An evaluation approach to computing invariants rings of permutation groups

Nicolas Borie (joint work with Nicolas M. Thiéry)

Univ. Paris-Sud 11, Laboratoire de Mathématiques d’Orsay, Orsay Cedex, F-91405; CNRS, France

MEGA 2011 June 2, 2011
Motivations

Take advantage of symmetries in computations:

- Effective Galois theory
 [Colin, Abdeljaoued, ...]
- Solving system of polynomial equations
 [Gatermann, Colin, Faugère, Rahmany, ...]
- Isomorphism test of graphs
 [Thiéry]
- ...

The Typical need: compute generators of the invariant ring
Motivations

Take advantage of symmetries in computations:

- Effective Galois theory
 [Colin, Abdeljaoued, ...]
- Solving system of polynomial equations
 [Gatermann, Colin, Faugère, Rahmany, ...]
- Isomorphism test of graphs
 [Thiéry]
- ...

The Typical need: compute generators of the invariant ring
Take advantage of symmetries in computations:

- **Effective Galois theory**
 [Colin, Abdeljaoued, ...]

- **Solving system of polynomial equations**
 [Gatermann, Colin, Faugère, Rahmany, ...]

- **Isomorphism test of graphs**
 [Thiéry]

- ...

The Typical need: compute generators of the invariant ring
Motivations

Take advantage of symmetries in computations:

- Effective Galois theory
 [Colin, Abdeljaoued, ...]
- Solving system of polynomial equations
 [Gatermann, Colin, Faugère, Rahmany, ...]
- Isomorphism test of graphs
 [Thiéry]
- ...

The Typical need: compute generators of the invariant ring
Motivations

Take advantage of symmetries in computations:

- Effective Galois theory
 [Colin, Abdeljaoued, ...]
- Solving system of polynomial equations
 [Gatermann, Colin, Faugère, Rahmany, ...]
- Isomorphism test of graphs
 [Thiéry]
- ...

The Typical need: compute generators of the invariant ring
Our approach

The problem of constructing generators of the ring of invariants is usually dealt with Gröebner basis. Goals of our approach are:

- try to get results faster (if possible...)
- Take advantage of symmetries (instead of breaking them)
- Get a better control and understanding of the complexity
- Introduce more combinatorics in the problem
Our approach

The problem of constructing generators of the ring of invariants is usually dealt with Gröbner basis. Goals of our approach are:

- try to get results faster (if possible...)
- Take advantage of symmetries (instead of breaking them)
- Get a better control and understanding of the complexity
- Introduce more combinatorics in the problem
The problem of constructing generators of the ring of invariants is usually dealt with Gröbner basis. Goals of our approach are:

- try to get results faster (if possible...)
- Take advantage of symmetries (instead of breaking them)
- Get a better control and understanding of the complexity
- Introduce more combinatorics in the problem
Our approach

The problem of constructing generators of the ring of invariants is usually dealt with Gröbner basis. Goals of our approach are:

- try to get results faster (if possible...)
- Take advantage of symmetries (instead of breaking them)
- Get a better control and understanding of the complexity
- Introduce more combinatorics in the problem
Our approach

The problem of constructing generators of the ring of invariants is usually dealt with Gröbner basis. Goals of our approach are:

- try to get results faster (if possible...)
- Take advantage of symmetries (instead of breaking them)
- Get a better control and understanding of the complexity
- Introduce more combinatorics in the problem
1 Introduction

2 Quotienting by evaluation

3 Computing secondary invariants

4 Complexity

5 Further developments
Permutation groups

Definition (Symmetric group)

S_n: group of all permutations of the set $\{1, 2, \ldots, n\}$

- S_n is of cardinality $n!$

Definition (Permutation group)

A subgroup G of S_n

- Example: $C_3 = \langle (1, 2, 3) \rangle \subset S_3$
Definition (Symmetric group)

S_n: group of all permutations of the set \(\{1, 2, \ldots, n\} \)

- \(S_n \) is of cardinality \(n! \)

Definition (Permutation group)

A subgroup \(G \) of \(S_n \)

- Example: \(C_3 = \langle (1, 2, 3) \rangle \subset S_3 \)
Definition (Symmetric group)

\(S_n \): group of all permutations of the set \(\{1, 2, \ldots, n\} \)

- \(S_n \) is of cardinality \(n! \)

Definition (Permutation group)

A subgroup \(G \) of \(S_n \)

- Example: \(C_3 = \langle (1, 2, 3) \rangle \subset S_3 \)
Permutation groups

Definition (Symmetric group)

S_n: group of all permutations of the set $\{1, 2, \ldots, n\}$

- S_n is of cardinality $n!$

Definition (Permutation group)

A subgroup G of S_n

- Example: $C_3 = \langle (1, 2, 3) \rangle \subset S_3$
Natural action on $\mathbb{K}[x]$

Let \mathbb{K} be a field and $x = x_1, x_2, \ldots, x_n$. $\mathbb{K}[x]$ is the ring of multivariate polynomials in variables x_1, x_2, \ldots, x_n.

Action of S_n on $\mathbb{K}[x]$

$$
\begin{pmatrix}
S_n,
\mathbb{K}[x]
\end{pmatrix} \rightarrow
\begin{pmatrix}
\mathbb{K}[x]
\end{pmatrix}
$$

$$
\begin{pmatrix}
\sigma,
P(x_1, x_2, \ldots, x_n)
\end{pmatrix} \mapsto
P(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)})
$$

Example:

$$(1, 2) \cdot (x_1^2 x_2 + x_1 x_3 - x_4^3) = x_2^2 x_1 + x_2 x_3 - x_4^3$$

\mathbb{K} will be of characteristic 0 in this all this study.
Let \mathbb{K} be a field and $\mathbf{x} = x_1, x_2, \ldots, x_n$.
$\mathbb{K}[\mathbf{x}]$ is the ring of multivariate polynomials in variables x_1, x_2, \ldots, x_n.

