Introduction

Michael
Hanke

Efficient Programming

Michael Hanke

School of Engineering Sciences

Program construction in C++ for Scientific Computing

1 (42)

Introduction

Michael
Hanke
Introduction

Low Level
Optimization
Optimizing
Expression

Evaluation

Summary

@ Introduction

@® Low Level Optimization

© Optimizing Expression Evaluation

O Summary

Outline

2 (42)

Introduction

Michael | n t ro

Hanke

Introduction

e In Scientific Computing, efficiency with respect to memory and
execution time is an issue.

e In this lecture, we will give a very short introduction to
programming principles enhancing the performance of a code.

3 (42)

Introduction

Michael
Hanke

Introduction

Instruction Execution: Pipelining
Every instruction is carried out in different stages. It could be

something like:

e Instruction fetch (IF)

e Instruction decode (ID)

o Execute (EX)

e Memory access (MEM)

o Register write back (WB)
Schematically:

Instr. No. Pipeline Stage
1 IF | ID | EX |MEM| WE
2 IF | ID | EX |[MEM| WE
3 IF | ID | EX MEM|WE
4 IF | ID | EX [MEM
2 IF [ID | EX
Gae [r[2]s]a]=]e]"

A real processor has around 15 — 20 stages!

4 (42)

Introduction

Michae Pipelining Stalling

Hanke

Introduction

Problem
The pipeline may stall.

Reasons:

e Data dependencies: An instruction needs data which a previous
instruction did not yet deliver.

e Interrupt of the sequential execution by branches.
e The data is not available.

5 (42)

Introduction

Michae! Pipelining: Hardware Optimizations

Hanke

Introduction

Out-of-order execution (A good optimizing compiler does it, too,
during code generation)

Speculative execution

Prefetching (in connection with caches, even a good compiler
does it)

Branch prediction

Superscalar architecture (more than one execution pipeline)

e may lead to another problem if the number of identical execution
units is less than the number of pipelines)

6 (42)

Introduction

Michael
Hanke

Introduction

r

il

SRAM

I

1/3ns 1/3ns 1ns

1kB 64k 4MB

Memory Hierarchies

150ns | 5 000 000ns
4GB ‘ 4TB

7 (42)

Introduction

e Memory Access (Schematic)
Introduction
Cache
oaddress »
address Memory

Cache

CPU hit
data (a word) I

data

Hit: Use data provided from the cache

No-Hit: Use data from memory and also store it in the cache

e Data are moved to memory in cache lines (architecture
dependent, typically 64 bytes).

e n-way associativity

8 (42)

Introduction

Michael
Hanke

Introduction

Conclusions

Space locality: Access data located as close as possible to each
other

e Avoid indirect addressing

Time locality: ldentical data shall be accessed as short as
possible consecutively

e Reuse data if possible
Avoid branches in loops.

If there is a branch in a loop, the most often used alternative
should follow subsequently

9 (42)

Introduction

Michael
Hanke

Low Level
Optimization

Consequences of Pipelining

Function for computing X,-k, where k =2, 3:

void f1(int n, double x[], int k) {
for (int i = 0; i < n; i++)
if (k == 2) x[i] = pow(x[i],2);
else x[i] = pow(x[i],3);
}
void f2(int n, double x[], int k) {
if (k == 2)
for (int i = 0; i < n; i++)
x[1] = pow(x[i],2);
else for (int i = 0; 1 < n; i++)
x[1] = pow(x[i],3);
}

f1 and £2 perform the same calculations.
Execution time of £2 is usually faster than that of £1 (heavily
compiler dependent!)

10 (42)

Introduction

Michacl Array Indexing

Low Level
Optimization

C++ Traditional 2D arrays are stored in row-wise order,
although the language standard does not guarantee
this.

x = new double[10] [5]
allocates 10 arrays of 5 elements each.

Fortran 2D arrays are stored in column-wise order (guaranteed
by the language standard).

Storage and Efficiency

Storage order is irrelevant for efficiency. Implementation of numerical
methods must be optimized depending on order!

