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SF2524 Matrix Computations for Large-scale Systems
Exam

Aids: None Time: Four hours

Grades: E: 16 points, D: 19 points, C: 22 points, B: 25 points, A: 28 points (out of the
possible 35 points, including bonus points from homeworks).

Problem 1 (3p) Several iterative methods for linear systems of equations in this course gen-
erate iterates x1, x2, . . . ∈ Rm which satisfy

min
x∈Sn

‖Ax− b‖Z = ‖Axn − b‖Z

for some norm ‖ · ‖Z and space Sn. What is Sn and ‖ · ‖Z when the iterates x1, x2, . . . are
generated by (a) GMRES, (b) CG, (c) CGN?

Solution:

(a) GMRES: ‖z‖2 =
√
zT z and Sn = Kn(A, b)

(b) CG: ‖z‖A−1 =
√
zTA−1z and Sn = Kn(A, b).

(c) CGN: ‖z‖2 =
√
zT z and Sn = Kn(ATA,AT b). This can be derived from the fact that

CGN is CG applied to ATAx = AT b and if we set Ã = ATA,

‖Ãx−AT b‖2
Ã−1 = (Ãx−AT b)T (ATA)−1(Ãx−AT b) =

(Ãx−AT b)TA−1(AT )−1(Ãx−AT b) = ((AT )−1Ãx−(AT )−1AT b)T ((AT )−1Ãx−(AT )−1AT b) =

(Ax− b)T (Ax− b) = ‖Ax− b‖22

Note that GMRES and CGN minimize the residual with respect to the same norm, but
over different Krylov subspaces.

Problem 2 (2p)

(a) Prove that the result of one step of the shifted QR-method for a symmetric matrix is a
symmetric matrix if the shift is real.

(b) What is the result of one step of the basic QR-method for the matrix A =

[
4 0
3 0

]
?

Hint: You may want to show that the Q-matrix the QR-factorization of a two-by-two

matrix is a Givens rotator Q = 1√
c2+s2

[
c −s
s c

]



(c) Let Ã be the result of one step of the QR-method applied to A. Derive a closed formula

for the QR-method applied to the matrix B =

[
A C
0 R

]
where the matrix R is upper

triangular.

Solution:

(a) Shifted QR-method: Ā = RQ+ µI where QR = A− µI . Hence, Ā = (QT − µI)A+ µI =
QTAQ, and

ĀT = (QTAQ)T = QAQT = A.

(b) We can select a Givens rotator such that

QTA = QT
[
a11 a12
a21 a22

]
is upper triangular if we select

c = a11 s = a21.

Since

QTA =
1√

c2 + s2

[
c s
−s c

] [
a11 a12
a21 a22

]
=

1√
c2 + s2

[
× ×

−a11s+ a21c ×

]
=

[
× ×
0 ×

]
and Q is the Q-matrix in the QR-factorization of A. For the specific matrix in this case

Q =
1

5

[
4 −3
3 4

]
The first step of the basic QR-method is

RQ = QTAQ =
1

52

[
4 3
−3 4

] [
4 0
3 0

] [
4 −3
3 4

]
=

[
4 −3
0 0

]
.

This is an upper triangular matrix, so the basic QR-method converged in one step.

(c) Let QU = A be the QR-factorization of A. We can explicitly construct a QR-factorization of
B as follows: [

Q 0
0 Q2

] [
U Z
0 R

]
=

[
A C
0 R

]
.

The Q and Z are determined by considering corresponding blocks in the equation. The (2, 1)-
block is the equation

QZ = C

such that we should select Z = QTC. The (2, 2)-block is

Q2R = R.

That is, Q2 = I . One step of the QR-method for B:[
U QTC
0 R

] [
Q 0
0 I

]
=

[
UQ QTC
0 R

]
=

[
Ã QTC
0 R

]
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Problem 3 (a) Given an Arnoldi factorization AQn = Qn+1Hn, how are the Krylov approx-
imations for matrix functions generated? (No derivation required.)

(b) Breakdown of the Arnoldi method corresponds to the case that hn+1,n = 0. Prove that
the Krylov method for matrix functions generates an exact result if this occurs (which
means we have no approximation error). You may assume f is an entire function.

Solution:

(a) The approximation is given by

f(A)b ≈ Qmf(Hm)e1‖b‖.

(b) We assume hm+1,m = 0 and therefore

AQm = Qm+1Hm = QmHm.

Hence, for any i we QmH i
m = AQmH

i−1
m = · · · = AiQm. The Taylor definition of f gives

Qmf(Hm) =

∞∑
i=0

f (i)(0)

i!
QmH

i
m =

∞∑
i=0

f (i)(0)

i!
AimQm = f(A)Qm.