Action of S_n on $\mathbb{K}[\mathbf{x}]$

$$
\begin{pmatrix}
S_n, & \mathbb{K}[\mathbf{x}]
\end{pmatrix} \rightarrow \mathbb{K}[\mathbf{x}]
$$
$$
\begin{pmatrix}
\sigma, & P(x_1, x_2, \ldots, x_n)
\end{pmatrix} \mapsto P(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)})
$$

Example:

$$(1, 2) \cdot (x_1^2 x_2 + x_1 x_3 - x_4^3) = x_2^2 x_1 + x_2 x_3 - x_4^3$$

\mathbb{K} will be of characteristic 0 in this all this study.
Introduction

Invariant polynomials

Definition

\(P \in \mathbb{K}[x] \) is invariant under \(G \) if \(\sigma \cdot P = P, \ \forall \sigma \in G \)

Fact: Products and sums of invariant polynomials are also invariant under the action of \(G \)

Definition

We denote \(\mathbb{K}[x]^G \) the ring of invariants polynomials under the action of \(G \).

\[\mathbb{K}[x]^G = \{ P \in \mathbb{K}[x] | \forall \sigma \in G : \sigma \cdot P = P \} \]

Theorem (fundamental theorem of Symmetric polynomials)

Sym\((x)\) : The invariant ring of polynomial under \(S_n \).
Sym\((x) = \mathbb{K}[e_1, e_2, \ldots, e_n] \)
\{e_1, e_2, \ldots, e_n\} are the elementary symmetric polynomials.
Invariant polynomials

Definition

\(P \in K[x] \) invariant under \(G \) if \(\sigma \cdot P = P, \forall \sigma \in G \)

Fact: Products and sums of invariant polynomials are also invariant under the action of \(G \)

Definition

We denote \(K[x]^G \) The ring of invariants polynomials under the action of \(G \).

\[K[x]^G = \{ P \in K[x] | \forall \sigma \in G : \sigma \cdot P = P \} \]

Theorem (fundamental theorem of Symmetric polynomials)

\(\text{Sym}(x) : The \text{ invariant ring of polynomial under } S_n \).
\(\text{Sym}(x) = K[e_1, e_2, \ldots, e_n] \)
\(\{e_1, e_2, \ldots, e_n\} \) are the elementary symmetric polynomials.
Invariant polynomials

Definition

\(P \in \mathbb{K}[x] \) \textit{invariant} under \(G \) if \(\sigma \cdot P = P, \forall \sigma \in G \)

Fact: Products and sums of invariant polynomials are also invariant under the action of \(G \)

Definition

We denote \(\mathbb{K}[x]^G \) The \textit{ring of invariants polynomials} under the action of \(G \).

\[\mathbb{K}[x]^G = \{ P \in \mathbb{K}[x] | \forall \sigma \in G : \sigma \cdot P = P \} \]

Theorem (fundamental theorem of Symmetric polynomials)

\text{Sym}(x) : The \textit{invariant ring of polynomial under} \(S_n \).
\text{Sym}(x) = \mathbb{K}[e_1, e_2, \ldots, e_n]
\{e_1, e_2, \ldots, e_n\} \text{ are the elementary symmetric polynomials.}
Invariant polynomials

Definition

\(P \in \mathbb{K}[x] \) *invariant* under \(G \) if \(\sigma \cdot P = P, \forall \sigma \in G \)

Fact : Products and sums of invariant polynomials are also invariant under the action of \(G \)

Definition

We denote \(\mathbb{K}[x]^G \) The *ring of invariants polynomials* under the action of \(G \).

\[
\mathbb{K}[x]^G = \{ P \in \mathbb{K}[x] | \forall \sigma \in G : \sigma \cdot P = P \}
\]

Theorem (fundamental theorem of Symmetric polynomials)

\(\text{Sym}(x) \) : *The invariant ring of polynomial under} \ S_n \\
\(\text{Sym}(x) = \mathbb{K}[e_1, e_2, \ldots, e_n] \) \\
\{e_1, e_2, \ldots, e_n\} *are the elementary symmetric polynomials.*
Reynolds operator

Definition (Reynolds operator)

\[R : \mathbb{K}[x] \longrightarrow \mathbb{K}[x]^G \]
\[p \quad \longmapsto \quad \frac{1}{|G|} \sum_{g \in G} g \cdot p, \]

- \(R \) map is a graded projection onto \(\mathbb{K}[x]^G \).
- \(R \) fix pointwise invariant polynomials (and only them).
- \(R \) is a \(\mathbb{K}[x]^G \)-morphism.

In practice, The Reynold’s operator is used to build generating family of the ring of invariant.
Reynolds operator

Definition (Reynolds operator)

\[
R : \ K[x] \longrightarrow \ K[x]^G \\
p \quad \ qua
Reynolds operator

Definition (Reynolds operator)

\[R : K[x] \rightarrow K[x]^G \]

\[p \mapsto \frac{1}{|G|} \sum_{g \in G} g \cdot p, \]

- \(R \) map is a graded projection onto \(K[x]^G \).
- \(R \) fix pointwise invariant polynomials (and only them).
- \(R \) is a \(K[x]^G \)-morphism.

In practice, The Reynold's operator is used to build generating family of the ring of invariant.
Reynolds operator

Definition (Reynolds operator)

\[R : \mathbb{K}[x] \mapsto \mathbb{K}[x]^G \]

\[p \mapsto \frac{1}{|G|} \sum_{g \in G} g \cdot p , \]

- \(R \) map is a graded projection onto \(\mathbb{K}[x]^G \).
- \(R \) fix pointwise invariant polynomials (and only them).
- \(R \) is a \(\mathbb{K}[x]^G \)-morphism.

In practice, The Reynold’s operator is used to build generating family of the ring of invariant.

Reynolds operator

Definition (Reynolds operator)

\[
R : \mathbb{K}[x] \mapsto \mathbb{K}[x]^G
\]

\[
p \mapsto \frac{1}{|G|} \sum_{g \in G} g \cdot p,
\]

- \(R \) map is a graded projection onto \(\mathbb{K}[x]^G \).
- \(R \) fix pointwise invariant polynomials (and only them).
- \(R \) is a \(\mathbb{K}[x]^G \)-morphism.

In practice, The Reynold’s operator is used to build generating family of the ring of invariant.
$\mathbb{K}[x]^G$ is a finitely generated algebra

Let G be a permutation group, subgroup of S_n.

