
Lecture notes in numerical linear algebra
Iterative methods for sparse eigenvalue problems

Iterative methods for large sparse eigen-
value problems

x1.1 Basic methods

• Power method (power iteration) summarized in Algorithm 1

• Inverse iteration summarized in Algorithm 2

• Rayleigh quotient iteration summarized in Algorithm 3

Read about these methods in TB pages 202-209.

Note that Rayleigh qoutient iteration can also be used for non-symmetric
matrices, although it is presented only for symmetric matrices in TB.

Output: Eigenpair approximation (w, λ̃)
Input: A starting vector v with ∥v∥ = 1
for n = 1, 2, . . . do

w = Av
v = w/∥w∥
λ̃ = vT Av

end

Algorithm 1: Power method (Power iteration).

Output: Eigenpair approximation (w, λ̃)
Input: A starting vector v with ∥v∥ = 1 and shift µ

for n = 1, 2, . . . do
Solve linear system (A − µI)w = v
v = w/∥w∥
λ̃ = vT Av

end

Algorithm 2: Inverse iteration
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Output: Eigenpair approximation (w, λ̃)
Input: A starting vector v with ∥v∥ = 1 and shift µ

λ̃ = vT Av
for n = 1, 2, . . . do

Solve linear system (A − λ̃I)w = v
v = w/∥w∥
λ̃ = vT Av

end

Algorithm 3: Rayleigh Quotient Iteration

Orthogonal matrices and orthogonalizing vectors

The use of decompositions has been se-
lected as one of the most influential
concepts in algorithms in the 20th cen-
tury: https://www.siam.org/pdf/news/

637.pdf In this course we also cover
other algorithms in the list of important
algorithms.

In basic linear algebra, we learn that two vectors x, y ∈ Rn are orthogo-
nal when yTx = 0. The concept of orthogonality, and its generalization
to matrices is very important in this course. We will use it mostly in
different factorizations and decompositions of matrices.

Orthogonal matrices

Some orthogonalization methods are de-
scribed in TB Lecture 7. We need orthog-
onalization for a different purpose and
therefore need a different presentation.

We need the concept of orthogonal matrices. Note that we define it
not only for square matrices.

Definition 1.2.1 (Orthogonal matrix). Q ∈ Rn×m is called an orthogonal
matrix if

QTQ = I.

For complex matrices, the corresponding property is called unitary: Q∗Q = I.

Properties:

(i) The columns of an orthogonal matrix are orthonormal.

(ii) If n = m, then QT = Q−1.

(iii) If n = m, then QQT = I.

Note that (iii) is not satisfied if Q is a rectangular matrix (n ≠ m). For
instance

Q =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1
1 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎦
is an orthogonal matrix since QTQ = I, but

QQT =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

.
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Gram-Schmidt procedures

You have normally learned about the
Gram-Schmidt procedure in basic linear
algebra courses. We repeat it in a slightly
different notation than normal (using or-
thogonal matrices). It turns out that
the classical Gram-Schmidt is not always
satisfactory.

The Gram-Schmidt procedure is often explained as a procedure to
orthogonalize vectors, meaning that given vectors stored in a matrix
F = [ f1, . . . , fm] ∈ Rn×m with n ≥ m we try to determine q1, . . . , qn such
that q1, . . . , qn are orthonormal and

span( f1, . . . , fm) = span(q1, . . . , qm).

Such vectors q1, . . . , qn exist if f1, . . . , fm are linearly independent vec-
tors. Note that the matrix Q = [q1, . . . , qm] ∈ Rn×m is orthogonal in the
sense of Definition 1.2.1.

In numerical linear algebra, the Gram-
Schmidt procedure directly derived
from Lemma 1.2.2 is typically called the
classical Gram-Schmidt procedure in or-
der to distinguish it from variants we
discuss later.

The Gram-Schmidt procedure can be directly derived by inductively
applying the following result.

