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SF2524 Matrix Computations for Large-scale Systems
Solution sketch

Aids: None Time: Four hours

Grades: E: 14 points, D: 16 points, C: 18 points, B: 20 points, A: 22 points
(out of the possible 27 points, including bonus points from homeworks).

Problem 1 (4p)

(a) What is an Arnoldi factorization? Describe the properties of the matrices involved in
the factorization.

(b) Suppose rA is the Rayleigh quotient for A and suppose rH is the Rayleigh quotient for
Hm. Find a function f such that rH(z) = f(rA(Qmz)) for all z. In other words, express
rH(z) in terms of rA(Qmz)

(c) Suppose the eigenvector approximation x̃ = Qmz has accuracy O(αm) for some small
value α. What is the order of magnitude of the accuracy of the eigenvalue approximation
rA(Qmz), if A is symmetric?

Solution:

(a) An Arnoldi factorization of a matrix A ∈ Rn×n consists of matrices Qm+1 = [Qm, qm+1] ∈
Rn×m+1 and Hm ∈ R(m+1)×m such that

AQm = Qm+1Hm

where Qm+1 is an orthogonal matrix and Hm is a Hessenberg matrix.

(b) We note that we have directly from definition of the Rayleigh quotient that

rA(Qmz) =
(Qmz)

TAQmz

zTQT
mAQmz

=
(Qmz)

TAQmz

zTQT
mQm+1Hmz

.

Since Qm+1 is orthogonal and Qm are the first columns of Qm+1, we have QT
m+1Qm =

[I, 0] ∈ R(m+1)×m and QT
m+1QmHm = [I, 0]Hm = Hm ∈ Rm×m, with the standard

notation for Hm. Therefore,

rA(Qmz) =
zTHmz

zT z
= rH(z).

We have f(x) = x.

(c) Since A is symmetric, the Rayleigh quotient is quadratic in the eigenvector error. Hence,

rA(Qmz)− λ = O(‖Qmz ± v‖2) = O(α2m).



Problem 2 (4p)

(a) Describe the basic QR-method, in formulas or simple MATLAB-code.

(b) Describe the shifted QR-method, in formulas or simple MATLAB-code.

(c) Suppose A ∈ Rn×n satisfies the property A = ρAT for some value ρ. Show that this
property is preserved by the QR-method. Under what conditions is it preserved for the
shifted QR-method?

Solution:

(a) Given a matrix A we set A0 = A and repeat

– Compute a QR-factorization of Ai such that QiRi = Qi

– Compute the next matrix with Ai+1 = RiQi

(b) The shifted QR-method is (for a given sequence of shifts σ0, . . .)

– Compute a QR-factorization of Ai such that QiRi = Ai − σiI
– Compute the next matrix with Ai+1 = RiQi + σiI

(c) Suppose A0 = ρAT
0 or equivalently ρA0 = A0. From the formulas above, we have

Ai+1 = RiQi = QT
i AQi.

Therefore
AT

1 = (Q1AQ1)
T = Q1A

T
0Q1 = ρQT

1A0Q1 = ρA1

Hence, by induction the property is preserved unconditionally. (Strictly speaking, it is only
preserved if σi is real, but the question did not specify if σ is real or complex.) The
unshifted QR-method is a special case of the shifted QR-method, so it is always preserved
for the unshifted QR-method.

Problem 3 (3p) Prove the following generalization of the min-max theory for the convergence
of GMRES. Suppose A ∈ Rn×n is a symmetric matrix and suppose b = c1v1 + · · ·+ c`v` with
` < n, and v1, . . . , v` are normalized eigenvectors of A. The constants c1, . . . , c` are non-zero
and satisfy c21 + · · ·+ c2` = 1. Show that

‖Axk − b‖ ≤ min
p∈P 0

k

max
i=1,...,`

|p(λi)|.