Theorem

There exists n, but not $n + 1$, algebraically independent invariants.

Equivalently, $\mathbb{K}[x]^G$ has Krull dimension n.

Theorem (Noether)

*For any G subgroup of S_n, $\mathbb{K}[x]^G$ is generated as an algebra over \mathbb{K} by a finite number of homogeneous invariants, of degree not exceeding $|G|$.***

Theorem (Garsia, Stanton (1984))

$\mathbb{K}[x]^G$ is generated by a finite number of homogeneous invariants, of degree not exceeding $\binom{n}{2}$.***
Hilbert series

\(\mathbb{K}[x]^G \) is a graded connected commutative algebra \(\mathbb{K}[x]^G = \bigoplus_{d \geq 0} \mathbb{K}[x]^G_d \).

It admits \textit{Hilbert series}:

\[
H(\mathbb{K}[x]^G, z) := \sum_{d=0}^{\infty} z^d \dim \mathbb{K}[x]^G_d.
\]

It can be calculated using Molien’s formula:

\[
\text{Theorem (Molien’s formula)}
\]

\[
H(\mathbb{K}[x]^G, z) = \frac{1}{|G|} \sum_{M \in G} \frac{1}{\det(\text{Id} - zM)}.
\]

Nicolas Borie

An evaluation approach to computing invariants rings
\[K[x]^G \] is Cohen-Macaulay

Theorem

\[K[x]^G \text{ is Cohen Macaulay} \]

Namely: \[K[x]^G \text{ is a free module over } \text{Sym}(x) \text{ of rank } r = \frac{n!}{|G|} \]

We thus get the following direct sum

\[
K[x]^G = \bigoplus_{i=1}^{r} \eta_i K[e_1, e_2, \ldots, e_n]
\]

which is called an *Hironaka decomposition* of \(K[x]^G \).

Goal

Construct all polynomials \(\eta_i, i \in \{1, 2, \ldots, r\} \) (named system of secondary invariants)

Such a goal constitute a good test case for new approaches, as this is a typical computation in invariant theory.
\(\mathbb{K}[x]^G \) is Cohen-Macaulay

Theorem

\(\mathbb{K}[x]^G \) is Cohen Macaulay

Namely: \(\mathbb{K}[x]^G \) is a free module over \(\text{Sym}(x) \) of rank \(r = \frac{n!}{|G|} \)

We thus get the following direct sum

\[
\mathbb{K}[x]^G = \bigoplus_{i=1}^{r} \eta_i \mathbb{K}[e_1, e_2, \ldots, e_n]
\]

which is called an *Hironaka decomposition* of \(\mathbb{K}[x]^G \).

Goal

Construct all polynomials \(\eta_i, i \in \{1, 2, \ldots, r\} \) (named system of secondary invariants)

Such a goal constitutes a good test case for new approaches, as this is a typical computation in invariant theory.
\(\mathbb{K}[x]^G \) is Cohen-Macaulay

Theorem

\(\mathbb{K}[x]^G \) is Cohen Macaulay

Namely: \(\mathbb{K}[x]^G \) is a free module over \(\text{Sym}(x) \) of rank \(r = \frac{n!}{|G|} \)

We thus get the following direct sum

\[
\mathbb{K}[x]^G = \bigoplus_{i=1}^{r} \eta_i \mathbb{K}[e_1, e_2, \ldots, e_n]
\]

which is called an *Hironaka decomposition* of \(\mathbb{K}[x]^G \).

Goal

Construct all polynomials \(\eta_i, i \in \{1, 2, \ldots, r\} \) (named system of secondary invariants)

Such a goal constitute a good test case for new approaches, as this is a typical computation in invariant theory.
Let G be the cyclic group of order 3: C_3, subgroup of S_3.

\[
\begin{align*}
e_1 &= x_1 + x_2 + x_3 \\
e_2 &= x_1x_2 + x_1x_3 + x_2x_3 \\
e_3 &= x_1x_2x_3
\end{align*}
\]

e_1, e_2, and e_3 generate $\mathbb{K}[x_1, x_2, x_3]^{S_3}$.

Quotienting the two Hilbert series, we get the polynomial

\[
H(\mathbb{K}[x]^G, z)/H(\text{Sym}(x), z) = 1 + z^3
\]

$\eta_1 = 1$

$\eta_2 = R(x_1^2x_2) = x_1^2x_2 + x_2^2x_3 + x_3^2x_1$

Hironaka decomposition of $\mathbb{K}[x]^{C_3}$

\[
\mathbb{K}[x]^{C_3} = \mathbb{K}[e_1, e_2, e_3] \oplus R(x_1^2x_2) \cdot \mathbb{K}[e_1, e_2, e_3]
\]
Example

Let G be the cyclic group of order 3: C_3, subgroup of S_3.

$$e_1 = x_1 + x_2 + x_3$$
$$e_2 = x_1x_2 + x_1x_3 + x_2x_3$$
$$e_3 = x_1x_2x_3$$

e_1, e_2 and e_3 generate $\mathbb{K}[x_1, x_2, x_3]^{S_3}$.

Quotienting the two Hilbert series, we get the polynomial

$$H(\mathbb{K}[x]^G, z)/H(\text{Sym}(x), z) = 1 + z^3$$

$\eta_1 = 1$

$\eta_2 = R(x_1^2 x_2) = x_1^2 x_2 + x_2^2 x_3 + x_3^2 x_1$

Hironaka decomposition of $\mathbb{K}[x]^{C_3}$

$$\mathbb{K}[x]^{C_3} = \mathbb{K}[e_1, e_2, e_3] \oplus R(x_1^2 x_2) \cdot \mathbb{K}[e_1, e_2, e_3]$$
Example

Let G be the cyclic group of order 3: C_3, subgroup of S_3.