The vector h ∈ Rn is typically referred to
as the Gram-Schmidt coefficients

Lemma 1.2.2. Suppose Q = [q1, . . . , qm] ∈ Rn×m is an orthogonal matrix
and suppose b /∈ span(q1, . . . , qm). Let

h = QTb

and
z = b −Qh = (I −QQT)b. (1.1)

Let β = ∥z∥ and define

qm+1 ∶=
z
β

(1.2)

Then,

(a) the matrix [q1, . . . , qm+1] is an orthogonal matrix;

(b) b = h1q1 +⋯+ hmqm + βqm+1; and
A typo was corrected in statement (b) on
2016-11-04(c) span(q1, . . . , qm+1) = span(q1, . . . , qm, b).

Proof. Proof of (b): This is a direct consequence of (1.1) and (1.2). Proof
of (a): Note that

[q1, . . . , qm+1]T[q1, . . . , qm+1] = [Q, qm+1]T[Q, qm+1] = [ QTQ QTqm+1

qT
m+1Q qT

m+1qm+1
]

The conclusion (a) follows from the fact that QTQ = I,

QTqm+1 = QT(I −QQT)b = 0

and qT
m+1qm+1 = 1.

Proof of (c): In this course we will several times use the general prop-
erty that if two rectangular matrices W ∈ Rn×m and V ∈ Rn×m are
related by

W = VP (1.3)
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for some non-singular matrix P ∈ Rm×m, then then span(W) = span(V).
If we select P as

P = [I h
0 ∥z∥]

then (1.3) is satisfied with V = [Q, qm+1] and W = [Q, b].

Classical Gram-Schmidt example

>> Q=(1/sqrt(2))*[1 -1; 1 1; 0 0; 0 0];

>> Q’*Q % Check if Q is orthogonal

ans =

1.0000 0

0 1.0000

>> b=randn(4,1);

>> h=Q’*b; % Compute Gram-Schmidt coefficients

>> z=b-Q*h; % Compute "orthogonal complement"

>> beta=norm(z);

>> q_new=z/beta;

>> Q_new=[Q,q_new]; % Construct new Q-matrix

>> Q_new’*Q_new % Check that Q_new is orthogonal

ans =

1.0000 0 0

0 1.0000 0

0 0 1.0000

>> norm(Q_new*[eye(2), h; zeros(1,2), norm(z)]-[Q,b])

>> P=[eye(2), h; zeros(1,2), beta];

>> norm(Q_new*P-[Q,b]) % Check that span(Q_new)=span([Q,b])

ans =

1.1444e-16

◯

Although the above example suggests that classical Gram-Schmidt
works, it will in general not be satisfactory in our context. It turns
out that the classical Gram-Schmidt is very sensitive to round-off er-
rors in certain situations.

In practice, we have round-off errors
in every floating point operation and
a complete round-off error analysis is
quite cumbersome. In our simplified
analysis we assume that no error is in-
truduced in the computation of z and
q̃m+1. In particular, no additional round-
off error is introduced in (1.5) and (1.6).

We now investigate what happens if we have an error in the com-
putation of the Gram-Schmidt coefficients. In other words, we assume
that h is approximated by

h̃ =
⎡⎢⎢⎢⎢⎢⎣

(1+ ε1)h1

⋮
(1+ εm)hm

⎤⎥⎥⎥⎥⎥⎦
= (

⎡⎢⎢⎢⎢⎢⎢⎣

1
⋱

1

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

ε1

⋱
εm

⎤⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Λε

)QTb (1.4)
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where ε1, . . . , εm are a small number introduced by the inexact evalua-
tion of QTb, typically of order of the same order of magnitude εmach.
Our approximation of z satisfies

z̃ = b −Qh̃ = b −QΛεQTb(1+ ε) = z −QΛεQTb (1.5)

such that

q̃m+1 =
1

∥z̃∥ z̃ = 1
∥z −QΛεQTb∥ z̃ = 1√

(z −QΛεQTb)T(z −QΛεQTb)
z̃ =

1√
(z −QΛεQTb)T(z −QΛεQTb)

z̃ = 1√
∥z∥2 + ∥Λε∥2∥QQTb∥2

z̃ =

z̃( 1
∥z∥ +O(ε2)), (1.6)

where ε = ∥Λε∥. The approximation of the new vector is

q̃m+1 = (z−QΛεQTb)( 1
∥z∥ +O(ε2)) = z

∥z∥ −
1

∥z∥QΛεQTb+O(ε2) (1.7)

