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SF2524 Matrix Computations for Large-scale Systems
Solution sketch

Aids: None Time: Four hours

Grades: E: 14 points, D: 16 points, C: 18 points, B: 20 points, A: 22 points
(out of the possible 27 points, including bonus points from homeworks).

Problem 1 (4p)

(a) What is an Arnoldi factorization? Describe the properties of the matrices involved in
the factorization.

(b) Suppose r4 is the Rayleigh quotient for A and suppose ry is the Rayleigh quotient for
H,,. Find a function f such that rg(z) = f(ra(@mz)) for all z. In other words, express
ri(z) in terms of r4(Q2)

(c) Suppose the eigenvector approximation & = @,z has accuracy O(a™) for some small
value a. What is the order of magnitude of the accuracy of the eigenvalue approximation
rA(Qmz), if A is symmetric?

Solution:

(a) An Arnoldi factorization of a matrix A € R™*™ consists of matrices Qmt1 = [Qm, Gm+1] €
R+l and H, € R(MH1)xm gych that

AQm = Qm—&-lﬁm
where Q41 is an orthogonal matrix and H,, is a Hessenberg matrix.

(b) We note that we have directly from definition of the Rayleigh quotient that

(sz)TAQmZ _ (sz)TAsz
TQEAQmz  ZTQLQmirH,, 2

Since Q41 is orthogonal and @, are the first columns of Q;,+1, we have QZ;HQm =
[1,0] € Rm+V>xm and QT . Q,H,, = [[,01H,, = H, € R™™, with the standard
notation for H,,. Therefore,

r4(Qmz) =

:TH,,2

2Tz

rA(Qmz) = =ryg(z).
We have f(z) = z.

(c) Since A is symmetric, the Rayleigh quotient is quadratic in the eigenvector error. Hence,

ra(Qmz) = A = O(|Qmz £ v[*) = O(a®™).



Problem 2 (4p)
(a) Describe the basic QR-method, in formulas or simple MATLAB-code.
(b) Describe the shifted QR-method, in formulas or simple MATLAB-code.

(c) Suppose A € R™ ™ gatisfies the property A = pAT for some value p. Show that this
property is preserved by the QR-method. Under what conditions is it preserved for the
shifted QR-method?

Solution:
(a) Given a matrix A we set Ag = A and repeat

— Compute a QR-factorization of A; such that Q;R; = Q;
— Compute the next matrix with A;1 = R;Q;

(b) The shifted QR-method is (for a given sequence of shifts oy, .. .)

— Compute a QR-factorization of A; such that Q;R; = A; — o1
— Compute the next matrix with A;11 = R;Q; + ;1

(c) Suppose Ag = pAl or equivalently pAy = Ag. From the formulas above, we have
Air1 = RiQ; = Q] AQ;.

Therefore
AT = (Q1AQ1)" = Q1AJQ1 = pQT AoQ1 = pA;

Hence, by induction the property is preserved unconditionally. (Strictly speaking, it is only
preserved if o; is real, but the question did not specify if o is real or complex.) The
unshifted QR-method is a special case of the shifted QR-method, so it is always preserved
for the unshifted QR-method.

Problem 3 (3p) Prove the following generalization of the min-max theory for the convergence
of GMRES. Suppose A € R™*"™ is a symmetric matrix and suppose b = c1v1 + - - - + ¢pvy with
¢ < n,and vy, ...,vp are normalized eigenvectors of A. The constants ¢y, ..., ¢ are non-zero
and satisfy ¢} + -+ + ¢7 = 1. Show that

|Az — 0] < min max [p(\;)].
p

0 j—
eppi=l,..t

where zj, is the iterate generated by k steps of GMRES. You may use any theorem in the
course.

Hint: You may use that symmetric matrices are diagonalizable and that the eigenvectors are
orthogonal.



Solution: Since A is symmetric, we know it is diagonalizable with A = VAV~ where V=1 = V7
and A diagonal. By the definition of GMRES we have

Azxp — b= min ||[Ax — b|| = min ||p(A)b||,

Az = bl = _min 14z ~ bl = min [p(A)|
where we used that how a residual Az — b is parameterized by a polynomial (as in the lecture

notes). We now use that b = cjv; + - -+ + ¢ovy, and note that p(A)v; = p(\;)v; since v; are
eigenvectors. Therefore

min [[p(A)b]|* = min [|p(A)(civ1 + - - + covg) | = min [lesp(Ar)vr + - - + cop(Ae)vel|* =
pePY peP? pePy?

k

T
p(M)er p(A)er
miré |4 : V :
pEP,
* p(Ae)ee p(Ae)ee
where V = [v1,...,v]. Since vy, ...,y are orthonormal, VTV =T and
T T
p(M)er p(M)er p(A)er | [p(M)er
Vi Vi =| b = lallp )P el ()| <
p(Ae)ee p(Ae)ee pAe)ee] [ p(Ao)ee
(Jex” + - +Jeel?) max [p(A)|* = max |p(Xi)*
i=1,...0 i=1,...,¢
Hence,
|Azg — b|| < min max |[p(\;)].
Q.E.D
Problem 4 (5p)
Suppose the eigenvalues and singular values of !
a matrix A are as in the figure to the right. s 0 M
Give a constant 3 < 1 such that after £ itera- £
tions we have ahi— 10 15 20 25
real(A(A))
err < af”. 1 \
for method &. Define also how the error err is 0 CHMMMEL ©
measured. You may invoke any theorem in the ~ ‘ ‘ ‘
course. Answer this for ... 15 20 25 30 35
(MATA))"

(a) & = GMRES
(b) & = CGN (sometimes called CGNE)
(c) & = Arnoldi’s method for eigenvalues corresponding to the eigenvalue close to Ag ~ 20.

