
Lecture notes in numerical linear algebra
Iterative methods for linear systems

x2 Iterative methods for linear systems of
equations

We now consider what is maybe the most fundamental problem in
scientific computing: Find a vector x ∈ Cn such that

Ax = b, (2.1)

where b ∈ Cn is a given vector and A ∈ Cn×n is a matrix. The matrix
A is assumed to be large, sparse and non-singular. This chapter is
about methods which are iterative in nature. In our setting this means
that the method consists of a loop where, in every iteration, we try to
improve an approximate solution to (2.1).

This course block is about iterative meth-
ods. The other most important method
class for (2.1) are direct methods. In con-
trast to iterative methods, direct meth-
ods are designed to determine an exact
solution after a finite number of steps
(in exact arithmetic). The most impor-
tant direct method is Gaussian elimina-
tion which you have learned in basic lin-
ear algebra courses. Gaussian elimina-
tion is also the basis of methods for (2.1)
by computing LU-factorizations.

Different applications lead to matrices A with substantially differ-
ent properties and structures. We cover several methods suitable for
different properties and matrix structures.

Section 2.1: GMRES - Generalized Minimum Residual method

Section 2.2: CG - Conjugate Gradients method

Section 2.3: CGNE - Conjugate Gradients normal equations

Section 2.4: BiCG - BiConjugate gradients method

In many practical situations, these methods do not have satisfactory
performance unless a specialized acceleration technique is applied. We
learn about one of the acceleration techniques called preconditioning in
Section 2.5.

x2.1 GMRES - Generalized minimum residual method

The GMRES method is a method based on the idea that if the residual

r = Ax̃ − b

is small, x̃ is probably a good approximation of x. We try to minimize
the norm of the residual (residual norm) over an appropriate space.

Lecture notes - Elias Jarlebring - Autumn 2016

1

version:2016-11-14, Elias Jarlebring - copyright 2015-2016



Lecture notes in numerical linear algebra
Iterative methods for linear systems

2.1.1 Derivation of GMRES

It turns out that if restrict our search for an approximation x̃ in a
Krylov subspace, the minimizer of the residual norm can be elegantly
and efficiently computed as a by-product of the Arnoldi method. We

The GMRES-iterates are minimizers of
the residual norm with respect to the
two-norm over a Krylov subspace. In
other methods, which we discuss later,
we optimize over other sets, and use
other norms.

define the approximation xn generated after n steps of GMRES as min-
imizers of the residual norm (with respect to the 2-norm) over the
Krylov subspace associated with A and the right-hand side b:

Residual norm vs norm of error: If the
residual Ax̃ − b is zero, the error x̃ − x∗
is zero. Moreover, the relative residual
norm is bounded by the relative error
times the condition number of A, since
∥Ax̃−b∥
∥b∥ ≤ ∥A∥∥A−1∥ ∥x̃−x∗∥

∥x∗∥ . However, a
small residual does not always imply
that the error is small. It is however a
common situation.
Example:
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GMRES iteration n

∥Axn − b∥
∥xn − x∗∥

∥Axn − b∥2 ∶= min
x∈Kn(A,b)

∥Ax − b∥2. (2.2)

We have seen earlier in this course that the Arnoldi method produces
an Arnoldi factorization

AQn = Qn+1Hn (2.3)

where Qn is an orthogonal matrix and Hn a Hessenberg matrix. The
following result shows how the solution to (2.2) can be directly com-
puted if we have access to an Arnoldi factorization.

Lemma 2.1.1 (Minimization definition of GMRES iterates). Suppose Qn

and Hn satisfy the Arnoldi relation and q1 = b/∥b∥. Then,

min
x∈Kn(A,b)

∥Ax − b∥2 = min
z∈Cn

∥Hnz − ∥b∥e1∥2. (2.4)

Proof. During the proof we need the following property of orthogonal
matrices. If Q ∈ Rm×k with m ≥ k is an orthogonal matrix, then,

∥Qz∥2
2 = zTQTQz = zTz = ∥z∥2

2. (2.5)

Since Kn(A, b) = span(q1, . . . , qn) we can reparameterize the set over
which we minimize. The conclusion of the theorem follows from (2.3)
and (2.5):

We start iteration with q1 = b/∥b∥

Use the Arnoldi relation (2.3) and
that q1 = Qn+1e1.

