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e In Scientific Computing, efficiency with respect to memory and
execution time is an issue.

e In this lecture, we will give a very short introduction to
programming principles enhancing the performance of a code.
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Instruction Execution: Pipelining
Every instruction is carried out in different stages. It could be

something like:

e Instruction fetch (IF)

e Instruction decode (ID)

o Execute (EX)

e Memory access (MEM)

o Register write back (WB)
Schematically:

Instr. No. Pipeline Stage
1 IF | ID | EX |MEM| WE
2 IF | ID | EX |[MEM| WE
3 IF | ID | EX MEM|WE
4 IF | ID | EX [MEM
2 IF [ ID | EX
Gae [r[2]s]a]=]e]"

A real processor has around 15 — 20 stages!
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Problem
The pipeline may stall.

Reasons:

e Data dependencies: An instruction needs data which a previous
instruction did not yet deliver.

e Interrupt of the sequential execution by branches.
e The data is not available.
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Out-of-order execution (A good optimizing compiler does it, too,
during code generation)

Speculative execution

Prefetching (in connection with caches, even a good compiler
does it)

Branch prediction

Superscalar architecture (more than one execution pipeline)

e may lead to another problem if the number of identical execution
units is less than the number of pipelines)
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e Memory Access (Schematic)
Introduction
Cache
oaddress »
address Memory

Cache

CPU hit
data (a word) I

data

Hit: Use data provided from the cache

No-Hit: Use data from memory and also store it in the cache

e Data are moved to memory in cache lines (architecture
dependent, typically 64 bytes).

e n-way associativity
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Conclusions

Space locality: Access data located as close as possible to each
other

e Avoid indirect addressing

Time locality: ldentical data shall be accessed as short as
possible consecutively

e Reuse data if possible
Avoid branches in loops.

If there is a branch in a loop, the most often used alternative
should follow subsequently
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Consequences of Pipelining

Function for computing X,-k, where k =2, 3:

void f1(int n, double x[], int k) {
for (int i = 0; i < n; i++)
if (k == 2) x[i] = pow(x[i],2);
else x[i] = pow(x[i],3);
}
void f2(int n, double x[], int k) {
if (k == 2)
for (int i = 0; i < n; i++)
x[1] = pow(x[i],2);
else for (int i = 0; 1 < n; i++)
x[1] = pow(x[i],3);
}

f1 and £2 perform the same calculations.
Execution time of £2 is usually faster than that of £1 (heavily
compiler dependent!)

10 (42)



Introduction

Michacl Array Indexing

Low Level
Optimization

C++ Traditional 2D arrays are stored in row-wise order,
although the language standard does not guarantee
this.

x = new double[10] [5]
allocates 10 arrays of 5 elements each.

Fortran 2D arrays are stored in column-wise order (guaranteed
by the language standard).

Storage and Efficiency

Storage order is irrelevant for efficiency. Implementation of numerical
methods must be optimized depending on order!
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Example: Matrix-Vector
Multiplication

double A[N][N], x[N], y([NI;
// initialize A, x; set y to zero
// Order: Traverse A continuously
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
y[il += A[iT[31*x[3];
// Order: ‘‘Jump’’ through A
for (int j = 0; j < N; j++)
for (int i = 0; 1 < N; i++)
y[il += A[LT[31*x[3];

Both versions are mathematically equivalent.
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e Compiler: g++ 4.8.1, -O3

e Machine: My laptop (Intel 2720QM®©2.20, 6 MB level 3 cache)
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Example (cont)

10000

8000

6000

MFlops

4000

100 200 300 400 500 600 700 800 200 1000
N

e Compiler: g++ 4.8.1, ATLAS 3.10.1, icpc 14.0
e Machine: My laptop (Intel 2720QM@2.20, 6 MB level 3 cache)

e What is going on??
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e Problem: For C = A- B, we must evaluate

N
i =Y aikb
k=0

For forming c;;, the matrices must be traversed in different order
(A row-oriented, B column-oriented)

e How to organise an efficient memory access pattern?

e Solution: Implement a block-wise algorithm which uses cache
efficiently!

e Nontrivial
e Hardware- and compiler-dependent
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e Compiler: ifort 8.1 (7), -02
e Machine: Desktop, AMD Athlon XP
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Moral: Small mistakes can ruine performance.
Use optimized numerical libraries whenever possible!

