.678 -58.750 249 0.094 175
ORTI-A.ST 0.461 70.810 14 0.040 223
MIDW-A.ST 1.900 -5.181 168 0.089 184
FPAR.ST 6.051 40.966 33 0.220 83
ENDO.ST 9.498 -9.836 182 0.063 205
EAST.ST 6.799 22.472 73 0.154 133
BONG.ST 8.068 10.465 117 0.087 187
BIOT.ST 11.043 87.514 9 0.255 59
ANOT.ST 2.220 -3.333 160 0.046 219

Table A.8: Asset allocation of portfolio MPP4.

Asset Weight (%) Performance (%) rank R2 rank
XANO-B.ST 0.564 46.986 26 0.282 46
VICP-A.ST 5.724 33.927 44 0.040 223
STRAX.ST 10.000 2.459 139 0.016 247
SMF.ST 5.557 -23.875 218 0.011 250
SENS.ST 9.149 12.682 107 0.028 235
SCA-A.ST 10.000 94.344 8 0.206 94
QLRO.ST 0.611 109.249 5 0.270 52
PREC.ST 6.169 -58.750 249 0.094 175
ORTI-A.ST 1.513 70.810 14 0.040 223
NOLA-B.ST 1.204 112.587 4 0.081 189
NAXS.ST 10.000 1.721 145 0.022 242
KDEV.ST 3.904 -4.167 164 0.142 142
IS.ST 4.853 -5.357 169 0.018 246
EOLU-B.ST 2.272 27.175 63 0.252 61
ENDO.ST 2.003 -9.836 182 0.063 205
CTT.ST 9.154 60.468 19 0.016 247
CORE-A.ST 10.000 97.555 7 0.080 191
ANOT.ST 7.177 -3.333 160 0.046 219
AGRO.ST 0.147 21.250 78 0.032 230
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Table A.9: Asset allocation of portfolio MPP5.

Asset Weight (%) Performance (%) rank R2 rank
VICP-A.ST 1.622 33.927 44 0.040 223
SWMA.ST 2.051 14.847 100 0.242 69
STRAX.ST 10.000 2.459 139 0.016 247
SMF.ST 3.188 -23.875 218 0.011 250
SENS.ST 8.484 12.682 107 0.028 235
SCA-A.ST 4.943 94.344 8 0.206 94
PROF-B.ST 8.447 73.904 12 0.007 252
PREC.ST 10.000 -58.750 249 0.094 175
ORTI-A.ST 0.751 70.810 14 0.040 223
NAXS.ST 10.000 1.721 145 0.022 242
MIDW-A.ST 0.860 -5.181 168 0.089 184
HTRO.ST 1.357 108.108 6 0.000 255
ENDO.ST 9.035 -9.836 182 0.063 205
EAST.ST 7.734 22.472 73 0.154 133
CRAD-B.ST 1.767 134.855 2 0.109 163
CORE-A.ST 6.876 97.555 7 0.080 191
BIOT.ST 7.875 87.514 9 0.255 59
ANOT.ST 5.009 -3.333 160 0.046 219

Table A.10: Asset allocation of portfolio MPP6.

Asset Weight (%) Performance (%) rank R2 rank
VICP-A.ST 3.184 33.927 44 0.040 223
UFLX-B.ST 1.108 19.063 87 0.161 126
SWMA.ST 7.407 14.847 100 0.242 69
STRAX.ST 10.000 2.459 139 0.016 247
SMF.ST 2.218 -23.875 218 0.011 250
SENS.ST 7.423 12.682 107 0.028 235
SCA-A.ST 7.249 94.344 8 0.206 94
SAGA-A.ST 8.649 13.448 103 0.068 199
PROF-B.ST 4.091 73.904 12 0.007 252
PREC.ST 10.000 -58.750 249 0.094 175
ORTI-A.ST 0.566 70.810 14 0.040 223
MIDW-A.ST 1.066 -5.181 168 0.089 184
MCAP.ST 4.347 29.683 56 0.088 186
HTRO.ST 3.894 108.108 6 0.000 255
ENDO.ST 10.000 -9.836 182 0.063 205
EAST.ST 4.303 22.472 73 0.154 133
CRAD-B.ST 1.840 134.855 2 0.109 163
ANOT.ST 2.655 -3.333 160 0.046 219
AGRO.ST 10.000 21.250 78 0.032 230

Table A.11: Asset allocation of portfolio MPP7.