Use (2.5) with Q = Qn+1.

min
x∈Kn(A,b)

∥Ax − b∥2 = min
z∈Cn

∥AQnz − b∥2

= min
z∈Cn

∥AQnz − ∥b∥q1∥2

= min
z∈Cn

∥Qn+1Hnz − ∥b∥Qn+1e1∥2

= min
z∈Cn

∥Qn+1(Hnz − ∥b∥e1)∥2

= min
z∈Cn

∥Hnz − ∥b∥e1∥2

The approximations xn are computed by solving the linear least-
squares problem in the right-hand side of (2.4) and setting xn = Qnz.

The overdetermined linear system is of dimension (n+ 1) × n which
is much smaller than size of the original matrix. Hence, it is typically
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much cheaper, than other operations in the algorithm. We extend the
Arnoldi method by computing a least squares solution in every itera-
tion, leading to Algorithm 1.

When β = 0, GMRES has (so-called)
break-down. This turns out to be not
as dramatic as one might expect as we
shall illustrate later.

Input: The matrix A and vector b.
q1 = b/∥b∥, H0 =empty matrix
for n = 1, 2, . . . do

Compute x = Aqn

Orthogonalize x against q1, . . . , qn by computing h ∈ Cn and
x⊥Cm such that QTx⊥ = 0 and

x⊥ = x −Qh.

Let β = ∥x⊥∥
Let qn+1 = x⊥/β

Let

Hn = [Hn−1 h
0 β

]

Solve the overdetermined linear system by computing z∗ ∈ Rn

such that:

min
z∈Rn

∥Hnz − e1∥b∥∥ = ∥Hnz∗ − e1∥b∥∥

Compute approximate solution x̃ = Qnz∗
end

Algorithm 1: GMRES. Note that all steps except the last step is
identical to the Arnoldi method.

2.1.2 Convergence theory

Finite termination of GMRES

The definition of a Krylov subspace implies that we add one vector
at a time (unless we have break-down which corresponds to β = 0).
After n steps, Kn(A, b) is therefore of dimension n and Kn(A, b) =
Cn and we try to minimize over the entire space. This means that
after at most n steps, GMRES will terminate with an exact solution.
GMRES is a method intended for very large problems, and in most
practical situations, n steps of GMRES is computationally infeasable.
It is our hope that the method generates a reasonable approximation
much earlier than after n iterations.

Non-increasing residual norm

Due to the definition of GMRES-approximations as solutions to the
minimization problem (2.2) we have a nice property: The solution can
in a certain sense not become worse by further iteration. This is due to
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the fact that sequence of Krylov subspaces corresponds to an expand-
ing set Kn(A, b) ⊆ Kn+1(A, b), for any n. Therefore,

∥rn+1∥ = min
x∈Kn+1(A,b)

∥Ax − b∥ ≤ min
x∈Kn(A,b)

∥Ax − b∥ = ∥rn∥.

Hence, if xn is the GMRES-approximation at step n,

Note that a non-increasing residual
norm does not imply a non-increasing
error norm. A typical example where xn
are GMRES-approximations:
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GMRES iteration n

∥Axn−b∥
∥b∥∥xn−x∗∥
∥x∗∥

the norm of the residual vector Axn − b is not increasing.

Convergence factor bound for diagonalizable matrices

Further analysis of convergence is simplified by the use polymomial
sets.

Definition 2.1.2 (Polynomials and 0-normalized polynomials).

Pn ∶= {polynomials of degree at most n} (2.6a)

P0
n ∶= {p ∈ Pn ∶ p(0) = 1} (2.6b)

With this polynomial set, we can express the residual corresponding
to any Krylov approximation with a normalized polynomial.

Matrix polynomials. We here use the
notation of matrix polynomials. If p(z) =
α0 +⋯+ αnzn we define

p(A) ∶= α0 I + α1 A +⋯+ αn An.

We will learn more about functions of
matrices in block 4 of this course.

Lemma 2.1.3 (Krylov subspace equivalence). For any A ∈ Cm×m and
b ∈ Cn,

{b − Ax ∶ x ∈ Kn(A, b)} = {p(A)b ∶ p ∈ P0
n}. (2.7)

Lemma 2.1.3 has a very compact nota-
tion. In words: If x is a vector in a
Krylov subspace, then the correspond-
ing residual b − Ax, can be expressed as
p(A)b where p is a normalized polyno-
mial. The converse is also true.

