
Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Efficient Programming

Michael Hanke

School of Engineering Sciences

Program construction in C++ for Scientific Computing

1 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Outline

1 Introduction

2 Low Level Optimization

3 Optimizing Expression Evaluation

4 Summary

2 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Intro

• In Scientific Computing, efficiency with respect to memory and
execution time is an issue.

• In this lecture, we will give a very short introduction to
programming principles enhancing the performance of a code.

3 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Instruction Execution: Pipelining
Every instruction is carried out in different stages. It could be
something like:

• Instruction fetch (IF)
• Instruction decode (ID)
• Execute (EX)
• Memory access (MEM)
• Register write back (WB)

Schematically:

A real processor has around 15 – 20 stages!
4 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Pipelining Stalling

Problem
The pipeline may stall.
Reasons:

• Data dependencies: An instruction needs data which a previous
instruction did not yet deliver.

• Interrupt of the sequential execution by branches.
• The data is not available.

5 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Pipelining: Hardware Optimizations

• Out-of-order execution (A good optimizing compiler does it, too,
during code generation)

• Speculative execution
• Prefetching (in connection with caches, even a good compiler
does it)

• Branch prediction
• Superscalar architecture (more than one execution pipeline)

• may lead to another problem if the number of identical execution
units is less than the number of pipelines)

6 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Memory Hierarchies

7 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Memory Access (Schematic)

• Hit: Use data provided from the cache
• No-Hit: Use data from memory and also store it in the cache
• Data are moved to memory in cache lines (architecture
dependent, typically 64 bytes).

• n-way associativity

8 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Conclusions

• Space locality: Access data located as close as possible to each
other

• Avoid indirect addressing

• Time locality: Identical data shall be accessed as short as
possible consecutively

• Reuse data if possible

• Avoid branches in loops.
• If there is a branch in a loop, the most often used alternative
should follow subsequently

9 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Consequences of Pipelining

Function for computing xk
i , where k = 2, 3:

void f1(int n, double x[], int k) {
for (int i = 0; i < n; i++)
if (k == 2) x[i] = pow(x[i],2);
else x[i] = pow(x[i],3);

}
void f2(int n, double x[], int k) {
if (k == 2)
for (int i = 0; i < n; i++)
x[i] = pow(x[i],2);

else for (int i = 0; i < n; i++)
x[i] = pow(x[i],3);

}

f1 and f2 perform the same calculations.
Execution time of f2 is usually faster than that of f1 (heavily
compiler dependent!)

10 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Array Indexing

C++ Traditional 2D arrays are stored in row-wise order,
although the language standard does not guarantee
this.

x = new double[10][5]

allocates 10 arrays of 5 elements each.
Fortran 2D arrays are stored in column-wise order (guaranteed

by the language standard).

Storage and Efficiency
Storage order is irrelevant for efficiency. Implementation of numerical
methods must be optimized depending on order!

11 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Example: Matrix-Vector
Multiplication

double A[N][N], x[N], y[N];
// initialize A, x; set y to zero
// Order: Traverse A continuously
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
y[i] += A[i][j]*x[j];

// Order: “Jump” through A
for (int j = 0; j < N; j++)
for (int i = 0; i < N; i++)
y[i] += A[i][j]*x[j];

Both versions are mathematically equivalent.

12 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Example (cont)

• Compiler: g++ 4.8.1, -O3
• Machine: My laptop (Intel 2720QM@2.20, 6 MB level 3 cache)

13 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Example (cont)

• Compiler: g++ 4.8.1, ATLAS 3.10.1, icpc 14.0
• Machine: My laptop (Intel 2720QM@2.20, 6 MB level 3 cache)

• What is going on??

14 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Example: Matrix-Matrix
Multiplication

• Problem: For C = A · B, we must evaluate

cij =
N∑

k=0

aikbkj

For forming cij , the matrices must be traversed in different order
(A row-oriented, B column-oriented)

• How to organise an efficient memory access pattern?

• Solution: Implement a block-wise algorithm which uses cache
efficiently!

• Nontrivial
• Hardware- and compiler-dependent

15 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Example (cont)

200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Matrix dimension

M
fl
o

p
s

Intel MKL

ATLAS

Reference

• Compiler: ifort 8.1 (?), -O2
• Machine: Desktop, AMD Athlon XP

16 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Use Libraries

Moral: Small mistakes can ruine performance.
Use optimized numerical libraries whenever possible!