11 (42)

Introduction

Michael
Hanke

Low Level
Optimization

Example: Matrix-Vector
Multiplication

double A[N][N], x[N], y([NI;
// initialize A, x; set y to zero
// Order: Traverse A continuously
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
y[il += A[iT[31*x[3];
// Order: ‘‘Jump’’ through A
for (int j = 0; j < N; j++)
for (int i = 0; 1 < N; i++)
y[il += A[LT[31*x[3];

Both versions are mathematically equivalent.

12 (42)

Introduction

Example (cont)

Michael
Hanke

Low Level

Optimization

1000
500

506 600 700 800 900 1000

400

300

0

100

e Compiler: g++ 4.8.1, -O3

e Machine: My laptop (Intel 2720QM®©2.20, 6 MB level 3 cache)

13 (42)

Introduction

Michael
Hanke

Low Level
Optimization

Example (cont)

10000

8000

6000

MFlops

4000

100 200 300 400 500 600 700 800 200 1000
N

e Compiler: g++ 4.8.1, ATLAS 3.10.1, icpc 14.0
e Machine: My laptop (Intel 2720QM@2.20, 6 MB level 3 cache)

e What is going on??

14 (42)

Introduction

e Example: Matrix-Matrix
Multiplication

Low Level
Optimization

e Problem: For C = A- B, we must evaluate

N
i =Y aikb
k=0

For forming c;;, the matrices must be traversed in different order
(A row-oriented, B column-oriented)

e How to organise an efficient memory access pattern?

e Solution: Implement a block-wise algorithm which uses cache
efficiently!

e Nontrivial
e Hardware- and compiler-dependent

15 (42)

Introduction

Michasl Example (cont)

Low Level 4500
Optimization

4000 -

3500 -

3000 -

2500 Intel MKL ||
ATLAS
2000} Reference |

Mflops

1500 - 4

1000 - 1

500 1

0
200 400 600 800 1000 1200 1400 1600 1800 2000
Matrix dimension

e Compiler: ifort 8.1 (7), -02
e Machine: Desktop, AMD Athlon XP

16 (42)

Introduction

Michael Use Libraries

Hanke

Low Level
Optimization

Moral: Small mistakes can ruine performance.
Use optimized numerical libraries whenever possible!

+ good performance with little effort

+ less programming, i.e. debugging and testing

+ one can focus on essentials, e.g. PDEs instead of linear algebra
not all libraries are good, choose carefully

must complain to certain storage formats

Recommandation: Replace X[m] [n] by x[m*n] and map X[i] [j] =
x[i+j*m] (column major)

17 (42)

Introduction
= Example: Matrix-Vector
Multiplication

Low Level
Optimization
double A[N][N], a[N*N], x[N], y[N]
// Initialize A, a, x, set y to zero
// 2D access
for (i=0 ; i<m ; i++)
for (j=0 ; j<n ; j++)
y[i] += A[i][j1=*x[j];
// 1D access (columnwise)
idx=0;
for (j=0 ; j<n ; j++)
for (i=0 ; i<n ; i++) {
y[i]l += alidx]*x[j];
idx++;

18 (42)

Introduction

Michael
Hanke

Low Level
Optimization

Example (cont)

T T
—1D access
—2D access

1800 L
100 200 300 400 500 600 700 800 900 1000

Matrix dimension

e Compiler: g++ 4.8.3, -06
e Machine. My laptop (Intel i7-5600U @ 2.60GHz, 4 MB cache)

19 (42)

Introduction

Michael Standard Libraries

Hanke

Low Level
Optimization

De-Facto standard in Scientific Computing: (C)BLAS, LAPACK
for basic linear algebra routines (full and banded matrices)

Fast Fourier transforms: FFTW
Sparse linear algebra: PETSc (your milage may vary)
Sparse LU etc: MUMPS, SuperLU, SuiteSparse

e Many, many, many more

Use vendor-supplied libraries whenever possible!
Examples: Intel MKL, AMD ACML, SPARC sunperf
Public domain replacements: ATLAS, OpenBLAS

20 (42)

Introduction

Michael A Simple Matrix Class

Hanke

Optimising Our aim is to construct a simple matrix class which behaves like
e matrices in matlab:

Evaluation
o All reasonable operations should be allowed if they are
mathematically legal.

e Matrices with one dimension equal to 1 are considered to be
vectors.

e Matrices of dimensions (1,1) are scalars.
We intend to show performance issues. Therefore:
e We will not use generic programming.

o We will not use C++'s standard libraries (in particular
containers).

