SF2524 Matrix Computations for Large-scale Systems Exam

Aids: None Time: Four hours

Grades: E: 17 points, D: 19 points, C: 22 points, B: 26 points, A: 29 points (out of the possible 33 points, including bonus points from homeworks).

Problem 1 (5p)

- (a) What should ?? be to obtain the dotted curve with stars. Relate to theory for Rayleigh quotient. (Note: Answer without relation to theory will not give full points).
- (b) Which one of curves corresponds to Arnoldi's method for eigenvalue problems applied to A with b=eye(n,1) and ?? selected as -5. Relate to theory for Arnoldi's method.

Problem 2 (6p)

- (a) State the minimization definition of the CG-iterates.
- (b) How are the iterates of CGN (sometimes called CGNE) defined?
- (c) Prove that the CGN iterates are minimizers of a residual with respect to a norm over a space X. Which norm and what is X?

Problem 3 (5p) In this question you shall apply a result for the movement (perturbation) of eigenvalues known as the Bauer-Fike theorem:

The eigenvalues of A = B + C are contained in discs centered at the eigenvalues of B with radius $K \|C\|$.

where K is the eigenvalue condition number $K = ||V|| ||V^{-1}||$. We apply GMRES to the matrix $A = \alpha I + C$, where A is a normal matrix such that $||V|| ||V^{-1}|| = 1$. Provide a convergence factor bound in terms of α and ||C||. You may invoke any theorem/lemma we have used in the course.

Problem 4 (5p) We define the scalar product $\langle u, v \rangle = u^T L^T L v$ for some non-singular matrix L. We say that a matrix $Q = [q_1, \ldots, q_m]$ is orthogonal with respect to this scalar product if

$$\langle q_i, q_j \rangle = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j. \end{cases}$$

which is equivalent to the equation $Q^T L^T L Q = I$.

(a) Suppose $Q = [q_1, \ldots, q_m]$ is orthogonal with respect to this scalar product. Construct a method of the type

>> h=?? >> z=?? >> beta=?? >> q_new=z/beta;

where all operations are done using matrices. The method should, given a vector $b \notin \operatorname{span}(q_1, \ldots, q_m)$, construct $q_{m+1} := \operatorname{q_new}$ such that it satisfies $\langle q_i, q_{m+1} \rangle = 0$ for $i = 1, \ldots, m$ and $\langle q_{m+1}, q_{m+1} \rangle = 1$ and $b = h_1q_1 + \ldots + h_mq_m + \beta q_{m+1}$.

(b) We now apply Arnoldi's method with the orthogonalization procedure stated in (a). Let Q_m and \underline{H}_m be the matrices generated. Suppose the matrix A is not symmetric but satisfies instead $AL^TL = L^TLA^T$ which means $\langle u, Av \rangle = \langle Au, v \rangle$ for any uand v. What property/structure of H_m does this imply?

Problem 5 (4p) Let

$$P = \begin{bmatrix} A & B \\ 0 & C \end{bmatrix}, \quad f(P) = F = \begin{bmatrix} F_A & F_B \\ 0 & F_C \end{bmatrix}$$

where $C = \alpha I$ and $A, B, C, F_A, F_B, F_C \in \mathbb{C}^{n \times n}$. Derive a formula for F_C only involving $A, B, \alpha, f(A)$, and f(B).

Problem 6 (5p)

(a) Prove shift invariance of Arnoldi factorization by showing a relation of the form

$$(A - \mu I)Q_m = Q_{m+1}???$$

(b) In a particular application we discretize a parameter dependent PDE which leads to a parameter dependent linear system of equations $g(\mu) = (A - \mu I)^{-1}b$ where $A \in \mathbb{R}^{n \times n}$ is large and sparse. We want to evaluate $g(\mu)$ for $\mu = \mu_1, \ldots, \mu_p$ for a large *p*-value. Derive and explain (for instance in the form of a program) a method based on GMRES, which only requires the computation of N = 100 matrix-vector products with matrix A, to compute all vectors $g(\mu_1), \ldots, g(\mu_p)$. (That is, the number of matrix-vector products with A is independent of p.) You may assume that GMRES converges in N steps.