Therefore,
Qmf(Hm)e1‖b‖ = f(A)Qme1‖b‖ = f(A)q1‖b‖ = f(A)b

since the starting vector is q1 = b/‖b‖.
Common mistake in exam: Note that Qm ∈ Rn×m where n > m is a rectangular orthogonal
matrix which means that QTmQm = I but QmQTm 6= I . See background pdf on course web
page. In particular Am 6= QmHmQ

T
m.

Problem 4 (a) Suppose an Arnoldi factorization AQn = Qn+1Hn is given, where q1 = b/‖b‖.
How is the GMRES approximation for Ax = b computed from the Arnoldi relation?

(b) Derive a closed formula for the approximation generated by one step (n = 1) of GMRES,
only involving b and A.

Solution:

(a) We first compute zn ∈ Rn which is the solution to the linear least squares problem

min
z∈Rn

‖Hnz − e1‖b‖‖2 = ‖Hnzn − e1‖b‖‖2.

The GMRES-approximation is subsequently given by xn = Qnzn.

(b) Let γ := 1/‖b‖. We have q1 = bγ and

w = Aq1 = γAb, where we defined c =

 1
...
m

 .
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In the orthogonalization process we have

h1,1 = qT1 w = γ2bTAb

and
w⊥ = w − q1h1,1 = γ(Ab− γ2bTAbb)

Therefore
h2,1 = γ‖Ab− γ2bTAbb‖

and q2 = w⊥/h2,1. The first step is now a least squares solution to

min
z
‖
[
h11
h21

]
z − e1‖b‖‖‖

which can be solved directly with the normal equations z = h11‖b‖/(h211 + h221). Hence,

x̃ = q1z =
γh11‖b‖
h211 + h221

b =
h11

h211 + h221
b =

bTAb

(bTAb)2 + ‖(I − 1
‖b‖2 bb

T )Ab‖2
b

Common mistake in exam: Note that in GMRES we need to solve an overdetermined linear
system here ‖H1z − e1‖b‖‖, which can be done with the matlab command backslash, or for
small problems the normal equations. However, it is not a linear system of equations and
z = H−11 e1‖b‖ is not the GMRES approximation (it is actually the FOM approximation).

Problem 5 Roxanne the rocket scientist needs to determine the trajectory of her space craft
by solving a linear system of equations Ax = b, where A is a huge symmetric positive definite
matrix. She knows that GMRES that CG have the same convergence factor ρ = 0.1 for
her particular problem. She also knows that a matrix vector product takes 1 hour, a scalar
product of two vectors takes 20 minutes, and the adding a linear combination of two vectors
takes 10 minutes. What is the computation time for GMRES and CG to achieve full precision
(10−16)? Which method should she select? Provide clear justifications of your reasoning and
simplifications.

Solution: Since the convergence factor is 0.1, the error for both methods behave as

error ∼ 0.1k,

so full precision is achieved in 16 iterations (under the assumption that the error behaves exactly as
the convergence factor).

CG and GMRES both require one matrix vector product per iteration, and both methods require
16 matrix vector products.

Other operations (rough estimates which can depend on which version of CG is used):

• CG: requires 2 scalar products per iterations and forming linear combination of 3 vectors per
iteration. Hence, in total 32 scalar products and 48 linear combinations of vectors.
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• GMRES: At step k we need to orthogonalize against k − 1 vectors. Orthogonalizing against
k − 1 vectors requires (with single GS) k − 1 scalar products and k − 1 linear combinations.
Normalization requires 1 scalar product. Hence, in total we need

16∑
k=1

k = 136

scalar products and (approximately) as many linear combinations.

Taking the computation time of the operations specified in the question into account:

• CG: 16 ∗ 60 + 32 ∗ 20 + 48 ∗ 10 = 2080 minutes

• GMRES: 16 ∗ 60 + 136 ∗ 10 + 136 ∗ 20 = 5040 minutes

Clearly CG is faster since it is a low-term reccurrence. This is substantial since the computation cost
for forming linear combinations and scalar products is substantial in comparison to the matrix-vector
product computation.

Common mistake in exam: The matrix Hm is very small (17 × 16) and the computational effort
to solve the overdetermined linear system min ‖Hmz − e1‖b‖‖ is negligable. This is in general the
case for GMRES.

Problem 6 A theorem in this course states that the error indicator in Arnoldi’s method for
eigenvalue problems can (under appropriate conditions) be bounded as

‖(I −QnQTn )xj‖ ≤ α min
p∈Pn−1

p(λj)=1

max
i 6=j
|p(λi)|. (?)

The eigenvalues of the matrix A ∈ Rn×n is given to the
right.

(a) The eigenvalue λ1 is marked with a circle in the
figure. Use (?) to determine a convergence factor
γ such that

‖(I −QnQTn )x1‖ ≤ αγk

where ρ < 1. Describe clearly what you identify
in the figure.