Asset Weight (%) Performance (%) rank R2 rank
VITR.ST 1.000 65.193 17 0.091 180
TETY.ST 4.042 -15.319 196 0.157 131
TELIA.ST 0.702 5.065 131 0.298 38
SWEC-A.ST 5.000 -16.231 203 0.025 238
STRAX.ST 5.000 2.459 139 0.016 247
SSAB-B.ST 5.000 27.162 64 0.208 91
SSAB-A.ST 5.000 29.844 55 0.208 91
SMF.ST 5.000 -23.875 218 0.011 250
SENS.ST 3.532 12.682 107 0.028 235
SAGA-PREF.ST 4.163 16.703 93 0.049 216
REJL-B.ST 0.109 -18.347 209 0.250 63
POOL-B.ST 1.836 6.613 125 0.120 156
ORTI-A.ST 1.563 70.810 14 0.040 223
NOLA-B.ST 5.000 112.587 4 0.081 189
NAXS.ST 5.000 1.721 145 0.022 242
MEKO.ST 3.652 -9.401 181 0.105 166
LUPE.ST 5.000 -0.997 154 0.185 109
LIAB.ST 3.011 -5.168 167 0.412 6
KLOV-A.ST 5.000 19.282 85 0.095 172
KLED.ST 5.000 9.431 120 0.134 146
HOLM-A.ST 5.000 38.633 35 0.093 177
G5EN.ST 2.193 212.836 1 0.049 216
ENDO.ST 1.153 -9.836 182 0.063 205
CAST.ST 5.000 15.432 96 0.281 47
BMAX.ST 5.000 -9.197 180 0.307 32
BILI-A.ST 2.632 -16.199 202 0.176 116
AXFO.ST 5.000 15.337 97 0.197 100
ANOT.ST 0.410 -3.333 160 0.046 219
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Table A.12: Asset allocation of portfolio MPP8.

Asset Weight (%) Performance (%) rank R2 rank
VIT-B.ST 5.000 16.844 92 0.069 198
TEL2-B.ST 2.678 46.136 28 0.183 110
SWMA.ST 0.982 14.847 100 0.242 69
STRAX.ST 5.000 2.459 139 0.016 247
SSAB-A.ST 5.000 29.844 55 0.208 91
SMF.ST 5.000 -23.875 218 0.011 250
SKIS-B.ST 5.000 6.844 124 0.053 210
SENS.ST 4.981 12.682 107 0.028 235
SCA-A.ST 1.265 94.344 8 0.206 94
SAGA-PREF.ST 5.000 16.703 93 0.049 216
PROF-B.ST 3.455 73.904 12 0.007 252
PREC.ST 0.533 -58.750 249 0.094 175
POOL-B.ST 5.000 6.613 125 0.120 156
ORTI-A.ST 0.630 70.810 14 0.040 223
NOLA-B.ST 3.023 112.587 4 0.081 189
NAXS.ST 5.000 1.721 145 0.022 242
MSON-B.ST 5.000 35.828 40 0.212 85
MIDW-A.ST 4.473 -5.181 168 0.089 184
MCAP.ST 5.000 29.683 56 0.088 186
LATO-B.ST 0.176 28.069 59 0.118 158
KLED.ST 5.000 9.431 120 0.134 146
HIQ.ST 0.100 1.220 148 0.191 107
G5EN.ST 0.909 212.836 1 0.049 216
FING-B.ST 3.350 -73.339 253 0.114 159
ENDO.ST 5.000 -9.836 182 0.063 205
EAST.ST 5.000 22.472 73 0.154 133
CTT.ST 1.859 60.468 19 0.016 247
CORE-PREF.ST 5.000 16.568 94 0.061 206
ANOT.ST 1.586 -3.333 160 0.046 219

Table A.13: Asset allocation of portfolio MPP9.

Asset Weight (%) Performance (%) rank R2 rank
WIHL.ST 5.000 23.788 71 0.207 93
WALL-B.ST 2.311 13.783 102 0.030 233
VICP-A.ST 5.000 33.927 44 0.040 223
UFLX-B.ST 5.000 19.063 87 0.161 126
SWMA.ST 5.000 14.847 100 0.242 69
STRAX.ST 5.000 2.459 139 0.016 247
SMF.ST 5.000 -23.875 218 0.011 250
SENS.ST 5.000 12.682 107 0.028 235
SCA-A.ST 1.283 94.344 8 0.206 94
SAGA-PREF.ST 5.000 16.703 93 0.049 216
PROF-B.ST 5.000 73.904 12 0.007 252
PREC.ST 0.648 -58.750 249 0.094 175
ORTI-A.ST 0.023 70.810 14 0.040 223
NOLA-B.ST 5.000 112.587 4 0.081 189
NAXS.ST 5.000 1.721 145 0.022 242
MIDW-A.ST 1.542 -5.181 168 0.089 184
LUC.ST 1.075 -13.672 193 0.092 179
KLED.ST 5.000 9.431 120 0.134 146
HOLM-B.ST 2.737 38.115 36 0.099 170
HOLM-A.ST 2.917 38.633 35 0.093 177
G5EN.ST 3.372 212.836 1 0.049 216
FING-B.ST 1.408 -73.339 253 0.114 159
ENDO.ST 1.832 -9.836 182 0.063 205
CTT.ST 5.000 60.468 19 0.016 247
CORE-PREF.ST 4.292 16.568 94 0.061 206
BIOT.ST 5.000 87.514 9 0.255 59
BEIA-B.ST 0.798 21.984 75 0.122 153
AXFO.ST 2.173 15.337 97 0.197 100
ANOT.ST 3.589 -3.333 160 0.046 219
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