SF2524 Matrix Computations for Large-scale Systems Exam

Aids: None Time: Four hours

Grades: E: 17 points, D: 19 points, C: 22 points, B: 26 points, A: 29 points (out of the possible 33 points, including bonus points from homeworks).

Problem 1 (0p) How many bonus points did you accumulate in HT2018? (max=3)

Problem 2 (5p)

In the program to the right (which is a par-	
tial implementation of phase 2 of the QR-	<pre>n=100; A=randn(n);</pre>
algorithmm) we want the result to be an up-	H=hess(A); % Create a hessenberg matrix
per triangular matrix.	for k=1:n
 (a) What should "??" be? (b) Even if the "??" are filled out correctly, there is a bug / error. What is it? 	<pre>r=?? c=?? s=?? G=eye(n); G([k:k+1],[k:k+1])=[c -s; s c]; H=G'*H</pre>
(c) How can the QR-factorization of H be obtained from the code?	end

Solution:

- (a) r=sqrt(H(k,k)^2+H(k+1,k)^2) c=H(k,k)/r s=H(k+1,k)/r;
- (b) The loop should run to n-1
- (c) The QR-factorization can be obtained: R: is the H after the algorithm Q: is the product of the givens rotators

$$Q = G_1 \cdots G_{n-1}$$

where G_k is the G-matrix created in loop k. (It can also be more efficiently computed by only computing actions of the givens rotators.)

Problem 3 (5p)

- (a) What is the minimization definition of the GMRES-iterates?
- (b) Describe in MATLAB (or Julia-code) the GMRES method.
- (c) Suggest one way to improve the method when the matrix is symmetric.

Solution:

(a) Minimization definition of GMRES

$$||Ax_m - b||_2 = \min_{x \in \mathcal{K}_m} ||Ax - b||_2$$

where x_m is the iterate at step m.

- (b) See lecture notes.
- (c) The method can be improved if the matrix is symmetric since then the orthogonalization in the Arnoldi method can be done with a short-term recurrence. In other words, Arnoldi is replaced by Lanczos.

Problem 4 (5p) The φ -function is defined as $\varphi(z) = \frac{e^z - 1}{z}$.

- (a) How can the matrix φ -function be used to solve the inhomogeneous ODE y'(t) = Ay(t) + b?
- (b) The matrix φ -function can be computed by using the matrix exponential as follows

$$\varphi(A) = \begin{bmatrix} I_n & ?? \end{bmatrix} \exp \begin{bmatrix} A & ?? \\ 0_n & 0_n \end{bmatrix} \begin{bmatrix} ?? \\ ?? \end{bmatrix}$$

where $I_n \in \mathbb{R}^{n \times n}$ is the identity matrix and $0_n \in \mathbb{R}^{n \times n}$ is a zero matrix. Prove the formula and show what the ?? should be.

Solution:

(a) This gives directly the solution to the linear inhomogeneous ODE:

$$y(t) = y(0) + t\varphi(tA)(Ay(0) + b).$$

(b) We use the technique we used in the derivation of Schur-Parlett. Let

$$E = \begin{bmatrix} E_1 & E_2 \\ 0 & E_4 \end{bmatrix} := \exp\left(\begin{bmatrix} A & X \\ 0 & 0 \end{bmatrix} \right)$$

where we want to determine X. From matrix functions on a block triangular matrix we know that

$$E_1 = \exp(A), \ E_4 = \exp(0) = I.$$

Since the f(B) always commutes with B we have

$$\begin{bmatrix} E_1 & E_2 \\ 0 & E_4 \end{bmatrix} \begin{bmatrix} A & X \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} A & X \\ 0 & 0 \end{bmatrix} \begin{bmatrix} E_1 & E_2 \\ 0 & E_4 \end{bmatrix}$$

The (2,2)-block equation becomes after some manipulations

$$E_1 X = AE_2 + XE_4$$

$$\exp(A)X = AE_2 + X$$

$$E_2 = A^{-1}(\exp(A) - I)X$$

We see that $E_2 = \varphi(A)$ if X = I. Hence

$$\varphi(A) = \begin{bmatrix} I_n & 0 \end{bmatrix} \exp \begin{bmatrix} A & I_n \\ 0_n & 0_n \end{bmatrix} \begin{bmatrix} 0 \\ I_n \end{bmatrix}$$

Problem 5 (5p) Let $A \in \mathbb{R}^{n \times n}$ be triangular diagonalizable matrix with diagonal elements $a_{i,i} = \sqrt{i}$. Let f(x) = 1/(10 + x).