where xk is the iterate generated by k steps of GMRES. You may use any theorem in the
course.
Hint: You may use that symmetric matrices are diagonalizable and that the eigenvectors are
orthogonal.
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Solution: Since A is symmetric, we know it is diagonalizable with A = V ΛV −1 where V −1 = V T

and Λ diagonal. By the definition of GMRES we have

‖Axk − b‖ = min
x∈Kk(A,b)

‖Ax− b‖ = min
p∈P 0

k

‖p(A)b‖,

where we used that how a residual Ax − b is parameterized by a polynomial (as in the lecture
notes). We now use that b = c1v1 + · · · + c`v`, and note that p(A)vi = p(λi)vi since vi are
eigenvectors. Therefore

min
p∈P 0

k

‖p(A)b‖2 = min
p∈P 0

k

‖p(A)(c1v1 + · · ·+ c`v`)‖2 = min
p∈P 0

k

‖c1p(λ1)v1 + · · ·+ c`p(λ`)v`‖2 =

min
p∈P 0

k

Ṽ
p(λ1)c1...
p(λ`)c`




T Ṽ
p(λ1)c1...
p(λ`)c`




where Ṽ = [v1, . . . , v`]. Since v1, . . . , v` are orthonormal, Ṽ T Ṽ = I andṼ
p(λ1)c1...
p(λ`)c`




T Ṽ
p(λ1)c1...
p(λ`)c`


 =

p(λ1)c1...
p(λ`)c`


T p(λ1)c1...

p(λ`)c`

 = |c1|2|p(λ1)|2+· · ·+|c`|2|p(λ`)|2 ≤

(|c1|2 + · · ·+ |c`|2) max
i=1,...,`

|p(λi)|2 = max
i=1,...,`

|p(λi)|2

Hence,
‖Axk − b‖ ≤ min

p∈P 0
k

max
i=1,...,`

|p(λi)|.

Q.E.D

Problem 4 (5p)

Suppose the eigenvalues and singular values of
a matrix A are as in the figure to the right.
Give a constant β < 1 such that after k itera-
tions we have

err ≤ αβk.

for method ♣. Define also how the error err is
measured. You may invoke any theorem in the
course. Answer this for ...
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(a) ♣ = GMRES

(b) ♣ = CGN (sometimes called CGNE)

(c) ♣ = Arnoldi’s method for eigenvalues corresponding to the eigenvalue close to λ0 ≈ 20.

Solution: We read-off properties from the figures to the right.
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(a) With the single disk specialization of the GMRES min-max bound we have

‖Ax− b‖
‖b‖

≤ ‖V ‖‖V −1‖ρ|
k

|c|

where ρ = 7.5 and c = 12.5 which corresponds to a disk of radius ρ centered at c covering
the eigenvalues.

(b) The CGN min-max bound can be specialized in a similar way where we instead need to
include the eigenvalues

‖Ax− b‖A−1

‖b‖A−1

≤ ρ|k

|c|
We select ρ = (33− 17)/2 = 8 and c = (33 + 17)/2 = 25 such that we have β = 8/25 =
0.32.

(c) In the Arnoldi method for eigenvalue problems we measure the error with the quantity
‖(I − QQ∗)xi‖ which measures (the sine of) the angle between the Krylov subspace and
the eigenvector. The bound states that

‖(I −QQ∗)xi‖ ≤ ξiε(k)i

where

ξi =

n∑
j=1,j 6=i

|αj |
|αi|

.

The coefficient ε
(k)
i can be bounded using a disk including all eigenvalues except the eigen-

value we are considering:

ε
(k)
i ≤

(
ρ

|λi − c|

)k−1

where we can select ρ = 3 and c = 7.5 such that

ρ

|λi − c|
≈ 3

|20− 7.5|
≈ 1/4.

Problem 5 (4p) Suppose A ∈ Rn×n is a lower triangular matrix. (Note: Not upper triangular)
Let f be an analytic function and let F = f(A) be the corresponding matrix function.

(a) What is in general the non-zero structure of F?

(b) Provide a derivation of a formula for fij only involving the ith and jth row and column
of A and F .

