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SOLUTIONS

1. a) The characteristic equation is A2 — 4\ — 5 = 0. The characteristic roots are \; = 5 and
A2 = —1. Hence the general solution is y(x) = Ae®® + Be™®

b) y(0) =1 - A+ B = 1. y(oo) = 0 = A = 0. Hence the particular solution of
this boundary value problem is y,(z) = e™®. This solution is NOT stable since

arbitrarily close to the trajectory y,(x) = e~* there are solution curves containing
some multiple of e®* which makes y,(z) UNSTABLE.

c) The INSTABILITY region of implicit Euler is the disc |hA — 1| < 1 in the hA-plane,
hence, if X\ is real, the interval 0 < hA < 2. In our case hAy is always in the
STABILITY region while hA; is in the INSTABILITY region if 0 < h < 2/5.

2. a) The first order system is 7 = v ¥ = a(t), hence in matrix form

r 0 1 r 0
()= (0 o) (2)* (uty)
Eulers explicit method applied to this system gives

Tkt1 =Tk + hvg, 19 =0 Vg1 = Vg + hag, v9=0

b) From the given central difference formulas ri 1 —rp_1 = 2hvg — rp_1 = 11— 2hvg.
Inserted into the first difference formula this gives rj 41 —2ry+rp1 —2hvy = h%a;, —
Thy1 = Tk + hvg + (h?/2)ay, the formula for the position. The velocity formula can
be obtained from the two difference equations: 7411 — 2rp + 7s—1 = h2aj and
Thy2 — 2rpr1 + 7k = h2ap,1 Adding them together gives (rpio — Thy1) — (Pra1 —
rk—1) = h%(ax + agy1) which can also be written vgy1 = vg + (h/2)(ag + aps1)

c¢) Explicit Euler: the residual for the position variable r(t) is
r(t 4+ h) —r(t) — hi(t) = r(t) + hi(t) + (h?/2)i(t) — r(t) — hir(t) = O(h?)
. The residual for the velocity variable v(t) is
v(t + h) —v(t) — ho(t) = v(t) + ho(t) + (h%/2)6(t) — v(t) — hi(t) = O(h?)

In the book (pg 45) the local error is derived to be of order one, but there the
definition of the local error is a little different!
Verlet’s method: the residual for the position variable r(¢) is

r(t4-h)—r(t)—hir(t)—(h?)2)i (t) = r(t)+hi(t)+(h? /2)i (t)+O(h*)—r(t)—hi(t)—(h? /2)i(t) = O(h®)
. The residual of the velocity variable v(t) is

v(t+h) —v(t) — (h/2)(0(t+ h) +0(t)) =
v(t)+ho(t) + (R /2)6(t) + O(h®) —v(t) — (h/2)(0(t) + hi(t) + O(R®) +9(t)) = O(h®)



3. Start with the difference formula in the z-direction:

82u( )~ bu(z — h,y) + cu(z,y) + du(z + ah,y)
922 Y h?

Taylorexpansion around (z,y) in the z-direction gives the linear system of three algebraic
equations: b+ ¢+ d = 0, —bh + dah = 0 and ((h?/2)b + (h%/2)a?d)/h?* = 1 with the
solution b = 2a/(a + a?), d = 2/(a + a?) och ¢ = —2/a. When « = 1 this is in
accordance with the usual central difference formula!

Now replace = by y and a by 8 and we get a similar formula a = 28/(8 + ?), e =
2/(B + %) and ¢ = —2/3. The sum of these two gives a modified 5-point formula for
the laplace operator:
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4. See the book, pg 52

5. a) The matrix A is diagonalizable with real eigenvalues A\; = 1 and Ay = 5, hence the
system is hyperbolic.

b) The eigenvalue problem AS = AD gives S™'AS = D, where

(10 (11 L4 172 -1
D‘(o 5>’ S‘<2 2)’ s __Z<—2 —1)

With the transformation u = Sv we get the two uncoupled hyperbolic PDEs:

dvy vy Ovy ~ _Ovg
S =0 24520

6. With the transformations 7' = T1 + (Tp — Th)u, r = Rz and ¢ = ar, where « is to be
determined, we get for the PDE:

T()—Tlau_ k1 8(
a Or R2ROz

. With a = R?/k the PDE becomes dimensionsless.

The initial condition: T} + (Tp — T1)u(z,0) = 11, i.e. u(z,0) = 1.

The boundary conditions'T‘)szT1 85(0,7') = 0 and k‘TORT1 g;(l ) = =B + (Th —
T1)u(1l,7) — T1) which gives —5(1,7) = —%u( ,7) and a = —BR/k.

1 8u)
R Oz

R**(Ty — T))—=

7) a) Introduce the grid points z; = (i — 1)h,i = 0,1,..., N, N + 1, where g and xy11 are
ghost points, 1 = 0 and ) = 1. Hence (N — 1)h = 1. This is one possible way of
introducing an equidistant grid for the problem.

b) Write the right hand side as

ia( 28“) g@—i—@
r2 0z Ox xO0x Ox?

At x = 0 the first term takes the form 2%% using ’'Hépital’s rule. Hence the PDE
at x = 0 takes the form

ou d%u

or " 0a?



¢) With the MoL the PDE turns into a system of ODEs:

duy  uz —2uy + up B
dr =3 72 s ul(O) =1

du; 2 Tpo1 —Tim1 Tipr — 2T5 + Tys ,
— + (0)=1 =23,...,N
dr  w; 2h h? o w0 =1 =23,

The boundary conditions are discretized:

U2 — Uy UN+1 —UN-1
o 2 - auN
d) The systems of ODEs written on matrix-vector form:
d
d_:-l =Au+b, u(0)=ug
where A is tridiagonal, b = 0 and ug = (1,1, ....,1)”". The nonzero elements a; ; of A
are: the first row a1 1 = —6/h? and a; 2 = 6,/h?, for row number i = 2,3,..., N —1

aii—1 = 1/h? —1/(x;h) , ai; = —2/h* ,a;i41 = 1/h* +1/(z;h) . The nonzero
elements of the last row are ay ny—1 = 2/h? and an,N = 2a + (2ah — 2)/h2.