In this first-order estimation, we see that the error is small if

∥QΛεQTb∥
∥z∥ = ∥ΛεQTb∥

∥z∥ ≤ ε
∥QTb∥
∥z∥

is small.
A bad situation can easily be identified, since we can construct a

situation where ∥z∥ is small but QTb is not: Suppose b = q + δe where
q = Qd and e ⊥ Q and ∥e∥ = 1. A direct computation leads to

∥q̃m+1 −
z

∥z∥∥ ≤
∣ε∣
∣δ∣ ∥Qd∥ +O(ε2).

which suggests that the round-off error is proportional to ∣ε∣/∣δ∣.

Conclusion of error analysis of classical Gram-Schmidt
method. The Gram-Schmidt procedure is likely to have a
large round-off error if the vector b almost lies in the subspace
span(Q).

Modified Gram-Schmidt

In this course we consider two variations of Gram-Schmidt which aim
to improve the floating-point arithmetic problems described above.

The modified Gram-Schmidt procedure
is equivalent to the classical Gram-
Schmidt procedure in exact arithmetic,
but different floating-point arithmetic.

We now derive the algorithm called the modified Gram-Schmidt proce-
dure from the classical Gram-Schmidt procedure. For theoretical pur-
poses we express the classical Gram-Schmidt in for-loops:

for i=1:m

h(i)=Q(:,i)’*b;
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end

z=b;

for i=1:m

z=z-h(i)*Q(:,i)

end

Although modified Gram-Schmidt
yields a different result in floating point
arithmetic, it is not always clear that the
result is better. In fact, theoretical un-
derstanding for this is still disputed by
some scientists. You will investigate this
in practice by for a specific situation in
the homeworks.

Caution regarding terminology: In this
course we consider Q ∈

n×m as an or-
thogonal matrix and want to orthogonal-
ize b which result in algorithms above.
In some literature (such as TB) Gram-
Schmidt procedures are described for
orthogonalizing an entire matrix A ∈

Rn×(m+1).

Note that at iteration i of the second loop, we only need h(i) computed
at the ith iteration the first loop such that we can merge the two loops:

z=b;

for i=1:m

h(i)=Q(:,i)’*b;

z=z-h(i)*Q(:,i);

end

beta=norm(z);

In the first step inside the for-loop, the vector z can be explicitly ex-
pressed as:

• Iteration i = 1: z = b

• Iteration i = 2: z = b − h1q1

• ⋮

• Iteration i = m: z = b − h1q1 −⋯− hmqm−1

Now recall that the vectors q1, . . . , qm are assumed to be orthogonal.
The following identies can be directly identified.

• Iteration i = 1: qT
i z = qT

i b

• Iteration i = 2: qT
i z = qT

2 (b − h1q1) = qT
2 b − h1qT

2 q1 = qT
i b

• ⋮

• Iteration i = m: qT
i z = qT

mb − h1qT
mq1 −⋯− hmqT

mqm−1 = qT
mb = qT

i b

Note that for every iteration we have qT
i z = qT

i b. Therefore, we can
replace Q(:,i)’*b with Q(:,i)’*z in the for-loop. This is what we call
the modified Gram-Schmidt method.

z=b;

for i=1:m

h(i)=Q(:,i)’*z;

z=z-h(i)*Q(:,i)

end

Lecture notes - Elias Jarlebring - Autumn 2016

6

version:2016-11-07, Elias Jarlebring - copyright 2015-2016



Lecture notes in numerical linear algebra
Iterative methods for sparse eigenvalue problems

Double Gram-Schmidt

The next approach to improve the classical Gram-Schmidt procedure is
very naive. Since we know that round-off errors will make the vector
z = b − Qh to not be orthogonal in practice, we can try to make it
orthogonal by applying classical Gram-Schmidt again. This is what
is called repeated Gram-Schmidt, or the special case double Gram-
Schmidt.