Proof. The proof is based on the fact that

Kn(A, b) = {α0b +⋯+ αn−1 An−1b ∶ α1, . . . , αn−1 ∈ C} = {q(A)b ∶ q ∈ Pn−1}

By direct application to the left-hand side of (2.7) we have that

{b − Ax ∶ x ∈ Kn(A, b)} = {b − Aq(A)b ∶ q ∈ q ∈ Pn−1}.

Note that r = b − Aq(A)b for some q ∈ Pn−1 if and only if r = p(A)b for
some p ∈ P0

n since p(z) = 1− zq(z). Hence,

{b − Aq(A)b ∶ q ∈ q ∈ Pn−1} = {p(A)b ∶ p ∈ p ∈ P0
n}.

Theorem 2.1.4 (Main convergence theorem of GMRES). Suppose A ∈
Cm×m is an invertible and diagonalizable matrix. Let A = VΛV−1 be the
Jordan decomposition of A, where Λ is a diagonal matrix. Let xn, n = 1, . . .
be iterates generated by GMRES. Then,

GMRES convergence is here expressed
with a min-max bound over the eigen-
values. There are more accurate min-
max-characterizations of the conver-
gence of GMRES, where instead of opti-
mizing in the eigenvalues, the optimiza-
tion set is the (so-called) pseudospectra.

∥Axn − b∥
∥b∥

≤ ∥V∥∥V−1∥min
p∈P0

n

max
i=1,...,m

∣p(λi)∣.
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Use Lemma 2.1.3

Use Jordan decomposition

Use that for any polynomial
p(VBV−1) = Vp(B)V−1.

Norm is submultiplicative

Proof.

∥rn∥ = min
x∈Kn(A,b)

∥b − Ax∥

= min
p∈P0

n

∥p(A)b∥

= min
p∈P0

n

∥p(VΛV−1)b∥

= min
p∈P0

n

∥Vp(Λ)V−1b∥

≤ min
p∈P0

n

∥V∥∥V−1∥∥p(Λ)∥∥b∥.

Since Λ is a diagonal matrix we have

p(Λ) = p(

⎡⎢⎢⎢⎢⎢⎢⎣

λ1

⋱
λm

⎤⎥⎥⎥⎥⎥⎥⎦

) =

⎡⎢⎢⎢⎢⎢⎢⎣

p(λ1)
⋱

p(λm)

⎤⎥⎥⎥⎥⎥⎥⎦

. (2.8)

Moreover, the two-norm of a diagonal matrix can be expressed explic-
itly. Since

∥

⎡⎢⎢⎢⎢⎢⎢⎣

γ1

⋱
γn

⎤⎥⎥⎥⎥⎥⎥⎦

∥2
2 = λmax(

⎡⎢⎢⎢⎢⎢⎢⎣

γ1

⋱
γn

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

γ1

⋱
γn

⎤⎥⎥⎥⎥⎥⎥⎦

T

) = ( max
i=1,...,m

∣γi∣)
2

.

(2.9)
If we combine (2.8) and (2.9) we have

∥rn∥ ≤ min
p∈P0

n

max
i=1,...,m

∥V∥∥V−1∥∣p(λi)∣∥b∥,

which concludes the proof.

r

c

Re

Im
eigenvaluesCorollary 2.1.5 (Single localization disk). Suppose A ∈ Cn×n satisfies the

same conditions as in Theorem 2.1.4. Moreover, suppose all eigenvalues are
contained in a disk of radius r centered at c ∈ C,

λi ∈ D̄(c, r), for i = 1, . . . , m.

Then,
∥Axn − b∥

∥b∥
≤ ∥V∥∥V−1∥( r

∣c∣
)

n

.

Proof. The result follows from Theorem 2.1.4 by considering the poly-
nomial

The polynomial (2.10) is sometimes
called the Zarantonello polynomial. It is
the minimizing polynomial over a disk
in the sense that

min
p∈P0

n

max
z∈D̄(c,r)

∣p(z)∣ = max
z∈D̄(c,r)

∣q(z)∣ = ( r
∣c∣ )

n

where q ∈ P0
n defined by (2.10).

q(z) ∶= (c − z)n

cn . (2.10)