+ good performance with little effort
+ less programming, i.e. debugging and testing
+ one can focus on essentials, e.g. PDEs instead of linear algebra
- not all libraries are good, choose carefully
- must complain to certain storage formats

Recommandation: Replace X[m][n] by x[m*n] and map X[i][j] =
x[i+j*m] (column major)

17 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Example: Matrix-Vector
Multiplication

double A[N][N], a[N*N], x[N], y[N]
// Initialize A, a, x, set y to zero
// 2D access
for (i=0 ; i<n ; i++)
for (j=0 ; j<n ; j++)
y[i] += A[i][j]*x[j];

// 1D access (columnwise)
idx=0;
for (j=0 ; j<n ; j++)
for (i=0 ; i<n ; i++) {
y[i] += a[idx]*x[j];
idx++;

}

18 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Example (cont)

• Compiler: g++ 4.8.3, -O6
• Machine. My laptop (Intel i7-5600U @ 2.60GHz, 4 MB cache)

19 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Standard Libraries

• De-Facto standard in Scientific Computing: (C)BLAS, LAPACK
for basic linear algebra routines (full and banded matrices)

• Fast Fourier transforms: FFTW
• Sparse linear algebra: PETSc (your milage may vary)
• Sparse LU etc: MUMPS, SuperLU, SuiteSparse
• Many, many, many more

Use vendor-supplied libraries whenever possible!
Examples: Intel MKL, AMD ACML, SPARC sunperf
Public domain replacements: ATLAS, OpenBLAS

20 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

A Simple Matrix Class

Our aim is to construct a simple matrix class which behaves like
matrices in matlab:

• All reasonable operations should be allowed if they are
mathematically legal.

• Matrices with one dimension equal to 1 are considered to be
vectors.

• Matrices of dimensions (1,1) are scalars.
We intend to show performance issues. Therefore:

• We will not use generic programming.
• We will not use C++’s standard libraries (in particular
containers).

21 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

The Basics

class Matrix {
int m, n; // should be size_t
double *A;

public:
Matrix(int m_ = 0, int n_ = 0) : m(m_), n(n_), A(nullptr) {

if (m*n > 0) {
A = new double[m*n];
std::fill(A,A+M*n,0.0);
// cblas_dcopy may be faster

}
}

~Matrix() { if (A != nullptr) delete [] A; }
double& operator()(int i, int j) { return A[i+j*m]; }
const double operator()(int i, int j) const { return A[i+j*m]; }
};

Notes:
• We used column-major for storing the matrix.
• Copy and move constructors will be needed, too.

22 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Additional Constructors

Matrix(const Matrix& B) : m(B.m), n(B.n), A(nullptr) {
if (n*m > 0) {
A = new double[n*m];
std::copy(B.A,B.A+m*n,A);

}
}

Matrix(Matrix&& v) noexcept : m(B.m), n(B.n), A(B.A) {
B.m = 0; B.n = 0; B.A = nullptr;

}

23 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Overloaded Operators I
Matrix& operator=(const Matrix& B) {
if (this != &B) {
if (m*n != B.m*B.n) {
if (A != nullptr) delete [] A;
if (B.A != nullptr) A = new double[B.m*B.n];

}
m = B.m; n = B.n;
std::copy(B.A,B.A+m*n,A); // ?

}
return *this;

}
Matrix& operator=(Matrix&& B) {
m = B.m; n = B.n;
if (A != nullptr) delete [] A;
A = B.A;
B.m = B.n = 0;
B.A = nullptr;

}

24 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Overloaded Operators II

const Matrix operator*(const Matrix& B) const {
if (n != B.m) error();
Matrix tmp(m,B.n);
if (tmp.A == nullptr) return tmp;
for (int i = 0; i < m; i++)
for (int j = 0; j < B.n; j++) {
tmp.A[i+j*m] = 0.0;
for (int k = 0; k < n; k++)
tmp.A[i+j*m] += A[i+k*m]*B.A[k+j*m];

}
return tmp;

}

This implementation is extremely slow as we have seen
before!

25 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Optimizing Overloaded Operators

#include <cblas.h>
const Matrix operator*(const Matrix& B) const {
if (n != B.m) error();
Matrix tmp(m,B.n);
if (tmp.A == nullptr) return tmp;
cblas_dgemm(CblasColMajor,CblasNoTrans,

CblasNoTrans,m,n,B.n,
1.0,A,m,B.A,n,0.0,tmp.A,m);

return tmp;
}

Note: The dgemm routine evaluates a much more complex expression:
C := αAB + βC .

26 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

More Complex Expressions

For the following explanations assume that we have defined an
addition operation:

const Matrix operator+(const Matrix& B) const {
// Insert tests for correctness and memory management
Matrix tmp(m,n);
for (int i = 0; i < m*n; i++) tmp.A[i] = A[i]+B.A[i];
return tmp;

}

Note: The corresponding BLAS routine would be cblas_daxpy.

Problem: A temporary is created which is then copy-assigned to the
result.

27 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Optimizations: 1

• We have previously seen that a lot of copying can be avoided by
using the move-assignment operator:

Matrix& operator=(Matrix&& B);

• However, this operator will not be invoked because B is no
longer const! Hence, the signature of the addition operator
must be changed:

const Matrix operator+(const Matrix& B) const;

• A temporary object will be created anyway, but the assignment
is “light-weight”.

28 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Optimizations: 2

Define a member function:

void add(const Matrix& B, Matrix& C) const;

• Here, the creation of temporaries is avoided completely.
• Copy management is handed over to the user.
• However, the notation becomes rather clumsy: Instead of the
elegant notation

C = A+B;

• we have

A.add(B,C);

• How can we implement M = A+B+C; etc??