>> h=Q’*b;

>> z=b-Q*h;

>> g=Q’*z;

>> z=z-Q*g

>> h=h+g;

>> beta=norm(z);

A typo was corrected here on 2016-11-07

Krylov methods

We now consider the space spanned by the iterates of the power method.
This is called a Krylov subspace

Km(A, b) ∶= span(b, Ab, A2b, . . . , Am−1b).

Due to rounding error issues, the Krylov subspace is usually not com-
puted from [b, Ab, A2b, . . . , Am−1b], but rather represented with an or-
thogonal basis ofKm(A, b). The Arnoldi method can be seen as method
to compute an orthogonal bais of a Krylov subspace. More precisely,
the Arnoldi method is a method which generates an orthogonal matrix
Qm ∈ Cn×m such that

AQm = Qm+1Hm

where Hm ∈ R(m+1)×m and Qm+1 = [Qm, qm+1]. The matrix Hm is a
so-called Hessenberg matrix, which means that it is an zero elements
below the first lower off-diagonal:

Hm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×
0 0 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The Arnoldi method can be used to compute many quantites. In the
Arnoldi’s method for eigenvalue prob-
lems is also discussed in TB pages 251–
264.

context of eigenvalue computations, we take the eigenvalues of Hm ∈
Cm×m as eigenvalue approximations.
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The Arnoldi method

Output: Eigenpair approximations
Input: The matrix A and vector b.
q1 = b/∥b∥, H0 =empty matrix
for n = 1, 2, . . . do

Compute x = Aqn

Orthogonalize x against q1, . . . , qn by computing h ∈ Cn and
x⊥Cm such that QTx⊥ = 0 and

x⊥ = x −Qh.

Let β = ∥x⊥∥
Let qn+1 = x⊥/β

Let

Hn = [Hn−1 h
0 β

]

end

Algorithm 4: Arnoldi’s method for eigenvalue problems.

The Lanczos method

The Lanczos iteration is also described
in TB pages 276-278.

Specialization of Arnoldi’s method for symmetric matrices.

Output: Eigenpair approximations
Input: The matrix A and vector b.
b =arbitrary, q1 = b/∥b∥, H0 =empty matrix
for n = 1, 2, . . . do

v=Aqn

αn = qT
n v

v=v-βn−1qn−1 − αnqn

βn = ∥v∥
qn+1 = v/βn

end

Convergence of Arnoldi’s method for eigenvalue problems

Recall that, unless it breaks down, k steps of the Arnoldi method gener-
ates an orthogonal basis of a Krylov subspace, represented by a matrix
Q = (q1, . . . , qk) ∈ Cn×k such that Q∗Q = I and

span(q1, . . . , qk) = Kk(A, b) ∶= span(b, Ab, . . . , Ak−1b).

The eigenvalue approximations (called Ritz values) are subsequently
found from the eigenvalues of

H = Q∗AQ.
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The matrix H ∈ Ck×k is a Hessenberg matrix and can be generated as a
by-product of the Arnoldi method. We call a pair (µ, Qv) a Ritz pair
and Qv a Ritz vector, if v and µ safisfy

Hv = µv.

Bound for subspace-eigenvector angle

As a first indicator of the convergence we will characterize the follow-
ing quantity

Recall: Q ∈ Cn×k is an orthogonal matrix
which means that Q∗Q = I ∈ Ck×k .
However, I ≠ QQ∗

∈ Cn×n.

error in eigenvector xi ∼ ∥(I −QQ∗)xi∥ (1.8)

where
Axi = λixi.