Since q ∈ P0
n , we have

min
p∈P0

n

max
i=1,...,m

∣p(λi)∣ ≤ max
i=1,...,m

∣q(λi)∣ = max
i=1,...,m

∣c − λi∣n

∣c∣n
≤ rn

∣c∣n
.
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Corollary 2.1.5 requires that the eigenvalues are contained in a disk
and the bound is only useful if the disk does not include the origin.
This type of relative localization is only a sufficient condition for fast
convergence, and certainly not a necessary condition. For instance,
if the eigenvalues are localized in other ways, we can still have fast
convergence. The following corollary shows that if the eigenvalues are
bounded in two small disks we can also have fast convergence.

r1

c1
r2

c2

Corollary 2.1.6 (Two localization disks). Suppose A ∈ Cn×n satisfies the
same conditions as in Theorem 2.1.4. Moreover, suppose all eigenvalues are
contained in the union of two disks of radius r1, r2 centered at c1, c2 ∈ C,

λi ∈ D̄(c1, r1) ∪ D̄(c2, r2), for i = 1, . . . , m.

Furthermore, suppose r1 ≥ r2 and assume that ρ < 1 where

ρ ∶=

¿
ÁÁÀ r1(r1 + ∣c1 − c2∣)

∣c1∣∣c2∣
.

Then,
∥Axn − b∥

∥b∥
≤ ∥V∥∥V−1∥ ρn−1

Proof. Let k ∈ N be n/2 rounded downwards such that n−1
2 ≤ k ≤ n

2 .
That is, if n is even k = n/2 and k = (n − 1)/2 if n is odd. We can then
bound

min
p∈P0

n

max
i=1,...,m

∣p(λi)∣ ≤ min
p∈P0

2k

max
λ∈λ(A)

∣p(λ)∣

= min
p∈P0

2k

max( max
λ∈λ(A)∪D̄(c1,r1)

∣p(λ)∣, max
λ∈λ(A)∪D̄(c2,r2)

∣p(λ)∣)

We will bound the minimum with the specific polynomial q ∈ P0
2k:

q(z) ∶= (c1 − z)k

c1

(c2 − z)k

c2
.

Suppose λi ∈ D̄(c1, r1), then

∣q(λi)∣ ≤
rk

1
∣c1∣k

(r1 + ∣c1 − c2∣)k

∣c2∣k
= ( r1(r1 + ∣c1 − c2∣)

∣c1∣∣c2∣
)

k

such that

max
λ∈λ(A)∪D1

∣q(λ)∣ ≤ ( r1(r1 + ∣c1 − c2∣)
∣c1∣∣c2∣

)
k

= ρ2k.

On the other hand, if λj ∈ D̄(c2, r2), we analogously have that

∣q(λj)∣ ≤ ( r2(r2 + ∣c1 − c2∣)
∣c1∣∣c2∣

)
k

.
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such that
Use theorem assumption: r1 ≥ r2

max
λ∈λ(A)∪D1

∣q(λ)∣ ≤ ( r2(r2 + ∣c1 − c2∣)
∣c1∣∣c2∣

)
k

≤ ( r1(r1 + ∣c1 − c2∣)
∣c1∣∣c2∣

)
k

= ρ2k.

Hence, by using that 2k > n − 1
Use that ρz ≤ ρz1 when ρ < 1 and z1 ≤ z.

min
p∈P0

n

max
i=1,...,m

∣p(λi)∣ ≤ max
i=1,...,m

∣q(λi)∣ ≤ ρ2k ≤ ρn−1.

x2.2 Conjugate gradients (CG)

One of the disadvantages of GMRES (and any method based on the
Arnoldi method) is that the computation time associated with the or-
thogonalization grows with iteration. More precisely, in order to carry
out k steps, the accumulated computation time for Gram-Schmidt or-
thogonalization is

tGMRES,orth = O(nk2). (2.11)

The quadratic dependence on k, makes it expensive to carry out many
The CG method has the nice feature
that the computation-time per iteration
is constant such that the accumulated
computation-time is linear in the itera-
tion count:

0 20 40 60 80 100

Iteration k

A
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e GMRES: O(nk2
)

CG: O(nk)

iterations. In this section and the following sections, we introduce
some other methods based on Krylov subspaces which do not suffer
from this problem.

The method we study in this section (Conjugate Gradient method)
is derived under the assumption:

We assume that the matrix A is symmetric and positive definite.

This will allow us to avoid the expensive orthogonalization in GMRES.

Definition of CG-iterates with residual minimization with respect to A-norm

The conjugate gradient method is tightly coupled with a somewhat
unusual norm. If A is a symmetric positive definite matrix, the matrix
can be used to define a weighted two-norm:

The relation (2.12) only defines a norm
if A is symmetric positive definite. Note
that A−1 is symmetric positive definite
if A is symmetric positive definite, such
that ∥ ⋅ ∥A−1 also defines a norm.

