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SF2524 Matrix Computations for Large-scale Systems
Exam - Solutions

Aids: None Time: Four hours

Grades: E: 16 points, D: 19 points, C: 22 points, B: 25 points, A: 28 points (out of the
possible 35 points, including bonus points from homeworks).

Problem 1 (4p)

(a) How is the Rayleigh quotient iteration for the matrix A ∈ Rn×n defined? Answer with
formulas and/or algorithm.

(b) Suppose Q ∈ Rn×m is an orthogonal matrix (QTQ = I) with n > m. Describe the
Gram-Schmidt (GS) procedure.

(c) Suppose Q is as in (b). Describe the double Gram-Schmidt (DGS) procedure.

(d) What are the advantages / disadvantages of GS vs DGS?

Solution:

(a) r(x) := xTAx/xTx and zk+1 = (A− r(xk)I)−1xk and xk+1 = zk+1/‖zk+1‖.

(b-c) GS: h = QTx, z = x−Qh and y = z/‖z‖
DGS: h = QTx, z = x−Qh, g = QT z, z = z −Qg and y = z/‖z‖ set h = h+ g.

(d) GS requires less operations than DGS but is more sensitive to round-off errors.

Problem 2 (4p)

(a) Let A be a non-singular matrix with eigenvalues in all four quadrants of complex plane.
Give a definition of the matrix sign function for this matrix?

(b) Let A ∈ Rn×n. Suppose X0 = 2A and let Xk be defined by

Xk+1 =
1

2
Xk +X−1k A, k = 1, . . . .

If the sequence X0, X1, . . . converges, what does it converge to?

(c) Suppose we have very reliable algorithms to compute the matrix functions f and g.
Derive a formula that produces the first k derivatives at x = 0 of h(x) = f(g(x)) for
scalar-valued x using matrix functions f and g.

Solution:

1



(a) It can be (easily) defined as sign(A) = A−1
√
A2 or sign(A) =

√
A2A−1. It can also be defined

with the Jordan definition or the Cauchy integral formula (with f(s) = s−1
√
s2). It cannot be

defined with a Taylor definition since the sign function is not analytic in the origin and we
cannot find a disc including all the eigenvalues but not the origin.

(b) Newton’s method for the matrix square root
√
B is Xk+1 = 1

2(Xk + X−1k B) and initialized
with X0 = B. We can directly identify the given algorithms as Newton’s method with the
choice B = 2A. Since Newton’s method for the square root is globally convergent (if matrix
square root is well-defined). Therefore, Xk →

√
B =

√
2A =

√
2
√
A.

Alternative proof: Since this is a fixed point iteration, convergence can only occur to a fixed
point. At the fixed point we have X∗ = 1

2X∗ + X−1∗ A. The solution to this equation is
X∗ =

√
2
√
A.

(c) We can directly use the Jordan form definition as a procedure to compute the derivative: We set
J ∈ R(k+1)×(k+1) and evaluate h(J) = f(g(J)). The first row will contain[

h(0)
h′(0)

1!
· · · h

(k)(0)

k!

]
from which we can directly read-off the derivatives.

Problem 3 (5p) Consider a matrix A ∈ Rn×n with ` < n eigenvalues. Assume A is diagonal-
izable such that there exists invertible X ∈ Cn×n and diagonal Λ ∈ Cn×n when A = X−1ΛX.

(a) How are the iterates of GMRES defined and computed? Answer with formulas and/or
an algorithm.

(b) In this course we found that the iterates of GMRES satisfy ‖Axk−b‖ = minp∈P 0
k
‖p(A)b‖.

Use this to determine the error of GMRES after k = ` iterations, under the assumption
that no premature breakdown occurs. Note that ` < n meaning that we have many
multiple eigenvalues.

(c) Suppose D ∈ Rn×n is a diagonal matrix with entries d1, . . . , dn and let b =
[b1, . . . , b`, 0, . . . , 0]T ∈ Rn. What is the structure of the Krylov subspace Kk(D, b)
when k < `? Use this to show that GMRES for Dx = b is independent of d`+1, . . . , dn.