It is very natural to associate the accuracy of the eigenvector with this
quantity from a geometric perspective. The indicator in the right-hand
side of (1.8) is called (the norm of) the orthogonal complement of the
projection of xi onto the space spanned by Q and it can be interpreted
as the sine of the canonical angle between the Krylov subspace and an
eigenvector. For the moment, we will only justify this indicator with
this geometric reasoning and the following observation:

Lemma 1.4.1. Suppoe (λi, xi) is an eigenpair A. If the Krylov subspace
contains the eigenvector (xi ∈ Kk(A, b)), then the indicator vanishes∥(I −
QQ∗)xi∥ = 0 and there is at least one Ritz value µ such that µ = λi. The Arnoldi method produces an exact

approximation if the Krylov subspace
contains an eigenvector, or equivalently
the indicator is zero.

In words:

• Suppose the Krylov subspace contains the eigenvector (xi ∈ Kk(A, b)).
Then, there exists a vector z ∈ Ck such that xi = Qz. Moreover, this
is an eigenvector of H such that the Arnoldi method will generate
an exact eigenvalue of A. Moreover, the indicator is ∥(I −QQ∗)xi∥ =
∥(I −QQ∗)Qz∥ = 0.

• If, similar to above, xi ≈ x ∈ Kk(A, b), we expect the indicator to be
small and an eigenvalue of H also to be close λi.

The indicator can be bounded as follows, where we assume diago-
nalizability of the matrix.

Theorem 1.4.2. Suppose A ∈ Cn×n is diagonalizable and let the matrix
X = (x1, . . . , xn) ∈ Cn×n and diagonal matrix Λ ∈ Cn×n be the Jordan de-
composition such that

A = XΛX−1.

Suppose α1, . . . , αn ∈ C/{0} are such that
Recall: The eigenvectors of a diagonal-
izable matrix form a basis of Cn.b = α1x1 +⋯+ αnxn (1.9)
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and

ε
(m)
i ∶= min

p∈Pm−1
p(λi)=1

max(∣p(λ1)∣, . . . , ∣p(λi−1)∣, ∣p(λi+1)∣, . . . , ∣p(λn)∣)

where Pn denotes polynomials of degree n. Suppose the Arnoldi method does
not break down when applied to A and started with b. Let Q ∈ Cn×m be the
orthogonal basis generated after m iterations. Then, The indicator can be bounded by

a product consisting of two scalar
values: ε

(m)
i which only depends on the

eigenvalues and iteration number; and
ξi only depending on the starting vector
and eigenvectors.

∥(I −QQ∗)xi∥ ≤ ξiε
(m)
i , (1.10)

where

ξi =
n
∑
j=1
j≠i

∣αj∣
∣αi∣

.

Proof. The proof consists of three steps.

1. Consider any vector u ∈ Cn. Then

min
z∈Cm

∥u −Qz∥2

is a linear least squares problem with a solution given by the normal
equations Q∗u = Q∗Qz. Hence, z = Q∗u. This implies that (for any
vector u) we have

min
z∈Cm

∥u −Qz∥2 = ∥u −QQ∗u∥ = ∥(I −QQ∗)u∥

2. Although we ultimately want to bound the left-hand side of (1.10),
the proof is simplified by considerations of a scaling the left-hand
side of (1.10) with αi as follows:

Apply step 1 reversely with u = αixi∥(I −QQ∗)αixi∥ = min
z∈Cm

∥αixi −Qz∥

= min
y∈Km(A,b)

∥αixi − y∥

Now note that the space Km(A, b) can be characterized with poly-
nomials. It is easy to verify that y ∈ Km(A, b) is equivalent to the
existance of a polynomial p ∈ Pm−1 such that y = p(A)b. Conse-
quently,

∥(I −QQ∗)αixi∥ = min
p∈Pm−1

∥αixi − p(A)b∥.