∥z∥A =
√

zT Az. (2.12)

Analogous to GMRES, CG is a method which generates iterates that
are minimizers of the residual. In contrast to GMRES, the residual
norm is measured with respect to the A−1-norm, which we will not
need to compute but only use in the definition of the approximation.

Definition 2.2.1 (CG iterates). The CG-iterates for a matrix A are the min-
imizers of ∥Ax− b∥A−1 over the nth Krylov subspace. That is, the CG-iterates
x1, x2, . . . satisfy

min
x∈Kn(A,b)

∥Ax − b∥A−1 = ∥Axn − b∥A−1 , n = 1, 2, . . . (2.13)
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This definition can equivalently be reformulated as an orthogonality
condition on the residual.

Lemma 2.2.2 (Optimization). The following statements are equivalent:

(i) The approximation xn is the minimizer of (2.13)

(ii) The residual is orthogonal to Kn(A, b), such that

rT
n Q = 0 (2.14)

where rn = b − Axn for some matrix Q such that span(Q) = Kn(A, b).

Proof. We square both sides and reformulate the problem

∥Axn − b∥2
A−1 = min

x∈K(A,b)
∥Ax − b∥2

A−1 = min
x∈K(A,b)

(Ax − b)T A−1(Ax − b) =

min
z∈Rn

(AQz − b)T A−1(AQz − b) = min
z∈Rn

zTQT AQz − 2bT AQz + bT A−1b.

(2.15)

This is an unconstrained quadratic optimization problem. The matrix
The derivation of (2.16) from (2.15) is
based on the fact that the minimizer p
of c(p) = pT BT Bp + α with respect to p
for any α for any B ∈ Rn×m with full
columns span satisfies Bp = 0. This
stems from the fact that the Hessian of
c(p) is 2Bp.

QT AQ is symmetric positive definite since A is symmetric positive def-
inite. The local optimality condition (corresponding to zero gradient),
is therefore also the global optimality condition:

0 = (AQz − b)TQ = rT
n Q. (2.16)

The orthogonality of the residual against
the Krylov subspace is in (2.16) is one of
the main reasons to use the A−1-norm,
and will allow us to derive an efficient
algorithm in the following section.

CG orthogonality example

Before diving into the technical derivation of Algorithm 2 we illustrate
the orthogonality of CG. If we generate a basis with the Arnoldi and
let Q in (2.16) be the Q-matrix forming a basis of a Krylov subspace,
the matrix Q is orthogonal to the residual.

>> A=gallery(’wathen’,10,10); m=length(A);

>> b=ones(m,1);

>> n=5; % number of iterations

>> [x]=cg(A,b,n); % Run n steps of CG

>> [Q,H]=arnoldi(A,b,n);

>> norm(Q(:,1:(n-1))’*(b-A*x)) % should vanish

ans =

1.5249e-14

◯
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Derivation of CG from a low-term recurrence ansatz

The CG-method is commonly used in
the field of optimization. The solution
to a linear system Ax = b where A is
symmetric positive definite is equivalent
to finding the (global) minimizer of the
quadratic functional c(q) = qT Aq − bTq +
β. In that context the update vectors pn
are usually referred to as the gradient.

Now let pn denote a correction direction at step n and let αn denote
a scaling of the correction direction. In formulas,

xn − xn−1 = αn pn−1. (2.17)

We shall later uniquely specify the scaling αn.
The residual plays an important role in our derivation and we de-

note the residual associated with xn:

rn ∶= b − Axn. (2.18)

The correction of xn in terms of pn in (2.17) can also be interpreted as
correction of the residual since rn = b− Axn = b−A(xn−1 + αn pn−1) such
that

rn = rn−1 − αn Apn−1. (2.19)

Our derivation is based on an ansatz. We make the following as-
sumption on xn and pn which leads to an algorithm. The algorithm
generates unique approximations xn which we later show are minimiz-
ers in the sense of (2.13) by applying Lemma 2.2.2, thereby showing
that the assumption is valid.

One justification in our reasoning for As-
sumption 2.2.3 is that we want a three-
term recurrence algorithm, which means
that we do not have to store more than
three vectors at any point in time. With
this assumption we reach an algorithm
which only invoves xn, rn and pn. In
this course we learned about the Lanc-
zos method, whic is another three-term
recurrence method (but not directly ap-
plicable to linear systems).