21 (42)

Introduction

Michael
Hanke

Optimizing
Expression
Evaluation

The Basics

class Matrix {
int m, n; // should be size_t
double *A;
public:
Matrix(int m_ = 0, int n_ = 0) : m(m_), n(n_), A(nullptr) {
if (m*n > 0) {
A = new double[m*n];
std::fill1(A,A+M*n,0.0);
// cblas_dcopy may be faster
}
}

“Matrix() { if (A != nullptr) delete [] A; }
double& operator() (int i, int j) { return A[i+j*m]l; }

const double operator()(int i, int j) const { return A[i+j*m]; }

};
Notes:
e We used column-major for storing the matrix.
e Copy and move constructors will be needed, too.

22 (42)

Introduction

Michael Additional Constructors

Optimizing
Expression
Evaluation

Matrix(const Matrix& B) : m(B.m), n(B.n), A(nullptr) {
if (nxm > 0) {
A = new double[n*m];
std::copy(B.A,B.A+m*n,A);
}
}

Matrix(Matrix&& v) noexcept : m(B.m), n(B.n), A(B.A) {

B.m = 0; B.n = 0; B.A = nullptr;
}

23 (42)

Introduction

Michael Overloaded Operators |

Hanke

Matrix& operator=(const Matrix& B) {
if (this != &B) {
SRR if (m*n != B.m*B.n) {
Esprassioh if (A !'= nullptr) delete [] A;
if (B.A != nullptr) A = new double[B.m*B.n];
}
m =B.m; n = B.n;
std::copy(B.A,B.A+m*n,A); // 7
}
return *this;
}
Matrix& operator=(Matrix&& B) {
m = B.m; n = B.n;
if (A !'= nullptr) delete [] A;

A = B.A;
B.m = B.n = 0;
B.A = nullptr;

24 (42)

Introduction

Michael
Hanke

Optimizing
Expression
Evaluation

Overloaded Operators |l

const Matrix operator*(const Matrix& B) const {

}

if (n !'= B.m) error();

Matrix tmp(m,B.n);

if (tmp.A == nullptr) return tmp;

for (int i = 0; i < m; i++)

for (int j = 0; j < B.n; j++) {
tmp.A[i+j*m] = 0.0;
for (int k = 0; k < n; k++)
tmp.A[i+j*m] += A[i+k*m]=*B.A[k+j*m];

}

return tmp;

Thts implementation is extremely slow as we have seen
before!

25 (42)

Introduction

i Optimizing Overloaded Operators

prmine #include <cblas.h>
eslesten const Matrix operator*(const Matrix& B) comnst {
if (n !'= B.m) error();

Matrix tmp(m,B.n);

if (tmp.A == nullptr) return tmp;

cblas_dgemm(CblasColMajor,CblasNoTrans,
CblasNoTrans,m,n,B.n,
1.0,A,m,B.A,n,0.0,tmp.A,m);

return tmp;

}

Note: The dgemm routine evaluates a much more complex expression:
C :=aAB+ BC.

26 (42)

Introduction

Michael
Hanke

Optimizing
Expression
Evaluation

More Complex Expressions

For the following explanations assume that we have defined an

addition operation:

const Matrix operator+(const Matrix& B) const {
// Insert tests for correctness and memory management

Matrix tmp(m,n);
for (int i = 0; i < m*n; i++) tmp.A[i] = A[i]+B.A[i];

return tmp;
}
Note: The corresponding BLAS routine would be cblas_daxpy.

Problem: A temporary is created which is then copy-assigned to the

result.