3. The final step consists of inserting the expansion of b in terms of
eigenvectors (1.9) and applying appropriate bounds:

Since xi eigenvector, p(A)xi = p(λi)xi

For any two sets S ⊂ Z:
minz∈Z g(z) ≤ minz∈S g(z)
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∥(I −QQ∗)αixi∥ = min
p∈Pm−1

∥αixi − p(A)
n
∑
j=1

αjxj∥

= min
p∈Pm−1

XXXXXXXXXXXX
αixi −

n
∑
j=1

αj p(λj)xj

XXXXXXXXXXXX

≤ min
p∈Pm−1
p(λi)=1

XXXXXXXXXXXX
αixi −

n
∑
j=1

αj p(λj)xj

XXXXXXXXXXXX

= min
p∈Pm−1
p(λi)=1

∥αixi − αixi −
n
∑
j=1
j≠i

αj p(λj)xj∥

= min
p∈Pm−1
p(λi)=1

∥
n
∑
j=1
j≠i

αj p(λj)xj∥

≤ (
n
∑
j=1
j≠i

∣αj∣) ⋅ min
p∈Pm−1
p(λi)=1

max
j≠i

(∣p(λj)∣)

= (
n
∑
j=1
j≠i

∣αj∣) ⋅ ε
(m)
i

The conclusion of the theorem is established by dividing the equa-
tion by ∣αi∣.

Note that ∥b∥ = 1 and ∥x1∥ = ⋯ = ∥xn∥ = 1. Hence the coefficients
α1, . . . , αn are balanced. In particular they satisfy

1 = ∥α1x1 +⋯+ αnxn∥ ≤ ∣α1∣ +⋯+ ∣αn∣.

and

ξi =
1
∣αi∣

n
∑
j=1

∣αj∣ − 1 ≥ 1
∣αi∣

− 1

From this we can easily identify a very good situation and a very bad
situation.

• Suppose for all j ≠ i, αj = δ and suppose δ is small. We have that

ξi = (n−1)δ
αi

. Due to balancing αi cannot be small. Hence, ξi is small,
showing fast convergence for this eigenvalue.

• On the other hand, if αi (the component of the starting vector in the
direction of the ith eigenvector) is very small, we have ξi ≫ 1 which
implies that the right-hand side of (1.10) is large and we have slow
convergence.

This serves as a justification for a more general property.
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Rule-of-thumb. Starting vector dependency. The Arnoldi
method for eigenvalue problems will “favor” eigenvectors
which have large components in the starting vector.

The word “favors” is purposely vague. It should be interpreted as the
situation that one observes often in practice, but certainly not always.
If we have a particular structure in the matrix or starting vector, we
might observe convergence to other eigenvalues.

Bounding ε
(m)
i

In the characterization of the indicator in Theorem 1.4.2 above we in-
troduced the quantity ε

(m)
i . This quantity bounds (up to a constant) the

error in eigenvector xi at iteration m. Although ε
(m)
i is defined through Think: ε

(m)
i measures how “difficult” it

is to push down a polynomial in points
λj, for all j ≠ i and maintain p(λi) = 1.

a polynomial optimization problem, which is complicated to solve, it
is surprisingly easy to use this to obtain bounds providing qualitative
understanding of the convergence of the Arnoldi method for eigen-
value problems. We illustrate the power with a specific bound.

Corollary 1.4.3. Suppose C(ρ, c) ⊂ C is a disk centered at c ∈ C with radius
ρ such that it contains all eigenvalues but λ1. That is, λ2, . . . , λn ∈ C(ρ, c)
and λ1 /∈ C(ρ, c). Then,

ε
(m)
1 ≤ ( ρ

∣λ1 − c∣ )
m−1

.

λ1
ρ

c

Re

Im
eigenvalues

Proof. The proof consists of selecting a particular polynomial in the
polynomial optimization problem,

ε
(m)
1 ∶= min

p∈Pm−1
p(λ1)=1

max(∣p(λ1)∣, . . . , ∣p(λi−1)∣, ∣p(λi+1)∣, . . . , ∣p(λn)∣)

= max
j≠i

∣q(λj)∣,

for any q ∈ Pm−1 satisfying q(λ1) = 1, in particular

q(z) = 1
(λ1 − c)m−1 (z − c)m−1.