$$e_1 = x_1 + x_2 + x_3$$
$$e_2 = x_1x_2 + x_1x_3 + x_2x_3$$
$$e_3 = x_1x_2x_3$$

e_1, e_2, and e_3 generate $\mathbb{K}[x_1, x_2, x_3]^{S_3}$. Quotienting the two Hilbert series, we get the polynomial

$$H(\mathbb{K}[x]^G, z)/H(\text{Sym}(x), z) = 1 + z^3$$

$\eta_1 = 1$
$\eta_2 = R(x_1^2x_2) = x_1^2x_2 + x_2^2x_3 + x_3^2x_1$

Hironaka decomposition of $\mathbb{K}[x]^{C_3}$

$$\mathbb{K}[x]^{C_3} = \mathbb{K}[e_1, e_2, e_3] \oplus R(x_1^2x_2) \cdot \mathbb{K}[e_1, e_2, e_3]$$
Picture of the quotient

\[\mathbb{K}[x] \]
An evaluation approach to computing invariants rings

Nicolas Borie
Picture of the quotient

\[K[x] \]

Primary invariants

deg

\[
\begin{align*}
\text{deg 3} & \quad e_3 \\
\text{deg 2} & \quad e_2 \\
\text{deg 1} & \quad e_1 \\
\text{deg 0} &
\end{align*}
\]
Introduction Quotienting by evaluation Computing secondary invariants Complexity Further developments

Picture of the quotient

\[\langle \text{Sym}(x)^+ \rangle^G \]

Primary invariants

\[\mathbb{K}[x] \]

deg

deg 3

deg 2

deg 1

deg 0

e_3

e_2

e_1

Nicolas Borie

An evaluation approach to computing invariants rings
Picture of the quotient

\[\langle \text{Sym}(x)^+ \rangle^G \]

Primary invariants

\[\mathbb{K}[x]^G \]

\[\mathbb{K}[x] \]
An evaluation approach to computing invariants rings
Introduction

Quotienting by evaluation

Computing secondary invariants

Complexity

Further developments

Picture of the quotient

\[\langle \text{Sym}(x)^+ \rangle^G \]

Primary invariants

Secondary invariants

\[\mathbb{K}[x]^G / \langle \text{Sym}(x)^+ \rangle^G \]

Nicolas Borie

An evaluation approach to computing invariants rings
Usual approach using Gröbner basis

A lot of implementations have been done in different software using (SAGBI)-Gröbner basis. PerMuVAR MuPAD, finvar Singular, MAGMA, ...

For all these implementations, given a group, it is hard to guess computational time...

In Singular:

...
(8, 5): 19.10000000000001,
(8, 6): 2046.1400000000001,
(8, 7): day, # not ended
(8, 8): day, # not ended
(8, 9): 8.650000000000000,
(8, 10): 72.780000000000001,
(8, 11): 14.92,
(8, 12): day, # not ended
(8, 13): 10863.76,
(8, 14): day, # not ended
(8, 15): day, # not ended
...

Nicolas Borie
An evaluation approach to computing invariants rings
Usual approach using Gröbner basis

The classical problems of such implementation:

- They break the symmetries
- No really control on complexity
- No chance to introduce some combinatorics
Usual approach using Gröbner basis

The classical problems of such implementation:

- They break the symmetries
- No really control on complexity
- No chance to introduce some combinatorics
Usual approach using Gröbner basis

The classical problems of such implementation:
- They break the symmetries
- No really control on complexity
- No chance to introduce some combinatorics
Working by evaluation is a standard trick to compute in quotient, is this feasible in this context?

Choose a set of points $S \subset \mathbb{K}^n$.

Evaluation morphism Ψ

$\Psi : \mathbb{K}[x]^G \rightarrow (\mathbb{K}^{|S|},.)$

$P \mapsto (P(s))_{s \in S}$

where . is the pointwise product

Fact: Ψ is an algebra morphism.

Goal: Choose S on which the primary invariants vanish, but not the secondary invariants.
An approach by evaluation

Working by evaluation is a standard trick to compute in quotient, is this feasible in this context?

Choose a set of points $S \subset \mathbb{K}^n$.

Evaluation morphism Ψ

\[
\begin{align*}
\Psi : \quad \mathbb{K}[x]^G & \longrightarrow (\mathbb{K}^{|S|},.) \\
P & \mapsto (P(s))_{s \in S}
\end{align*}
\]

where . is the pointwise product

Fact: Ψ is an algebra morphism.

Goal: Choose S on which the primary invariants vanish, but not the secondary invariants.
Working by evaluation is a standard trick to compute in quotient, is this feasible in this context?

Choose a set of points $S \subset \mathbb{K}^n$.

Evaluation morphism Ψ

$$
\Psi : \mathbb{K}[x]^G \longrightarrow (\mathbb{K}^{|S|}, .)
$$

where . is the pointwise product

Fact: Ψ is an algebra morphism.

Goal: Choose S on which the primary invariants vanish, but not the secondary invariants.
Let ρ be an n-th primitive roots of unity. For now, we assume K contains ρ. (no loss of generality in non-modular case)

$$(x^n - 1) = \prod_{i=1}^{n} (x - \rho^i)$$

Trick: Expand on the right, write coefficient-root relations

$e_1(1, \rho, \ldots, \rho^{n-1})$	$= 0$
$e_{n-1}(1, \rho, \ldots, \rho^{n-1})$	$= 0$
$e_n(1, \rho, \ldots, \rho^{n-1})$	$= (-1)^{n+1}$
Elementary symmetric polynomials and roots of unity

Let ρ be an n-th primitive roots of unity.
For now, we assume \mathbb{K} contains ρ. (no loss of generality in non-modular case)

$$(x^n - 1) = \prod_{i=1}^{n} (x - \rho^i)$$

Trick: Expand on the right, write coefficient-root relations

$e_1(1, \rho, \ldots, \rho^{n-1})$	$= 0$
\vdots	\ \vdots
$e_{n-1}(1, \rho, \ldots, \rho^{n-1})$	$= 0$
$e_n(1, \rho, \ldots, \rho^{n-1})$	$= (-1)^{n+1}$
Choosing the good points

We define the identity point $A_{id} = (1, \rho, \rho^2, \ldots, \rho^{n-1}) \in \mathbb{K}^n$.