29 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Even More Complex Expressions

• Consider M = A+B+C;
• With the definitions above, this will be compiled to:

t1 = A+B; // Matrix A.operator+(const Matrix& B)
t2 = t1+C; // Matrix t1.operator+(const Matrix& C)
M = t2; // Matrix& operator=(Matrix&& t2)

• In order to avoid the deep copy we would need an operator
which takes temporaries as the first argument.

30 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Operators With Temporary
Expressions

• If the first argument is an rvalue reference, the operator cannot
be a member of the class. So we must declare it a friend:

friend Matrix operator+(Matrix&& A, const Matrix& B);

• So a definition might be:

Matrix operator+(Matrix&& A, const Matrix& B) {
A += B; // Assumes a standard definition of +=
return std::move(A); // Invokes the move-constructor

}

• The call to the move-constructor could have been replaced by an
explicit type cast:

return static_cast<Matrix&&> A;

31 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Temporary Expressions (cont)

Our statement M = A+B+C becomes now:

t1 = A+B; // Matrix A.operator+(const Matrix& B)
t2 = t1+C; // Matrix operator+(Matrix&& t1, const Matrix& C)
M = t2; // Matrix& operator=(Matrix&& t2)

32 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Temporary Expressions (cont)

A very good compiler would inline the corresponding functions and
generate a code like the following:

for (int i = 0; i < m*n; i++) t1[i] = A[i]+B[i];
for (int i = 0; i < m*n; i++) M[i] = t1[i]+C[i];

However, the optimal implementation would be something like this:

for (int i = 0; i < m*n; i++)
M[i] = A[i]+B[i]+C[i];

This is called loop fusion.

33 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Expression Templates

• Basic idea: Create types which encode complex expressions. In
our example, it may be something like

Sum< Sum<Matrix, Matrix>, Matrix>

• Applying the index operator to an object of that type reduces to
an expression including all operations (in our example:
A[i]+B[i]+C[i]).

• The assignment operator becomes a type cast. It traverses
through all indices.

• Note: Templates are instantiated during compile time!
• Metaprogramming

34 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Expression Templates (cont)

• This technique may lead to an efficiency comparable to
hand-coded code for vector operations.

• The first implementation is the blitz++ library by Todd
Veldhuizen.

• Expression templates have very high demands on the compiler!
• Cf David Vandevoorde and Nicolai M. Josuttis: C++
Templates, The Complete Guide, Pearson 2003, Chapter 18

35 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

A Simple Comparison

Evaluation of the expression M = A+B+C with m = 500, n = 1:

Machine: Intel i7 940
Compiler: g++ 4.4.1

Source: PhD Thesis Klaus Igelberger, FAU Erlangen-Nürnberg 2010

36 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

ET: Libraries

• blitz++: Todd Veldhuizen (The first implementation of this
idea), http://sourceforge.net/projects/blitz/

• Boost uBLAS: Joerg Walter and Mathias Koch,
http://www.boost.org/ (focus not on efficiency)

• Armadillo: Conrad Sanderson et al,
http://arma.sourceforge.net/

• MTL4: Peter Gottschling et al,
http://www.simunova.com/de/home

• Eigen3: Benoît Jacob, Gaël Guennebaud et al,
http://eigen.tuxfamily.org/index.php?title=Main_Page

• blaze: Klaus Igelberger (smart ET)
https://bitbucket.org/blaze-lib/blaze

and many, many more.
The functionality is usually much larger than simple linear algebra
operations.

37 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Example: Vector Addition

All the following examples are taken from: K. Igelberger, G. Hager, J.
Treibig, U. Rüde: SIAM J Scientific Comp 34(2012), C42-C69. Pictures
taken from preprint.

Machine: Intel Westmere@2.93GHz, 12MB cache
Compiler: g++ 4.4.2

38 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Example: Matrix Multiplication

dgemm: Intel MKL

39 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

The Importance of Inlining: Vector
Addition

Yellow: Complete inlining
Blue: No inlining

40 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Stroustrup’s Proposal: Composite
Objects

• The previous approach is well-suited for expressions like y =
A*x.

• However, the expression x = A*x cannot be handled this way
because a temporary is needed.

• It cannot be decided at compile time if x and y are aliased!

• A different approach consists in doing the decision at execution
time: An expression is only evaluated if the assignment takes
place (lazy evaluation).

• Idea: If an expression like y = A*x+y (dgemv) is to be
evaluated, the * and + operators create only a structure with
information about the operations to be performed. It is
operator=() which performs the real operation, eg by calling
cblas_dgemv.

• Cf Suely Oliveira and David Steward: Writing Scientific
Software, Section 8.6

• Not as flexible as expression templates.
41 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Summary

• Libraries, libraries, libraries
• The design and implementation of an efficient class requires a
deep understanding of hard- and software environment.

• Even if designed with efficiency in mind, careless use of C++
may lead to extremely inefficient executables.

• “90% of the computation time are spent in 10% of the code.”
Identify and optimize hotspots!

• Finally a reference: Agner Fog, Optimizing software in C++: An
optimization guide for Windows, Linux and Mac platforms.
http://www.agner.org/optimize/optimizing_cpp.pdf

42 (42)


	Introduction
	Low Level Optimization
	Optimizing Expression Evaluation
	Summary