Hence, from the definition of ρ and c we have that

ε
(m)
1 ≤ max

i>1

∣λi − c∣m−1

∣λ1 − c∣m−1

≤ ρm−1

∣λ1 − c∣m−1 .
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The result can be intuitively interpreted as follows. If we can con-
struct a small disc that encloses all eigenvalues but one eigenvalue we
expect fast (at least linear geometric) convergence for that eigenvalue.
This can be achieved for an eigenvalue which is well separated from
the rest of the eigenvalues and also in an outer part of the spectrum.
We call this “extreme” isolated eigenvalues.

Rule-of-thumb. Eigenvalue dependency. Arnoldi’s method
for eigenvalue problems favors convergence to “extreme” iso-
lated eigenvalues.

Note the difference between an “extreme” eigenvalue and the eigen-
values which are largest in modulus (absolute value). The Arnoldi
method will favor “extreme” whereas the power method will essen-
tially always converge to the eigenvalue largest in modulus.

An a posteriori theorem

A priori vs. a posteriori: Error char-
acterizations can be classified into two
types. An a priori (latin for “from be-
fore”) error estimate involves quantities
which are known before the algorithm
is carried out. An a posteriori (latin for
“from after”) error characterization in-
volves quantites computed during the it-
eration. Theorem 1.4.2 is an a priori er-
ror bound. Theorem 1.4.4 is an (exact)
a posteriori error characterization since
the right-hand side involves Hk and z
which are computed from the iteration.

In the previous section we saw a characterization of the error involving
the eigenvectors and eigenvalues of the matrix A. The following result
provides an explicit characterization of ∥Av − µv∥ where (µ, v) is an
approximate eigenpair. It is expressed in terms of quantities computed
during the iteration.

Theorem 1.4.4. Suppose Qk and Hk satisfy the Arnoldi relation

AQk = Qk+1Hk (1.11)

where Qk ∈ Cn×k and Qk+1 = [Qk, qk+1] ∈ Cn×k are orthogonal matrices.
Moreover, suppose (µ, v) is a Ritz pair such that Hkz = µz and v = Qkz.
Then,

∥Av − µv∥2 = ∣hk+1,k∣∣eT
k z∣. (1.12)

Proof. From the fact that (µ, v) is a Ritz pair, we have

Use v = Qkz.

Use that since Hk is a Hessenberg
matrix, (1.11) can be written as
AQk = Qk Hk + hk+1,kqk+1eT

k .

Av − µv = AQkz − µQkz

= (AQk −Qk Hk)z

= hk+1,kqk+1eT
k z

The conclusion follows from the fact that eT
k z is a scalar and qk+1 is

normalized since Qk+1 is orthogonal. More precisely, ∥Av − µv∥2 =
∣hk+1,k∣∥qk+1eT

k z∥ = ∣hk+1,k∣∥qk+1∥∣eT
k z∣ = ∣hk+1,k∣∣eT

k z∣.

The result can be used to study break-down. Break-down corre-
sponds to the situation where we cannot carry out that Gram-Schmidt
orthogonalization process since the new vector is contained in the span
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of previous iterations. It implies that the y⊥ = 0 and β = 0. This implies
in turn that hk+1,k = 0. Hence, due to (1.12), if we have breakdown the
error is already zero and the Ritz pairs are eigenpairs of the original
problem.

Literature and further reading

The proof and reasoning above is inspired by [5]. Other convergence
bounds involving Schur factorizations, that lead to similar qualitative
understanding can be found in [6], where also complications of the
non-generic cases are discussed. There are also further characteriza-
tions of convergence and the connection with potential theory [4]. In
the above reasoning we characterized the angle between the subspace
and the eigenvector. Although this serves as a very accurate prediction
of the error in practice, it does not directly give a rigorous bound on
the accuracy of Ritz pair. Several approaches to describe the conver-
gence of Ritz values and Ritz vectors have been done in for instance
[2, 3]. There is also considerable research on the effect of rounding
errors in Krylov methods. Unlike many other numerical methods, the
effect of finite arithmetic can improve the performance of the algo-
rithm. See also the recent summary of the convergence of the Arnoldi
method for eigenvalue problems [1]. The a posteriori error estimate
in Theorem 1.4.4 is contained in some recent text-books in numerical
linear algebra such as [7].