S_n acts on points living in \mathbb{K}^n. For $\sigma \in S_n$:

$$\sigma \cdot A_{id} = (\rho^{\sigma(1)-1}, \rho^{\sigma(2)-1}, \ldots, \rho^{\sigma(n)-1})$$

The orbit of A_{id} under S_n is of cardinality $n!$
Any symmetric polynomial is constant on this orbit.

Invariants under G are constant on G-orbits

$$\forall A \in \mathbb{K}^n, \forall P \in \mathbb{K}[x]^G, \forall \sigma \in G : P(\sigma \cdot A) = P(A)$$

It is thus sufficient to take one point per coset
Choosing the good points

We define the identity point $A_{id} = (1, \rho, \rho^2, \ldots, \rho^{n-1}) \in \mathbb{K}^n$.

S_n acts on points living in \mathbb{K}^n. For $\sigma \in S_n$:

$$\sigma \cdot A_{id} = (\rho^{\sigma(1)-1}, \rho^{\sigma(2)-1}, \ldots, \rho^{\sigma(n)-1})$$

The orbit of A_{id} under S_n is of cardinality n!

Any symmetric polynomial is constant on this orbit.

Invariants under G are constant on G-orbits

$$\forall A \in \mathbb{K}^n, \forall P \in \mathbb{K}[x]^G, \forall \sigma \in G : P(\sigma \cdot A) = P(A)$$

It is thus sufficient to take one point per coset.
Choosing the good points

We define the identity point $A_{id} = (1, \rho, \rho^2, \ldots, \rho^{n-1}) \in \mathbb{K}^n$.

S_n acts on points living in \mathbb{K}^n. For $\sigma \in S_n$:

$$\sigma \cdot A_{id} = (\rho^{\sigma(1)-1}, \rho^{\sigma(2)-1}, \ldots, \rho^{\sigma(n)-1})$$

The orbit of A_{id} under S_n is of cardinality $n!$
Any symmetric polynomial is constant on this orbit.

Invariants under G are constant on G-orbits

$$\forall A \in \mathbb{K}^n, \forall P \in \mathbb{K}[x]^G, \forall \sigma \in G : P(\sigma \cdot A) = P(A)$$

It is thus sufficient to take one point per coset.
Choosing the good points

We define the identity point $A_{id} = (1, \rho, \rho^2, \ldots, \rho^{n-1}) \in \mathbb{K}^n$.

S_n acts on points living in \mathbb{K}^n. For $\sigma \in S_n$:

$$\sigma \cdot A_{id} = (\rho^{\sigma(1)-1}, \rho^{\sigma(2)-1}, \ldots, \rho^{\sigma(n)-1})$$

The orbit of A_{id} under S_n is of cardinality $n!$
Any symmetric polynomial is constant on this orbit.

Invariants under G are constant on G-orbits

$$\forall A \in \mathbb{K}^n, \forall P \in \mathbb{K}[x]^G, \forall \sigma \in G : P(\sigma \cdot A) = P(A)$$

It is thus sufficient to take one point per coset
Choosing the good points

Let L be a set composed by representative of right cosets S_n/G. We define

Definition (Key morphism Φ)

$$
\Phi : \ K[x]^G \rightarrow \ K_{\frac{n!}{|G|}}^{|P|}
$$

$$
P \mapsto (P(\sigma \cdot A_{id}))_{\sigma \in L}
$$

The key morphism Φ realizes:

Proposition

Φ is a surjective algebra morphism

Remarks:

- $\Phi(Sym(x)) = \langle (1,1,\ldots,1) \rangle_K$
- $dim(Im(\Phi)) = dim(K[x]^G / \langle Sym(x)^+ \rangle^G)$
Choosing the good points

Let \(L \) be a set composed by representative of right cosets \(S_n/G \). We define

Definition (Key morphism \(\Phi \))

\[
\Phi : \quad \mathbb{K}[x]^G \quad \longrightarrow \quad \mathbb{K}^{n!} \bigg/ \langle \text{Sym}(x)^+ \rangle^G
\]

\[P \quad \longmapsto \quad (P(\sigma \cdot \text{Id}))_{\sigma \in L} \]

The key morphism \(\Phi \) realizes:

Proposition

\(\Phi \) is a surjective algebra morphism

Remarks :

- \(\Phi(\text{Sym}(x)) = \langle (1,1,\ldots,1) \rangle_{\mathbb{K}} \)
- \(\dim(\text{Im}(\Phi)) = \dim(\mathbb{K}[x]^G / \langle \text{Sym}(x)^+ \rangle^G) \)
Choosing the good points

Let \(L \) be a set composed by representative of right cosets \(S_n/G \). We define

Definition (Key morphism \(\Phi \))

\[
\Phi : \mathbb{K}[x]^G \rightarrow \mathbb{K}^{\frac{n!}{|G|}}
\]

\(P \mapsto (P(\sigma \cdot A_{id}))_{\sigma \in L} \)

The key morphism \(\Phi \) realizes:

Proposition

\(\Phi \) is a surjective algebra morphism

Remarks:

- \(\Phi(\text{Sym}(x)) = \langle (1,1,\ldots,1) \rangle_{\mathbb{K}} \)
- \(\dim(\text{Im}(\Phi)) = \dim(\mathbb{K}[x]^G / \langle \text{Sym}(x)^+ \rangle^G) \)
Choosing the good points

Let L be a set composed by representative of right cosets S_n/G. We define

Definition (Key morphism Φ)

$$\Phi : \mathbb{K}[x]^G \rightarrow \mathbb{K}^{\frac{n!}{|G|}}$$

$$P \mapsto (P(\sigma \cdot A_{id}))_{\sigma \in L}$$

The key morphism Φ realizes:

Proposition

Φ is a surjective algebra morphism

Remarks:

- $\Phi(\text{Sym}(x)) = \langle (1, 1, \ldots, 1) \rangle_{\mathbb{K}}$
- $\text{dim}(\text{Im}(\Phi)) = \text{dim}(\mathbb{K}[x]^G / \langle \text{Sym}(x)^+ \rangle^G)$
Calculation in the quotient

We recall the Hironaka decomposition

\[K[x]^G = \bigoplus_{i=1}^{r} \eta_i K[e_1, e_2, \ldots, e_n] \]