−2 0 2 4

−2

−1

0

1

2

Real

Im
a

g

 

 

Eigenvalues

(b) Consider the more generalization for a matrix with eigenvalues as in the figure. Suppose
eigenvalues λ3, . . . , λn ∈ D(ρ, 0) and suppose |λ1| > |λ2| > ρ. Derive a formula for γ̃
such that

‖(I −QQTn )x1‖ ≤ βγ̃k

such that we always have γ̃ < 1.

Solution:
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(a) If we set a disk at c = 1 and ρ = 2 the figure appears to include all eigenvalues except λ1 = −2.
We have

γ =
ρ

|c− λ1|
=

2

3
.

(b) This question has several correct answers. One alternative: We use the min-max result with
polynomial First note that the specific polynomial p(z) = z−λ2

λ1−λ2 q(z) is p ∈ Pn−1 if q ∈ Pn−2.
Moreover, since p(λ2) = 0, we have

max
i 6=1
|p(λ)| = max

i 6=1,i 6=2
|p(λ)| ≤ max

i 6=2

|λi − λ2|
|λ2 − λ1|

max
i 6=1,i 6=2

q(λ)

Therefore,

min max |p(λ)| ≤ max
i 6=2

|λi − λ2|
|λ2 − λ1|

min
q∈Pn−2,q(λ1)=1

max
i 6=1,2

|q(λi)| ≤
(

max
i 6=2

|λi − λ2|
|λ2 − λ1|

)
ρk−2

|c− λ1|k−2

So the convergence factor is
γ̃ =

ρ

|c− λ1|

Beyond the scope of the question: The coefficient β̃ is β̃ = α
(

maxi 6=2
|λi−λ2|
|λ2−λ1|

)
ρ/|c−λ1| and

the specific setting in (a) gives γ̃ = 1/2 which improves the bound in a.

Problem 7 (a) Compute f(A) with the (simplified) Schur-Parlett method when a < b < 10
when

A =

a 1 0
b 1

10


(b) What is f(B) when B =

[
a 1
0 a

]
for some constant a?

(c) Suppose B ∈ R2×2, c ∈ R2 and d ∈ R. Derive a formula for fc ∈ R2 such

f(A) =

[
f(B) fc

0 f(d)

]
when A =

[
B c
0 d

]
.

The formula should be a linear system expressed in terms of f(B), f(d), c, d.

(d) The (simplified) Schur-Parlett method will fail for the matrix in (a) if b = a. Use (b)-
(c) to derive formula for f(A) when b = a. If you encounter a 2 × 2 linear system of
equations, you do not need to explicitly solve it.

Solution:

(a) The problem can be solved directly if the algorithm is memorized. The values are such that the
necessary quantities can be derived by hand. From commutativity of A and F = f(A) we have

AF = FA, (??)
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and since A is upper triangular, F = f(A) is upper triangular

F =

f11 f12 f13
f22 f23

f33

 .

We consider the first row and the second column of (??):

af12 + 1f22 = 1f11 + f12b.

This equation can be solved for f12, such that

f12 =
f22 − f11
b− a

=
f(b)− f(a)

b− a
.

Similarly, we can consider the second row and third column of (??)

bf23 + 1f33 = 1f22 + f2310.

such that

f23 =
f(10)− f(b)

10− b
.

Finally, we consider the first row and third column of (??):

f33 =
1

f(10)− f(a)

(
f(10)− f(b)

10− b
− f(b)− f(a)

b− a

)
(b) This is the definition of the matrix function of a Jordan block:

f(B) =

(
f(a) 1

1!f
′(a)

0 f(a)

)
(c) We consider the commutator[

f(B) fc
0 f(d)

] [
B c
0 d

]
−
[
B c
0 d

] [
f(B) fc

0 f(d)

]
= 0

The (1,2)-block corresponds to the equation

f(B)c+ fcd−Bfc + cd = 0

and
(B − dI)fc = f(B)c− cf(d)

which can be solved explicitly if B, d, c and f(B) is available.

(d) In order to apply (c) we first identify that

f(A) =

(
f(B) fc

0 f(d)

)
where d = 10,

f(B) =

(
f(a) 1

1!f
′(a)

0 f(a)

)
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and

fc = (B − dI)−1(f(B)c− cf(d)) =(
a− d 1

a− d

)−1 [(
f(a) 1

1!f
′(a)

0 f(a)

)(
0
1

)
−
(

0
1

)
f(d)

]
=(

a− d 1
a− d

)−1(
f ′(a)

f(a)− f(d)

)
=

1

a− d

(
f ′(a)− f(a)−f(d)

a−d
f(a)− f(d)

)
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