27 (42)

Introduction

ity Optimizations: 1

gf::";f e We have previously seen that a lot of copying can be avoided by
Svaluation using the move-assignment operator:
Matrix& operator=(Matrix&& B);

e However, this operator will not be invoked because B is no
longer const! Hence, the signature of the addition operator
must be changed:

const Matrix operator+(const Matrix& B) const;

e A temporary object will be created anyway, but the assignment
is “light-weight”.

28 (42)

Introduction

Michee Optimizations: 2

Hanke

Define a member function:
Optimizing

S void add(const Matrix& B, Matrix& C) const;

Evaluation

Here, the creation of temporaries is avoided completely.

e Copy management is handed over to the user.
However, the notation becomes rather clumsy: Instead of the
elegant notation

C = A+B;

e we have
A.add(B,C);

e How can we implement M = A+B+C; etc??

20 (42)

Introduction

Michael
Hanke

Optimizing
Expression
Evaluation

Even More Complex Expressions

e Consider M = A+B+C;
e With the definitions above, this will be compiled to:

t1l = A+B; // Matrix A.operator+(const Matrix& B)
t2 = t1+C; // Matrix tl.operator+(const Matrix& C)
M = t2; // Matrix& operator=(Matrix&& t2)

e In order to avoid the deep copy we would need an operator
which takes temporaries as the first argument.

30 (42)

Introduction

e Operators With Temporary
Expressions

Otimizing e If the first argument is an rvalue reference, the operator cannot
xpreasion

Evaluation be a member of the class. So we must declare it a friend:

friend Matrix operator+(Matrix&& A, const Matrix& B);

e So a definition might be:

Matrix operator+(Matrix&& A, const Matrix& B) {
A += B; // Assumes a standard definition of +=
return std::move(A); // Invokes the move-constructor

}

e The call to the move-constructor could have been replaced by an
explicit type cast:

return static_cast<Matrix&&> A;

31 (42)

Introduction

Michael Temporary Expressions (cont)

Hanke

Optimizing
Expression
Evaluation

Our statement M = A+B+C becomes now:

tl = A+B; // Matrix A.operator+(const Matrix& B)
t2 = t1+C; // Matrix operator+(Matrix&& tl, const Matrix& C)
M = t2; // Matrix& operator=(Matrix&& t2)

32 (42)

Introduction

Michael
Hanke

Optimizing
Expression
Evaluation

Temporary Expressions (cont)

A very good compiler would inline the corresponding functions and
generate a code like the following:

for (int i = 0; i < m*n; i++) t1[i] = A[i]+B[i];
for (dnt i = 0; i < m*n; i++) M[i] = t1[i]+C[i];

However, the optimal implementation would be something like this:

for (dnt i = 0; i < m*n; i++)
M[i] = A[i]+B[i]+C[i];

This is called loop fusion.

33 (42)

Introduction

Michael
Hanke

Optimizing
Expression
Evaluation

Expression Templates

Basic idea: Create types which encode complex expressions. In
our example, it may be something like

Sum< Sum<Matrix, Matrix>, Matrix>

Applying the index operator to an object of that type reduces to
an expression including all operations (in our example:
A[i1+B[il+C[i]).

The assignment operator becomes a type cast. It traverses
through all indices.

Note: Templates are instantiated during compile time!

Metaprogramming

34 (42)

Introduction

Michacl Expression Templates (cont)

Optimizing
Expression
Evaluation

This technique may lead to an efficiency comparable to
hand-coded code for vector operations.

The first implementation is the blitz++ library by Todd
Veldhuizen.

e Expression templates have very high demands on the compiler!

Cf David Vandevoorde and Nicolai M. Josuttis: C++
Templates, The Complete Guide, Pearson 2003, Chapter 18

35 (42)

Introduction

Micha A Simple Comparison

Hanke

Evaluation of the expression M = A+B+C with m = 500, n = 1:
Optimizing
Expression

Evaluation Classical Operator Overloading
Expression Templates
T 1 T T

0 05 1 1S 2 P
Normalized Execution Time

500

N

Machine: Intel i7 940
Compiler: g++ 4.4.1

Source: PhD Thesis Klaus Igelberger, FAU Erlangen-Niirnberg 2010

36 (42)