Let \(S_d = \{ \eta_j \mid \deg(\eta_j) = d \} \).

\[K[x]^G_d = \{ P \in K[x]^G \mid \deg(P) = d \} \]

Theorem

The key morphism \(\Phi \) realizes

- for \(0 \leq d < n \):
 \[\Phi(K[x]^G_d) = \Phi(\langle S_d \rangle_K) \]
- for \(d \geq n \):
 \[\Phi(K[x]^G_d) = \Phi(\langle S_d \rangle_K) \oplus \Phi(K[x]^G_{d-n}) \]

Sketch of proof: use properties of \(\Phi \) and the Hironaka decomposition
Calculation in the quotient

We recall the Hironaka decomposition

\[K[x]^G = \bigoplus_{i=1}^r \eta_i K[e_1, e_2, \ldots, e_n] \]

Let \(S_d = \{ \eta_j \mid \deg(\eta_j) = d \} \).

\[K[x]^G_d = \{ P \in K[x]^G \mid \deg(P) = d \} \]

Theorem

The key morphism \(\Phi \) realizes

for \(0 \leq d < n \):
\[\Phi(K[x]^G_d) = \Phi(\langle S_d \rangle_K) \]

for \(d \geq n \):
\[\Phi(K[x]^G_d) = \Phi(\langle S_d \rangle_K) \oplus \Phi(K[x]^G_{d-n}) \]

Sketch of proof: use properties of \(\Phi \) and the Hironaka decomposition
Calculation in the quotient

We recall the Hironaka decomposition

\[\mathbb{K}[x]^G = \bigoplus_{i=1}^r \eta_i \mathbb{K}[e_1, e_2, \ldots, e_n] \]

Let \(S_d = \{ \eta_j \mid \deg(\eta_j) = d \} \).

\[\mathbb{K}[x]_d^G = \{ P \in \mathbb{K}[x]^G \mid \deg(P) = d \} \]

Theorem

The key morphism \(\Phi \) realizes

for \(0 \leq d < n \):

\[\Phi(\mathbb{K}[x]_d^G) = \Phi(\langle S_d \rangle_\mathbb{K}) \]

for \(d \geq n \):

\[\Phi(\mathbb{K}[x]^G) = \Phi(\langle S_d \rangle_\mathbb{K}) \oplus \Phi(\mathbb{K}[x]_{d-n}^G) \]

Sketch of proof: use properties of \(\Phi \) and the Hironaka decomposition
Example

Let G be the cyclic group of order 3: C_3, subgroup of S_3.

\[
\frac{n!}{|G|} = \frac{3!}{3} = 2
\]

\[
L = \{A_{id} = (1, j, j^2), A_{(1,2)} = (j, 1, j^2)\}
\]

Deg 0 : $\Phi(1) = (1, 1)$, thus $\Phi(\mathbb{K}[x]^G_0) = \langle (1, 1) \rangle_{\mathbb{K}}$ and $S_0 = \{1\}$

Deg 3: $\Phi(\mathbb{K}[x]^G_3) = \Phi(\mathbb{K}[x]^G_0) \oplus \Phi(\langle S_3 \rangle_{\mathbb{K}})$

$\Phi(R(x^3_1)) = \Phi(\frac{x_1^3 + x_2^3 + x_3^3}{3}) = (\frac{1^3 + j^3 + j^6}{3}, \frac{j^3 + 1^3 + j^6}{3}) = (1, 1)$

$\Phi(R(x^2_1x_2)) = \Phi(\frac{x_1^2x_2 + x_2^2x_3 + x_3^2x_1}{3}) = (\frac{j^4 + j^4 + j^4}{3}, \frac{j^2 + j^2 + j^5}{3}) = (j, j^2)$

($(j, j^2) \notin \Phi(\mathbb{K}[x]^G_0)) \Rightarrow (R(x^2_1x_2) \in S_3)$

$\eta_1 = 1$ and $\eta_2 = R(x^2_1x_2)$
def SecondaryInvariants(G):
 for each degree d :
 (d) appearing in the secondary invariant polynomial
 $a_d = \dim(\mathbb{K}[x]^G_d)$
 $S_d \leftarrow \{\}; I_d \leftarrow \{\}$
 if $d \geq n$:
 $V_d \leftarrow V_{d-n}$
 (Correction due to $\Phi(e_n) = (-1)^{n+1}$)
 else :
 $V_d \leftarrow \{\vec{0}\}$
 ($V_d = \Phi(\mathbb{K}[x]^G_d)$ at the end of the loop)
 $D \leftarrow a_d + \dim(V_d)$
 (Correction due to $\Phi(e_n) = (-1)^{n+1}$)
 for $(\eta, \eta') \in S_k \times I_l$ such that $k + l = d$:
 if $\Phi(\eta)\Phi(\eta') \notin V_d$:
 (Products of smaller secondaries)
 $S_d \leftarrow S_d \cup \{\eta\eta'\}$
 $V_d \leftarrow V_d \oplus \langle \Phi(\eta\eta') \rangle_{\mathbb{K}}$
 while $\dim(V_d) < D$:
 (completing with irreducibles)
 $P \leftarrow$ good candidate to be secondary invariant
 if $\Phi(P) \notin V_d$:
 $I_d \leftarrow I_d \cup \{P\}$
 $S_d \leftarrow S_d \cup \{P\}$
 $V_d \leftarrow V_d \oplus \langle \Phi(P) \rangle_{\mathbb{K}}$
 return ($\{S_0, S_1, S_2, \ldots \}$, $\{I_0, I_1, I_2, \ldots \}$)
Implementation in Sage

What was provided in Sage:

- An interface to GAP:
 - A database of Transitive Groups (Benchmarks)
 - Right Cosets for quotient (Evaluation points)
 - Fast computation of Moliens series (dimension bounds)
 - Stabilizer chain (Enumeration)
- Interface to Singular / Magma / MuPAD (Checking Results)
- Cyclotomic fields
 - Fast basic arithmetic (Evaluation)
 - Linear algebra (Linbox: Multi-modular possibility)

What we did implement:

- Orderly generation of integer lists modulo the action of a permutation group. (1000 lines of code)
- The algorithm by evaluation (around 500 lines of code with documentation)
Implementation in Sage