Solution:

(a) The GMRES iterates are defined as minimizers of the residual over Krylov subspace:

‖Axk − b‖ = min
x∈Kk(A,b)

‖Ax− b‖

They are computed via the Arnoldi method, which generates an Arnoldi factorization AQk =
Qk+1Hk. The minimization problem can be expressed as

min
x∈Kk(A,b)

‖Ax− b‖ = min
z∈Rk

‖Hkz − e1‖b‖‖

which is a small overdetermined linear system of equations (solvable with for instance back-
slash). The approximate solution is constructed as xk = Qkz∗ where minz∈Rk ‖Hkz −
e1‖b‖‖ = ‖Hkz∗ − e1‖b‖‖.
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(b) We first follow the same step as the derivation of the min-max bound in the lectures/course
literature:

‖Axk − b‖ ≤ min
p∈P 0

k

‖p(A)b‖ = ‖X‖‖X−1‖ min
p∈P 0

k

‖p(Λ)‖‖b‖ =

‖X‖‖X−1‖ min
p∈P 0

k

max
λ=λ1,...,λ`

|p(λ`)‖‖b‖

We can explicitly construct a minimizers which gives 0 as follows for k = `. We set

p(z) =
(λ1 − z) · · · (λ` − z)

λ1 · · ·λ`

which satisfies q ∈ P 0
k and q(λ1) = · · · = q(λ`) = 0. Hence, ‖Axk − b‖ = 0.

(c) The result can be directly identified from the Krylov subspace:

Djb =



dj1b1
...

dj`b`
0
...
0


⇒ Kk(D, b) = span(



b1
...
b`
0
...
0


,



d1b1
...

d`b`
0
...
0


, . . .



dk−11 b1
...

dk−1` b`
0
...
0


)

GMRES is defined via ‖Dxk − b‖ = minx∈Kk(D,b) ‖Dx − b‖. Since the right-hand side
optimization set does not contain d`+1, . . . , dn and Dx does not contain d`+1, . . . , dn when
x ∈ Kk(D, b), the right hand side cannot depend on d`+1, . . . , dn. (The conclusion follows
from uniqueness of the GMRES iteration.)

Problem 4 (3p) Felix the fluid mechanician has to compute f(A)b where f(z) =
√
z and

A ∈ Rn×n is a large and sparse matrix. One matrix vector product corresponding to A takes
approximately n1.5/10 time-units in a particular computing environment, and the orthogo-
nalization of one vector against p (orthogonal) vectors takes 10pn time-units. Clearly state
simplifying assumptions, and estimations when analyzing the following situations.

(a) Felix is an expert on convergence theory for Arnoldi’s method for matrix functions and
found that we can assume linear convergence for this iteration, and that the convergence
factor can be estimated by ρ = 0.2. What is the computation time to reach machine
precision (as a function n) with Arnoldi’s method for matrix functions?

(b) Newton’s method for the matrix square root has quadratic convergence. What is the
computation time to reach machine precision for f(A)? Justify assumptions about
computation time for matrix-matrix products.

Solution:
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(a) First we determine the number of iterations required: Linear convergence gives an error esti-
mated by ρk. Hence, from 10−16 ≈ ρk, with solution k = 32 for ρ = 0.2. In order to carry out
32 iterations, we have the following orthogonalization cost

32∑
p=1

10pn = 10n
32∑
p=1

p = 10n528 ≈ 5000n.

In every step we need one matrix vector product so the matrix-vector product computation cost
is

32n1.5/10 (*)

The matrix vector cost (*) will dominate when n > n∗ ≈ 106.

(b) Quadratic convergence implies that the error is squared in every step. If we assume the initial
error is 0.1, we need 4 iterations to reach machine precision since 0.12

4
= 10−16. Every

step requires one matrix inversion and one matrix-matrix product, which both have essentially
computation cost αn3 for some α. The total a complexity 8αn3. The above reasoning was done
under the optimistic assumption that the initial error is 0.1. In practice it typically requires more
iterations. (By comparing αn3 with (*) the Arnoldi approach will be faster for large n.)

Problem 5 (4p)

(a) What is the (basic) QR-method? Answer with formulas and/or an algorithm.