Assumption 2.2.3 (Short-term recurrence ansatz). We assume that there
is a sequence of scalars αn and βn such that the search direction vector pn is
a linear combination of the search direction vector and the residual

pn = βn pn−1 + rn. (2.20)

where rn is defined by (2.18) and xn defined by Definition 2.2.1

Note that except for the (not-yet-specified) scalars, αn and βn, the
equations (2.17), (2.20), and (2.19) form an iteration if x0 is given and
we set r0 = b. Moreover, at any point in the execution of the algorithm,
only three vectors need to be stored: xn, pn and rn. The algorithm is
said to be a three-term recurrence method.

The CG method is a short-term recur-
rence Krylov method. There are other
short-term recurrence Krylov methods
for symmetric matrices such as MIN-
RES and SYMMLQ (not covered in this
course). Among these methods CG is the
most common choice, often justified by
the fact that these methods have similar
convergence, and CG requires the least
number of floating point operations per
iteration.

We now need to determine αn and βn. In order to simplify our
notation, we define matrices with columns consisting of the vectors
introduced above:

X ∶= [x1, . . . , xn] , R ∶= [r0, . . . , rn−1] , P ∶= [p0, . . . , pn−1]

The update formulas can be expressed with X, P and R by using the
following transformation matrices

T ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
⋱ ⋱

⋱ −1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −β1

⋱ ⋱
⋱ −βn−1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

α1

⋱
αn

⎤⎥⎥⎥⎥⎥⎥⎦

.
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The relations (2.17), (2.20) and (2.19) are correspondingly

XT = PD (2.21)

PB = R (2.22)

APD = RTT − rneT
n (2.23)

These relations, imply directly that each sequence of vectors form a
basis of a Krylov subspace.

Lemma 2.2.4 (Krylov subspace span). Suppose α1, . . . , αn, β1, . . . , βn are
non-zero. Let x1, . . . , xn, p0, . . . , pn−1 r0, . . . , rn−1, be the vectors generated
by (2.17), (2.20) and (2.19) with x0 = 0 and r0. Then,

Kn(A, b) = span(b, Ab, . . . , An−1b) (2.24a)

= span(x1, . . . , xn) (2.24b)

= span(p0, . . . , pn−1) (2.24c)

= span(r0, . . . , rn−1). (2.24d)

Proof. From (2.22) and (2.21), we have directly that the columns of P,
R and X span the same subspace, since B, T and D are non-singular General property: If W = VZ where Z is

non-singular, then span(W) = span(V).matrices.
In order to show that they span a Krylov subspace, suppose that the

conclusion is satisfied for j = 1, . . . , n − 1 and

span(b, Ab, . . . , An−1b) = span(R) = span(P).

Then there exists an upper triangular matrix U such that [b, . . . , An−1b] =
PDU, since D is non-singular. Hence, from (2.23) we have

[b, . . . , Anb] = [b, A[b, . . . , An−1b]] =
[b, APDU] = [b, (RTT − rneT

n )U] = [R, rn][e1, (TT − en+1eT
n )U]

The matrix [e1, (TT − en+1eT
n )U] is non-singular since it is upper trian-

gular with non-zero diagonal elements.

Orthogonality properties: Since xn are defined as minimizers, the
rn vectors must satisfy the property (2.14). Moreover, the span of
r0, . . . , rj−1 is Krylov subspace (due to equation (2.24d)), rT

i rj for j =
0, . . . , i − 1, or in matrix notation RT R is a diagonal matrix

RT R =

⎡⎢⎢⎢⎢⎢⎢⎣

rT
0 r0

⋱
rT

n−1rn−1

⎤⎥⎥⎥⎥⎥⎥⎦

. (2.25)

Hence

the residual vectors of CG are orthogonal.
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By multiplying (2.23) from the left with PT we have

PT RTT − PTrneT
n = PT APD

and therefore (from PTrn = 0)

PT RTT D−1 = PT AP. (2.26)

From (2.25) and (2.22) we find that PT R = (RT P)T = (RT RB−1)T is a
lower triangular matrix. Hence, the left-hand side of (2.26) is a prod-
uct of lower triangular matrices (which is again an upper triangular
matrix) and the right-hand side is a symmetric matrix (since A is sym-
metric). Therefore the matrix in (2.26) must be a diagonal matrix:

The fact that the update vectors of
the conjugate gradients satisfy an A-
conjugacy condition (2.27) is the justifi-
cation for its name. The pn vectors (gra-
dients) are A-conjugate (equivalently A-
orthogonal).