What was provided in Sage:

- An interface to GAP:
 - A database of Transitive Groups (Benchmarks)
 - Right Cosets for quotient (Evaluation points)
 - Fast computation of Moliens series (dimension bounds)
 - Stabilizer chain (Enumeration)

- Interface to Singular / Magma / MuPAD (Checking Results)

- Cyclotomic fields
 - Fast basic arithmetic (Evaluation)
 - Linear algebra (Linbox: Multi-modular possibility)

What we did implement:

- Orderly generation of integer lists modulo the action of a permutation group. (1000 lines of code)
- The algorithm by evaluation (around 500 lines of code with documentation)
Implementation in Sage

What was provided in Sage:

- An interface to GAP:
 - A database of Transitive Groups (Benchmarks)
 - Right Cosets for quotient (Evaluation points)
 - Fast computation of Moliens series (dimension bounds)
 - Stabilizer chain (Enumeration)

- Interface to Singular / Magma / MuPAD (Checking Results)

- Cyclotomic fields
 - Fast basic arithmetic (Evaluation)
 - Linear algebra (Linbox: Multi-modular possibility)

What we did implement:

- Orderly generation of integer lists modulo the action of a permutation group. (1000 lines of code)

- The algorithm by evaluation (around 500 lines of code with documentation)
Implementation in Sage

What was provided in Sage:

- An interface to GAP:
 - A database of Transitive Groups (Benchmarks)
 - Right Cosets for quotient (Evaluation points)
 - Fast computation of Moliens series (dimension bounds)
 - Stabilizer chain (Enumeration)
- Interface to Singular / Magma / MuPAD (Checking Results)
- Cyclotomic fields
 - Fast basic arithmetic (Evaluation)
 - Linear algebra (Linbox : Multi-modular possibility)

What we did implement:

- Orderly generation of integer lists modulo the action of a permutation group. (1000 lines of code)
- The algorithm by evaluation (around 500 lines of code with documentation)
Implementation in Sage

What was provided in Sage:

- An interface to GAP:
 - A database of Transitive Groups (Benchmarks)
 - Right Cosets for quotient (Evaluation points)
 - Fast computation of Moliens series (dimension bounds)
 - Stabilizer chain (Enumeration)
- Interface to Singular / Magma / MuPAD (Checking Results)
- Cyclotomic fields
 - Fast basic arithmetic (Evaluation)
 - Linear algebra (Linbox : Multi-modular possibility)

What we did implement:

- Orderly generation of integer lists modulo the action of a permutation group. (1000 lines of code)
- The algorithm by evaluation (around 500 lines of code with documentation)
Implementation in Sage

What was provided in Sage:

- An interface to GAP:
 - A database of Transitive Groups (Benchmarks)
 - Right Cosets for quotient (Evaluation points)
 - Fast computation of Moliens series (dimension bounds)
 - Stabilizer chain (Enumeration)
- Interface to Singular / Magma / MuPAD (Checking Results)
- Cyclotomic fields
 - Fast basic arithmetic (Evaluation)
 - Linear algebra (Linbox : Multi-modular possibility)

What we did implement:

- Orderly generation of integer lists modulo the action of a permutation group. (1000 lines of code)
- The algorithm by evaluation (around 500 lines of code with documentation)
Turning on the verbose

sage: G = TransitiveGroup(8,42)
sage: G.cardinality()
288
sage: I = InvariantRingPermutationGroup(G, QQ)
sage: I.secondary_invariants_series()
z^28 + z^26 + z^25 + 3*z^24 + 2*z^23 + 5*z^22 + 4*z^21 + 7*z^20 + 6*z^19 + 9*z^18 + 7*z^17 + 11*z^16 + 8*z^15 + 10*z^14 + 8*z^13 + 11*z^12 + 7*z^11 + 9*z^10 + 6*z^9 + 7*z^8 + 4*z^7 + 5*z^6 + 2*z^5 + 3*z^4 + z^3 + z^2 + 1
sage: I.secondary_invariants(verbos=True)
Initialization of secondary of degree 0

Secondaries of degree 1 :
 We must search 0 secondary invariants

Secondaries of degree 2 :
 We must search 1 secondary invariants
 Research of product of secondaries of degree smaller
 Research now to complete with new irreducible secondaries
 New irreducible [2]
 ...

Nicolas Borie
An evaluation approach to computing invariants rings
Turning on the verbose

Secondaries of degree 6:

We must search 5 secondary invariants

Research of product of secondaries of degree smaller

Add product $[2, 4]$
Add product $[2, 5]$
Register new relation: $[3, 3]$
Add product $[2, 2, 2]$

Research now to complete with new irreducible secondaries

$(5, 1, 0, 0, 0, 0, 0, 0)$ is not a good secondary invariant
$(5, 0, 0, 1, 0, 0, 0, 0)$ is not a good secondary invariant
New irreducible $[7]$

$(4, 1, 1, 0, 0, 0, 0, 0)$ is not a good secondary invariant
$(4, 1, 0, 1, 0, 0, 0, 0)$ is not a good secondary invariant
$(4, 0, 0, 2, 0, 0, 0, 0)$ is not a good secondary invariant
$(4, 0, 0, 1, 1, 0, 0, 0)$ is not a good secondary invariant
$(3, 3, 0, 0, 0, 0, 0, 0)$ is not a good secondary invariant
New irreducible $[8]$

....
sage: D = I.irreducible_secondary_invariants()
sage: for i in D:
 if len(D[i]) >= 1:
 print (i, D[i])
....:
(0, [[[0, 0, 0, 0, 0, 0, 0, 0]]])
(2, [[[1, 0, 0, 0, 0, 0, 0, 0]]])
(3, [[[2, 0, 0, 0, 0, 0, 0, 0]]])
(4, [[[3, 0, 0, 0, 0, 0, 0, 0], [[2, 0, 0, 0, 0, 0, 0, 0]]])
(5, [[[4, 0, 0, 0, 0, 0, 0, 0]]])
(6, [[[4, 0, 0, 0, 0, 0, 0, 0], [[3, 0, 0, 0, 0, 0, 0, 0]]])
(7, [[[4, 0, 0, 0, 0, 0, 0, 0]]])
(8, [[[5, 0, 0, 0, 0, 0, 0, 0]]])
(9, [[[6, 0, 0, 0, 0, 0, 0, 0]]])
(10, [[[7, 0, 0, 0, 0, 0, 0, 0]]])
Rough complexity analysis

Proposition

Using Φ, computing secondary invariants presents a cost bounded by $O(n!^2 + n!^3/|G|^2)$ arithmetic operations in \mathbb{K}.