+ good performance with little effort

+ less programming, i.e. debugging and testing

+ one can focus on essentials, e.g. PDEs instead of linear algebra
not all libraries are good, choose carefully

must complain to certain storage formats

Recommandation: Replace X[m] [n] by x[m*n] and map X[i] [j] =
x[i+j*m] (column major)
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double A[N][N], a[N*N], x[N], y[N]
// Initialize A, a, x, set y to zero
// 2D access
for (i=0 ; i<m ; i++)
for (j=0 ; j<n ; j++)
y[i] += A[i][j1=*x[j];
// 1D access (columnwise)
idx=0;
for (j=0 ; j<n ; j++)
for (i=0 ; i<n ; i++) {
y[i]l += alidx]*x[j];
idx++;
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Example (cont)

T T
—1D access
—2D access

1800 . . . . . L
100 200 300 400 500 600 700 800 900 1000

Matrix dimension

e Compiler: g++ 4.8.3, -06
e Machine. My laptop (Intel i7-5600U @ 2.60GHz, 4 MB cache)
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De-Facto standard in Scientific Computing: (C)BLAS, LAPACK
for basic linear algebra routines (full and banded matrices)

Fast Fourier transforms: FFTW
Sparse linear algebra: PETSc (your milage may vary)
Sparse LU etc: MUMPS, SuperLU, SuiteSparse

e Many, many, many more

Use vendor-supplied libraries whenever possible!
Examples: Intel MKL, AMD ACML, SPARC sunperf
Public domain replacements: ATLAS, OpenBLAS
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Optimising Our aim is to construct a simple matrix class which behaves like
e matrices in matlab:

Evaluation
o All reasonable operations should be allowed if they are
mathematically legal.

e Matrices with one dimension equal to 1 are considered to be
vectors.

e Matrices of dimensions (1,1) are scalars.
We intend to show performance issues. Therefore:
e We will not use generic programming.

o We will not use C++'s standard libraries (in particular
containers).
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The Basics

class Matrix {
int m, n; // should be size_t
double *A;
public:
Matrix(int m_ = 0, int n_ = 0) : m(m_), n(n_), A(nullptr) {
if (m*n > 0) {
A = new double[m*n];
std::fill1(A,A+M*n,0.0);
// cblas_dcopy may be faster
}
}

“Matrix() { if (A != nullptr) delete [] A; }
double& operator() (int i, int j) { return A[i+j*m]l; }

const double operator()(int i, int j) const { return A[i+j*m]; }

};
Notes:
e We used column-major for storing the matrix.
e Copy and move constructors will be needed, too.
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Matrix(const Matrix& B) : m(B.m), n(B.n), A(nullptr) {
if (nxm > 0) {
A = new double[n*m];
std::copy(B.A,B.A+m*n,A);
}
}

Matrix(Matrix&& v) noexcept : m(B.m), n(B.n), A(B.A) {

B.m = 0; B.n = 0; B.A = nullptr;
}
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Matrix& operator=(const Matrix& B) {
if (this != &B) {
SRR if (m*n != B.m*B.n) {
Esprassioh if (A !'= nullptr) delete [] A;
if (B.A != nullptr) A = new double[B.m*B.n];
}
m =B.m; n = B.n;
std::copy(B.A,B.A+m*n,A); // 7
}
return *this;
}
Matrix& operator=(Matrix&& B) {
m = B.m; n = B.n;
if (A !'= nullptr) delete [] A;