PT AP =

⎡⎢⎢⎢⎢⎢⎢⎣

pT
0 Ap0

⋱
pT

n−1 Apn−1

⎤⎥⎥⎥⎥⎥⎥⎦

(2.27)

In other words, pT
n Api = 0 for i = 0, . . . , n − 1, and which in words is

said

the update-vectors of CG are A-orthogonal.

Derivation of orthogonality and formulas for αn and βn. With some
further analysis we can now establish explicit conditions on αn and βn.

Lemma 2.2.5 (Orthogonality of CG). Suppose xn, pn and rn are generated
by (2.17), (2.20) and (2.19), with scalar coefficients αn and βn which are
selected such that for all n we have

0 = rT
n−1rn−1 − αn pT

n−1 Apn−1 (2.28a)

0 = pT
n−1 Apn−1αnβn − rT

n rn (2.28b)

and suppose α1, . . . , αn ≠ 0. Then, (2.25) and (2.27) are satisfied. That is,
RT R and PT AP are diagonal.

Proof. The proof is done by induction, essentially by using the update
relations for xn, pn and rn in matrix notation. Suppose RT R diagonal
and PT AP diagonal. We show that RTrn = 0 and PT Apn = 0:

0 = RTrn = RTrn−1 − αnRT Apn−1 (2.29a)

= enrT
n−1rn−1 − αnBT PT Apn−1 (2.29b)

= enrT
n−1rn−1 − αnen pn−1 Apn−1 (2.29c)

Moreover,

0 = PT Apn = PT Apn−1βn + PT Arn

= en pT
n−1 Apn−1βn + (AP)Trn

= en pT
n−1 Apn−1βn +D−1TRTrn −D−1enrT

n rn

= en pT
n−1 Apn−1βn −

1
αn

enrT
n rn

Lecture notes - Elias Jarlebring - Autumn 2016

11

version:2016-11-14, Elias Jarlebring - copyright 2015-2016



Lecture notes in numerical linear algebra
Iterative methods for linear systems

The relations for αn and βn can be made explicit as follows. By solving
(2.28a) for αn we have

αn =
rT

n−1rn−1

pT
n−1 Apn−1

. (2.30)

Similarly, from (2.28b),

βn = rT
n rn

αn pT
n−1 Apn−1

(2.31a)

= rT
n rn

rT
n−1rn−1

(2.31b)

These choices of αn and βn can be combined into an algorithm which
is commonly called the conjugate gradient method (Algorithm 2).

Corollary 2.2.6 (Ansatz is correct). If αn and βn are finite, the approxima-
tion xn is the minimizer in sense of Definition 2.2.1.

Proof. When selecting αn and βn according to (2.30) and (2.31) we
clearly have that (2.29) is satisfied. Therefore, QTrn = 0 with Q = R.
The conclusion follows from Lemma 2.2.2, with Q = R which satisfies
Km(A, b) = span(R) according to Lemma 2.2.4

x0 = 0, r0 = b, p0 = r0

for n = 1, 2, . . . do

αn = rT
n−1rn−1

pT
n−1 Apn−1

xn = xn−1 + αn pn−1

rn = rn−1 − αn Apn−1

βn = rT
n rn

rT
n−1rn−1

pn = rn + βn pn−1

end

Algorithm 2: Conjugate Gradient method (Hestenes and Stiefel
variant)

Convergence of CG

Read TB pages 298-301. The proof of theorem TB Thm 38.5 is not a
part of the course.

The improvement of the Biconjugate gra-
dients method named BiCG-stab is the
most used method to solve large and
sparse linear systems of equations. The
paper where it was published is the most
cited paper in the field in the ’90ies.

x2.3 Conjugate gradients normal equations (CGNE)

Read TB pages 304-305

x2.4 Biconjugate gradients method (BiCG)

Read TB pages 305-309
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x2.5 Preconditioning

Read TB pages 313-314.

Further reading

• GMRES and CG can be initiated with a different starting vector.

• Different convergence bounds based on pseudospectra, etc

• Flexible GMRES provides a way to use different preconditioners in
each step

• Floating point arithmetic has substantial impact on the convergence
of CG

• Many problem-specific ways to carry out preconditioning
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