- (a) What is the Jordan form definition of f(A)?
- (b) For what values of n is the matrix function defined/finite?

Solution:

(a) The Jordan definition is

$$f(A) = V f(J) V^{-1}$$

where $f(J) = \operatorname{diag}(f(J_1), \ldots, f(J_k))$ and

$$f(J_k) = \begin{bmatrix} f(\lambda) & \cdots & f^{(p-1)}(\lambda)/(p-1)! \\ 0 & \ddots & \vdots \\ 0 & 0 & f(\lambda) \end{bmatrix}$$

(b) The jordan form is defined for all n, since f(x) is analytic except for a pole in x = -10, which is never an eigenvalue of this matrix (they are $\sqrt{1}, \sqrt{2}, \ldots$)

Problem 6 (5p) We are applying CG to a matrix with one eigenvalue equal to $\lambda_1 = 10$, and all the other eigenvalues $\lambda_2, \ldots, \lambda_n \in [1 - \varepsilon, 1 + \varepsilon]$.

- (a) Derive a bound on the error (using any theorem in the course) for $\varepsilon = 1/2$ which does not depend on n.
- (b) Derive a bound from the min-max error characterization

$$\min_{p \in P_m^0} \max_{i=1,\dots,n} |p(\lambda_i)|.$$

which shows that when m = 2 the error can be bounded essentially proportional to ε , when ε is small.

Problem 7 (5p) We apply the power method to the matrix

$$A = \begin{bmatrix} 3 & 1\\ 0 & 3+\varepsilon \end{bmatrix}$$

with starting vector $[1, 1]^T$.

- (a) To what eigenvalue does the method converge, and what is the convergence factor when $\varepsilon > 0$. You may use any theorem from the course.
- (b) Prove that the method converges also when $\varepsilon = 0$. Hint: Use the Jordan definition of matrix functions.

Solution:

(a) The eigenvalues of the matrix are 3 and $3 + \varepsilon$. The power method in general converges to the largest eigenvalue, which is $3 + \varepsilon$. The convergence rate is given by the quotient of the eigenvalues in modulus. The eigenvector error is

$$\left(\frac{3}{3+\varepsilon}\right)^k$$

and the eigenvalue error is $(3^2/(3+\varepsilon)^2)^k$.

(b) The power method applied to the case $\varepsilon = 0$ can be expressed as

$$v_k = \frac{w_k}{\|w_k\|}$$

where

$$w_k = A^k v_0.$$

From the matrix function definition of A^k , we have with $f(z) = z^k$ that

$$f(A) = \begin{bmatrix} f(3) & f'(3) \\ 0 & f(3) \end{bmatrix} = \begin{bmatrix} 3^k & k3^{k-1} \\ 0 & 3^k \end{bmatrix}$$

We factorize the dominant term (as in the standard derivation of the power method). This implies that

$$w_{k} = \begin{bmatrix} 3^{k} & k3^{k-1} \\ 0 & 3^{k} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3^{k} + k3^{k-1} \\ 3^{k} \end{bmatrix} = (3^{k} + k3^{k-1}) \begin{bmatrix} 1 \\ \alpha_{k} \end{bmatrix}$$

where $\alpha_k=3^k/(3^k+k3^{k-1}).$ Hence,

$$v_k = \frac{1}{\|w_k\|} w_k = \frac{1}{\|w_k/(3^k + k3^{k-1})\|} w_k/(3^k + k3^{k-1}) = \frac{1}{\|\begin{bmatrix} 1\\ \alpha_k \end{bmatrix} \| \begin{bmatrix} 1\\ \alpha_k \end{bmatrix}} \to \begin{bmatrix} 1\\ 0 \end{bmatrix}$$

since

$$\alpha_k = \frac{1}{1+k/3} \to 0 \text{ as } k \to \infty.$$

The vector $\left[\begin{smallmatrix}1\\0\end{smallmatrix}\right]$ is an eigenvector corresponding to the eigenvalue $\lambda=3.$