Introduction

— ET: Libraries

Hanke

e blitz++: Todd Veldhuizen (The first implementation of this
idea), http://sourceforge.net/projects/blitz/
Optimizing
EErassicn e Boost uBLAS: Joerg Walter and Mathias Koch,
http://www.boost.org/ (focus not on efficiency)
e Armadillo: Conrad Sanderson et al,
http://arma.sourceforge.net/
o MTLA4: Peter Gottschling et al,
http://www.simunova.com/de/home
e Eigen3: Benoit Jacob, Gaél Guennebaud et al,
http://eigen.tuxfamily.org/index.php?title=Main_Page
e blaze: Klaus Igelberger (smart ET)
https://bitbucket.org/blaze-lib/blaze

and many, many more.
The functionality is usually much larger than simple linear algebra
operations.

37 (42)

Introduction

Michal Example: Vector Addition

Hanke

Optimizing All the following examples are taken from: K. Igelberger, G. Hager, J.
ST Treibig, U. Riide: SIAM J Scientific Comp 34(2012), C42-C69. Pictures

taken from preprint.

Classic 852.6 MFpps/s. Classic [143.3 MFiops/s
Manual for-Loop Manual for-Loop 7.4 MFiopsis s
Plain Function Call E Plain Function Call| 416.0 MFiops/s. §
Blitz++ 2 Blitz++ 3078 MFlops's 2
Boost uBLAS Boost UBLAS| 3929 MFlopsis. 2
Blaze Blaze 414.8 MFiopsis
0 1 2 3 4 5 0 1 2 4

Normalized Execution Time Normalized Execution Time

Machine: Intel Westmere@2.93GHz, 12MB cache
Compiler: g++ 4.4.2

38 (42)

Introduction

Michael
Hanke

Optimizing
Expression
Evaluation

Example: Matrix Multiplication

Classic
Plain Function Call

psis

1330

18400 Mifops's:

Flopsis

2 3 4
Normalized Execution Time

dgemm: Intel MKL

N = 5000

10 20 30 40 50 60 70 80 90 100

Normalized Execution Time

39 (42)

Introduction

Michael
Hanke

Optimizing
Expression
Evaluation

Classic

Manual for-Loop|
Plain Function Call|
Blitz++

Boost uBLAS
Blaze|

The Importance of Inlining: Vector
Addition

1363 YuFiopsig

5 1

439 MFiopsis

Classic

Manual for-Loop
8Plain Function Call
2 Blitz++
Boost uBLAS|

Blaze|

0 15 20 25 30 35 40

Normalized Execution Time

Yellow: Complete inlining
Blue: No inlining

10000000

aa5MFogsis

N

12 3 456 7 89

Normalized Execution Time

10 11 12

40 (42)

Introduction
Michasl Stroustrup’'s Proposal: Composite
Objects

e The previous approach is well-suited for expressions like y =
Optimizing Axx.
Evalustion e However, the expression x = A*x cannot be handled this way
because a temporary is needed.

e [t cannot be decided at compile time if z and y are aliased!

o A different approach consists in doing the decision at execution
time: An expression is only evaluated if the assignment takes
place (lazy evaluation).

e Idea: If an expression like y = Axx+y (dgemv) is to be
evaluated, the * and + operators create only a structure with
information about the operations to be performed. It is
operator=() which performs the real operation, eg by calling
cblas_dgemv.

o Cf Suely Oliveira and David Steward: Wkiting Scientific
Software, Section 8.6

e Not as flexible as expression templates.

41 (42)

Introduction

Michael S umma ry

Hanke

e Libraries, libraries, libraries

SOy e The design and implementation of an efficient class requires a
deep understanding of hard- and software environment.

e Even if designed with efficiency in mind, careless use of C++
may lead to extremely inefficient executables.

e “00% of the computation time are spent in 10% of the code.”
Identify and optimize hotspots!

e Finally a reference: Agner Fog, Optimizing software in C++: An
optimization guide for Windows, Linux and Mac platforms.
http://www.agner.org/optimize/optimizing _cpp.pdf

42 (42)

	Introduction
	Low Level Optimization
	Optimizing Expression Evaluation
	Summary