(b) The QR-factorization of a matrix is not unique, unless the sign of the diagonal entries
in the diagonal are fixed. Suppose A = QR is a QR-factorization. Find a matrix P
such that Q̃ = QP and R̃ = PR is a different QR-factorization

(c) Suppose A1 is the result of one step of the shifted QR-method. Let Ã1 be the result
of one step of the shifted QR-method with the other QR-factorization in (b). Derive a
formula for Ã1, in terms of A1? How does the non-uniqueness of the QR-factorization
influence the QR-method?

Solution:

(a) Ak+1 = RkQk where Ak = QkRk and A0 = A.

(b) A general parameterization of all the QR-factorization is given by diagonal P that satisfy

P 2 = I.

This means that the diagonal elements of P are±1. Any diagonal matrix different from identity
with ±1 on the diagonal is a solution to the problem.

(c) The shifted QR-method is defined by

QkRk = Ak − µI (1)

Ak+1 = RkQk + µI = QTkAkQk − µQTkQk + µI = QTkAkQk (2)

If we instead use Ak − µI = Q̃kR̃k for a different QR-factorization we have

Ãk+1 = Q̃TkAkQ̃k = P TQTkAkQkP.
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The influence of the non-uniqueness can be expressed as Ãk+1 = P TAkP . The magnitude of
the off-diagonal elements are the same forAk and Ãk and they are in that sense equally far from
converged. The reasoning can be repeated (formalization with induction).

Problem 6 (4p) Suppose we have computed an Arnoldi factorization AQk = Qk+1Hk.

(a) How are the eigenvalue approximations for Arnoldi’s method for eigenvalue problems
computed from the Arnoldi factorization?

(b) Suppose hk+1,k = 0. Show that an eigenvalue of Hk is an eigenvalue of A.

Solution:

(a) By definition: The eigenvalues of Hk are taken as approximations of A.

(b) In this case we have AQk = QkHk. Let Hx = µx. Then, AQkx = QkHkx = µQkx, so µ is
an eigenvalue of A with eigenvector Qkx.

Problem 7 (5p)

Let vk+1, wk+1, be generated by carrying out k steps of
Algorithm X where A ∈ Rn×n.

(a) Prove that vk+1 and wk+1 are elements of certain
Krylov subspaces? Which ones?

(b) Simplify the Algorithm X for the case A is sym-
metric. Under this symmetry assumption, Al-
gorithm X is equivalent to an algorithm in this
course. Which one?

(c) The iterates of the Algorithm X satisfy

AVk = Vk+1T k

ATWk = Wk+1T k

where T k ∈ R(k+1)×k. Express Vk, Wk and T k in
terms of quantities in the algorithm.

Algorithm X:

1. ṽ1 = b−Ax0, v1 = w1 = ṽ1/‖ṽ1‖
for k = 1, . . . until converged

2. ṽk+1 = Avk
3. w̃k+1 = ATwk
4. αk = wTk ṽk+1

5. ṽk+1 = ṽk+1 − αkvk
6. w̃k+1 = w̃k+1 − αkwk
7. if k > 1
8. ṽk+1 = ṽk+1 − βk−1vk
9. w̃k+1 = w̃k+1 − βk−1wk

10. γk = ‖ṽk+1‖, vk+1 = ṽk+1/γk
11. βk = ‖w̃k+1‖, wk+1 = w̃k+1/βk

end

Solution:

(a) To carry out the proof for vk+1 we do induction and use steps 2,5 and 8 and 10 and the initializa-
tion in step 1: Initialization step we set v1 = (b−Ax0)/‖b−Ax0‖. Use induction hypothesis,
vk ∈ Kk(A, v1). From step 2 we find that ṽk+1 ∈ Kk+1(A, v1). In the operations 5,8,10 we let
vk+1 be linear combination of ṽk+1, vk such that vk+1 ∈ Kk+1(A, v1). The proof is analogous
but with a transpose wk+1 ∈ Kk+1(A

T , v1).

(b) If A is symmetric wk = vk for all k and the algorithm reduces to Lanczos.
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(c) Vk = [v1, . . . , vk], Wk = [w1, . . . , wk]. The matrix T k is given by

T k =



α1 β1

γ1
. . . . . .
. . . . . . βk−1

. . . αk
γk
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