Solution: We read-off properties from the figures to the right.



(a) With the single disk specialization of the GMRES min-max bound we have

[ Az — b
2]

ol
¥

< [IVIHv=

where p = 7.5 and ¢ = 12.5 which corresponds to a disk of radius p centered at ¢ covering
the eigenvalues.

(b) The CGN min-max bound can be specialized in a similar way where we instead need to
include the eigenvalues

A —bllas _ plt
1ol 4= ]
We select p = (33 — 17)/2 =8 and ¢ = (33 + 17)/2 = 25 such that we have § = 8/25 =
0.32.

(c) In the Arnoldi method for eigenvalue problems we measure the error with the quantity
(I — QQ*)z;|| which measures (the sine of) the angle between the Krylov subspace and
the eigenvector. The bound states that

(I — QQ*)ai|| < &iet™

where
n

_ |
&= ), o

=15

The coefficient egk) can be bounded using a disk including all eigenvalues except the eigen-

value we are considering:
k—1
(k) P
ey’ <
BN

where we can select p = 3 and ¢ = 7.5 such that

P 3
Ni—c| |20—75] "

1/4.

Problem 5 (4p) Suppose A € R™*™ is a lower triangular matrix. (Note: Not upper triangular)
Let f be an analytic function and let F' = f(A) be the corresponding matrix function.

(a) What is in general the non-zero structure of F?

(b) Provide a derivation of a formula for f;; only involving the ith and jth row and column
of A and F.

(c) How can the formula be used to construct an algorithm for the matrix function of a
lower triangular matrix?



Solution:

(a) Since A is lower triangular, f(A) = F is also lower triangular. This can be seen from the
Taylor definition

0
FA)=>" A
i=0
Clearly, A? is lower triangular if A is lower triangular.
(b) The proof is a variation of the derivation of the Schur-Parlett method, but for a lower

triangular matrix. Let the 4, j element of F' be f; ;. From the basic properties of matrix
functions, we know that F' and A commute such that

0=FA—-AF

We consider row ¢ and column j of this equation, and assume j > i:

n n
0 = > fivar;— Y aiefe
(=1 =1
i

- Z (fivae; — aiofe;)

l=j
i—1
= figajy = aijly; + fiaaii —aiifiz+ Y (fiear; — aiefes)
(=j+1

By solving this equation for f; ; we obtain

—1
;i j(f55 = fii) = 2i=jy1 (fiean; — aiefe;)
fij= ! : (*)

Qi =~ jj

(c) The diagonal of F are directly given by f;; = f(aii). The rest of the matrix can be
computed by applying (x) many times. We apply it one subdiagonal at a time, starting with
the first sub-diagonal. This is completely analogous to the Schur-Parlett method but working
with subdiagonals below the main diagonal. (An illustration is appropriate in answer.)

Problem 6 (4p)

(a) What is a p-function and how can the matrix function ¢(A) be used to solve ordinary
differential equations?

(b) How is the Krylov approximation f,, of ¢(A)b constructed from the Arnoldi factoriza-
tion? If a small matrix function has to be computed, propose a procedure.

(c) In this course a theorem stated that (under appropriate assumptions on the matrix A)
the Krylov approximation f,, satisfies

[fm = f(A)B <o min - max [f(Ai) —p(Ai)].

PEPm—_1i=1,.n



Suppose A has eigenvalues \;, i = 1,...,n such that |\;|] < 1/2. Specialize the formula
and bound it with an explicit formula involving m showing that the approximation error
goes to zero very fast. Problem (c) can be answered without answering (a)-(b).

Hint: You may find it useful that the remainder term of the Taylor expansion at zero
of the o-function satisfies: |Ry ()| < c|lz|V/N!.

Solution:

()

A ¢ function is the matrix function associated with the scalar function

e —1
(p(l') - > I
which for non-singular A can be written as
p(A) = A (exp(4) — I). (+%)

The Krylov approximation of the ¢ function (and any matrix function) is given computed
from the Arnoldi factorization:

AQm = Qm-i—lﬁm-
We let
P(A)b = Qume(Hp)e||b]
where g1 = b/||b||. The matrix function ¢(H,,) can for instance be computed with (xx). If

H,, is singular, a general method, such as Taylor approximation approach might is better.

Let T be the truncated Taylor series approximation of f. According to the hint

LUN
[o(z) - Tw(@)] < el2

We also have from the question that

[fm — (A <@ min  max [p(Ai) = p(Xi)]. < ale(Xi) = q(Ai)]

pEPp—11=1,...,n

for any polynomial ¢ € P,,—1. In particular, the bound holds for the truncated Taylor
polynomial ¢ = 1},,_1. Therefore,

)\i m—1
1 — 9(AB] < ac max 2%

i=1,...,n (m — 1)'

Let p be the largest eigenvalue in modulus, p = max;—; ., |Ai|, which is also known as the
spectral radius of the matrix. Then

pm—l
[ frn — 2(A)b]| < acm

For sufficiently large m we have p™~! < (m — 1)! which shows (exponential) convergence.