(c) How can the formula be used to construct an algorithm for the matrix function of a
lower triangular matrix?
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Solution:

(a) Since A is lower triangular, f(A) = F is also lower triangular. This can be seen from the
Taylor definition

f(A) =
∞∑
i=0

f (i)(0)

i!
Ai.

Clearly, Ai is lower triangular if A is lower triangular.

(b) The proof is a variation of the derivation of the Schur-Parlett method, but for a lower
triangular matrix. Let the i, j element of F be fi,j . From the basic properties of matrix
functions, we know that F and A commute such that

0 = FA−AF

We consider row i and column j of this equation, and assume j > i:

0 =
n∑

`=1

fi,`a`,j −
n∑

`=1

ai,`f`,j

=

i∑
`=j

(fi,`a`,j − ai,`f`,j)

= fi,jaj,j − ai,jfj,j + fi,iai,i − ai,jfi,j +

i−1∑
`=j+1

(fi,`a`,j − ai,`f`,j)

By solving this equation for fi,j we obtain

fi,j =
ai,j(fj,j − fi,,i)−

∑i−1
`=j+1 (fi,`a`,j − ai,`f`,j)

ai,i − aj,j
. (?)

(c) The diagonal of F are directly given by fi,i = f(ai,i). The rest of the matrix can be
computed by applying (?) many times. We apply it one subdiagonal at a time, starting with
the first sub-diagonal. This is completely analogous to the Schur-Parlett method but working
with subdiagonals below the main diagonal. (An illustration is appropriate in answer.)

Problem 6 (4p)

(a) What is a ϕ-function and how can the matrix function ϕ(A) be used to solve ordinary
differential equations?

(b) How is the Krylov approximation fm of ϕ(A)b constructed from the Arnoldi factoriza-
tion? If a small matrix function has to be computed, propose a procedure.

(c) In this course a theorem stated that (under appropriate assumptions on the matrix A)
the Krylov approximation fm satisfies

‖fm − f(A)b‖ ≤ α min
p∈Pm−1

max
i=1,...,n

|f(λi)− p(λi)|.
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Suppose A has eigenvalues λi, i = 1, . . . , n such that |λi| < 1/2. Specialize the formula
and bound it with an explicit formula involving m showing that the approximation error
goes to zero very fast. Problem (c) can be answered without answering (a)-(b).
Hint: You may find it useful that the remainder term of the Taylor expansion at zero
of the ϕ-function satisfies: |RN (x)| ≤ c|x|N/N !.

Solution:

(a) A ϕ function is the matrix function associated with the scalar function

ϕ(x) =
ez − 1

z
,

which for non-singular A can be written as

ϕ(A) = A−1(exp(A)− I). (??)

(b) The Krylov approximation of the ϕ function (and any matrix function) is given computed
from the Arnoldi factorization:

AQm = Qm+1Hm.

We let
ϕ(A)b = Qmϕ(Hm)e1‖b‖

where q1 = b/‖b‖. The matrix function ϕ(Hm) can for instance be computed with (??). If
Hm is singular, a general method, such as Taylor approximation approach might is better.

(c) Let TN be the truncated Taylor series approximation of f . According to the hint

|ϕ(x)− TN (x)| ≤ c |x|
N

N !
.

We also have from the question that

‖fm − ϕ(A)b‖ ≤ α min
p∈Pm−1

max
i=1,...,n

|ϕ(λi)− p(λi)|. ≤ α|ϕ(λi)− q(λi)|

for any polynomial q ∈ Pm−1. In particular, the bound holds for the truncated Taylor
polynomial q = Tm−1. Therefore,

‖fm − ϕ(A)b‖ ≤ αc max
i=1,...,n

|λi|m−1

(m− 1)!

Let ρ be the largest eigenvalue in modulus, ρ = maxi=1,...,n |λi|, which is also known as the
spectral radius of the matrix. Then

‖fm − ϕ(A)b‖ ≤ αc ρm−1

(m− 1)!

For sufficiently large m we have ρm−1 < (m− 1)! which shows (exponential) convergence.
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