Sketch of proof:

- Number of evaluation points: $n!/|G|$.
- Number of orbit sums of monomials under staircase $n!$.
- Evaluation of the orbit sums: $O(\frac{n!}{|G|} n! |G| = (n!)^2)$.
- Gauss Elimination: $O(n!^3/|G|^2)$ arithmetic operations (Echelonize a matrix of size $(n!, n!/|G|)$ of rank $n!/|G|$).

Nicolas Borie

An evaluation approach to computing invariants rings
Rough complexity analysis

Proposition

Using Φ, computing secondary invariants presents a cost bounded by $O(n!^2 + n!^3/|G|^2)$ arithmetic operations in K.

Sketch of proof:

- Number of evaluation points: $\frac{n!}{|G|}$.
- Number of orbit sums of monomials under staircase $n!$.
- Evaluation of the orbit sums: $O(\frac{n!}{|G|} n!|G| = (n!)^2)$.
- Gauss Elimination: $O(n!^3/|G|^2)$ arithmetic operations (Echelonize a matrix of size $(n!, n!/|G|)$ of rank $n!/|G|$).
Rough complexity analysis

Proposition

Using \(\Phi \), computing secondary invariants presents a cost bounded by \(O(n!^2 + n!^3/|G|^2) \) *arithmetic operations in \(\mathbb{K} \).*

Sketch of proof:

- **Number of evaluation points:** \(\frac{n!}{|G|} \).
- **Number of orbit sums of monomials under staircase** \(n! \).
- **Evaluation of the orbit sums:** \(O\left(\frac{n!}{|G|} \cdot n! \cdot |G| = (n!)^2\right) \)
- **Gauss Elimination:** \(O(n!^3/|G|^2) \) arithmetic operations

 (Echelonize a matrix of size \((n!, n!/|G|) \) of rank \(n!/|G| \))
Proposition

Using Φ, computing secondary invariants presents a cost bounded by $O(n!^2 + n!^3/|G|^2)$ arithmetic operations in \mathbb{K}.

Sketch of proof:

- Number of evaluation points: $\frac{n!}{|G|}$.
- Number of orbit sums of monomials under staircase $n!$.
- Evaluation of the orbit sums: $O\left(\frac{n!}{|G|} \cdot n! |G| = (n!)^2\right)$.
- Gauss Elimination: $O(n!^3/|G|^2)$ arithmetic operations.
 (Echelonize a matrix of size $(n!, n!/|G|)$ of rank $n!/|G|$)
Rough complexity analysis

Proposition

*Using Φ, computing secondary invariants presents a cost bounded by $O(n!^2 + n!^3/|G|^2)$ arithmetic operations in K.***

Sketch of proof:

- Number of evaluation points: $n!/|G|$.
- Number of orbit sums of monomials under staircase $n!$.
- Evaluation of the orbit sums: $O(n!/|G| \cdot n!/|G| = (n!)^2)$.
- Gauss Elimination: $O(n!^3/|G|^2)$ arithmetic operations (Echelonize a matrix of size $(n!, n!/|G|)$ of rank $n!/|G|$).
Comparative benchmark with Singular
Complexity by number of evaluation points

- $n! / |G|$
- $\leq 100 \mu s$
- $100 \mu s$
- $100 s$
- $10 s$
- $1 s$
- $100 ms$
- $10 ms$
- $1 ms$
- $100 ks$
- $10 ks$
- $1 ks$
- $100 s$
- $10 s$
- $1 s$
- $100 ms$
- $10 ms$
- $1 ms$
- $100 \mu s$
- $\leq 100 \mu s$
- $n! / |G|$
- $\geq 1 \text{ day}$
- 1 day
- 1 hour
- 1 minute
- 1 second
- 10^{-1}
- 10^{-2}
- 10^{-3}
- 10^{-4}
- 10^{-5}

Nicolas Borie
An evaluation approach to computing invariants rings
Further developments

Problem

Evaluations are vectors with $\frac{n!}{|G|}$ coordinates. In practice, we never build a basis of such dimension because the calculation is degree by degree.

For $C_7 = \langle (1, 2, 3, 4, 5, 6, 7) \rangle$.
$|C_7| = 7$. The Noether bound for secondary invariant is thus 7. 100 points (instead of $6! = 720$) were enough to compute irreducible secondaries for C_7.

Question

Is there a way to reduce the number of evaluation points?
Further developments

Problem

Evaluations are vectors with \(\frac{n!}{|G|} \) coordinates. In practice, we never build a basis of such dimension because the calculation is degree by degree.

For \(C_7 = \langle (1, 2, 3, 4, 5, 6, 7) \rangle \).

\(|C_7| = 7.\) The Noether bound for secondary invariant is thus 7.

100 points (instead of \(6! = 720 \)) were enough to compute irreducible secondaries for \(C_7 \).

Question

Is there a way to reduce the number of evaluation points?
Problem

Construct invariants with nice properties under evaluation by Φ (sparsity, ...). A promising starting point are double Schubert polynomials, as they form a basis of $\mathbb{K}[x]$ as $\text{Sym}(x)$-module whose image under Φ is triangular.

Problem (Dream)

Give a combinatorial description of secondary invariants.

The Dream problem is only known for parabolic subgroups of S_n (Garcia, Stanton (1984)).
Thank you!

Acknowledgments:
National Science Foundation Grant No. DMS-0821725
(1 full month over 4 CPU at 2,4 Ghz on machine ‘sage‘ at Seattle.)
This research was driven by computer exploration using the open-source mathematical software Sage and its algebraic combinatorics features developed by the Sage-Combinat community.