Appendix: Jordan canonical form (JCF)

The Jordan canonical form is typically
treated in basic linear algebra courses,
but also used in the study of stability
theory in for instance systems theory
and differential equations. We need it
several times in the course.

The Jordan canonical form, also sometimes the Jordan form or the
Jordan decomposition, is a transformation that brings the matrix to a
certain block diagonal form.

Definition 1.6.1 (Jordan canonical form). The Jordan decomposition of a
matrix A ∈ Rn×n is an invertible matrix X ∈ Rn×n and a block diagonal
matrix

D =

⎡⎢⎢⎢⎢⎢⎢⎣

J1

⋱
Jq

⎤⎥⎥⎥⎥⎥⎥⎦
where

Ji =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λi 1
⋱ ⋱

⋱ 1
λi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rni×ni

such that
A = XDX−1.
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The matrix Ji is called a Jordan block, or sometimes a Jordan matrix.

Example of Jordan decomposition

The Jordan decomposition of

A =

⎡⎢⎢⎢⎢⎢⎢⎣

3 0 0
0 3 0
1 0 3

⎤⎥⎥⎥⎥⎥⎥⎦
is represented by

D =

⎡⎢⎢⎢⎢⎢⎢⎣

3 1 0
0 3 0
0 0 3

⎤⎥⎥⎥⎥⎥⎥⎦

, X =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0
0 0 −1
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

since A = XDX−1. Note that the eigenvalue λ = 3 has two Jordan
blocks, one of size n1 = 2 and one of size n2 = 1.

◯

Theorem 1.6.2 (Existance and uniqueness of Jordan decomposition).
All matrices A ∈ Rn×n have a Jordan decomposition. The (unordered) set of
Jordan blocks is unique for any given matrix.

Definition 1.6.3. If a matrix A has a Jordan decomposition where all Jordan
blocks have size one (such that D is a diagonal matrix) the matrix A is called
a diagonalizable matrix.

Lemma 1.6.4. Suppose A is symmetric. Then A is diagonalizable and the X
matrix in the Jordan decomposition can be chosen as an orthogonal matrix.

Lemma 1.6.5. If A ∈ Rn×n has n distinct eigenvalues, then A is diagonaliz-
able.

Appendix: Orthogonal matrices and QR factorization

The QR-factorization is a factorization involving an orthogonal matrix
Q and an upper triangular matrix R.

Orthogonal matrices are important in
matrix computations, most importantly
when the matrix represents a basis of
a vector space. Many properties of the
vector space are not robust with respect
to rounding errors if the basis is not or-
thogonal.

Definition 1.7.1 (Orthogonal matrix). Q ∈ Rn×m is called an orthogonal
matrix if

QTQ = I.

For complex matrices, the corresponding property is called unitary: Q∗Q = I.

Properties:

(i) The columns of an orthogonal matrix are orthonormal.

(ii) If n = m, then QT = Q−1.
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(iii) If n = m, then QQT = I.

Note that (iii) is not satisfied if Q is a rectangular matrix (n ≠ m). For
instance

Q =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1
1 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎦
is an orthogonal matrix since QTQ = I, but

QQT =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

.

A QR-factorization can be computed
with the matlab command [Q,R]=qr(A).
It will however in general not return
the solution with positive diagonal ele-
ments.

Theorem 1.7.2 (Uniqueness of QR-factorization). For any matrix A ∈
Rn×m, n ≤ m there exists an orthogonal matrix Q ∈ R ∈ Rn×m and an upper
triangular matrix R ∈ Rm×m such that

A = QR.

Moreover, if A is non-singular, the diagonal elements of R can be chosen
positive, and the decomposition where the diagonal elements of R are positive
is unique.

The QR-decomposition is the underlying method to solve overde-
termined linear systems of equations, for instance with the backslash
operator in matlab when the matrices are rectangular. The decomposi-
tion can be computed in a finite number of operations with for instance
Householder reflectors or Givens rotations, which will be used in this
course.
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