A = B.A;
B.m = B.n = 0;
B.A = nullptr;
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Overloaded Operators |l

const Matrix operator*(const Matrix& B) const {

}

if (n !'= B.m) error();

Matrix tmp(m,B.n);

if (tmp.A == nullptr) return tmp;

for (int i = 0; i < m; i++)

for (int j = 0; j < B.n; j++) {
tmp.A[i+j*m] = 0.0;
for (int k = 0; k < n; k++)
tmp.A[i+j*m] += A[i+k*m]=*B.A[k+j*m];

}

return tmp;

Thts implementation is extremely slow as we have seen
before!
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prmine #include <cblas.h>
eslesten const Matrix operator*(const Matrix& B) comnst {
if (n !'= B.m) error();

Matrix tmp(m,B.n);

if (tmp.A == nullptr) return tmp;

cblas_dgemm(CblasColMajor,CblasNoTrans,
CblasNoTrans,m,n,B.n,
1.0,A,m,B.A,n,0.0,tmp.A,m);

return tmp;

}

Note: The dgemm routine evaluates a much more complex expression:
C :=aAB+ BC.
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More Complex Expressions

For the following explanations assume that we have defined an

addition operation:

const Matrix operator+(const Matrix& B) const {
// Insert tests for correctness and memory management

Matrix tmp(m,n);
for (int i = 0; i < m*n; i++) tmp.A[i] = A[i]+B.A[i];

return tmp;
}
Note: The corresponding BLAS routine would be cblas_daxpy.

Problem: A temporary is created which is then copy-assigned to the

result.
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gf::";f e We have previously seen that a lot of copying can be avoided by
Svaluation using the move-assignment operator:
Matrix& operator=(Matrix&& B);

e However, this operator will not be invoked because B is no
longer const! Hence, the signature of the addition operator
must be changed:

const Matrix operator+(const Matrix& B) const;

e A temporary object will be created anyway, but the assignment
is “light-weight”.
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Define a member function:
Optimizing

S void add(const Matrix& B, Matrix& C) const;

Evaluation

Here, the creation of temporaries is avoided completely.

e Copy management is handed over to the user.
However, the notation becomes rather clumsy: Instead of the
elegant notation

C = A+B;

e we have
A.add(B,C);

e How can we implement M = A+B+C; etc??
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Even More Complex Expressions

e Consider M = A+B+C;
e With the definitions above, this will be compiled to:

t1l = A+B; // Matrix A.operator+(const Matrix& B)
t2 = t1+C; // Matrix tl.operator+(const Matrix& C)
M = t2; // Matrix& operator=(Matrix&& t2)

e In order to avoid the deep copy we would need an operator
which takes temporaries as the first argument.
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Otimizing e If the first argument is an rvalue reference, the operator cannot
xpreasion

Evaluation be a member of the class. So we must declare it a friend:

friend Matrix operator+(Matrix&& A, const Matrix& B);

e So a definition might be:

Matrix operator+(Matrix&& A, const Matrix& B) {
A += B; // Assumes a standard definition of +=
return std::move(A); // Invokes the move-constructor

}

e The call to the move-constructor could have been replaced by an
explicit type cast:

return static_cast<Matrix&&> A;
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Our statement M = A+B+C becomes now:

tl = A+B; // Matrix A.operator+(const Matrix& B)
t2 = t1+C; // Matrix operator+(Matrix&& tl, const Matrix& C)
M = t2; // Matrix& operator=(Matrix&& t2)
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Temporary Expressions (cont)

A very good compiler would inline the corresponding functions and
generate a code like the following:

for (int i = 0; i < m*n; i++) t1[i] = A[i]+B[i];
for (dnt i = 0; i < m*n; i++) M[i] = t1[i]+C[i];

However, the optimal implementation would be something like this:

for (dnt i = 0; i < m*n; i++)
M[i] = A[i]+B[i]+C[i];

This is called loop fusion.
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Expression Templates

Basic idea: Create types which encode complex expressions. In
our example, it may be something like

Sum< Sum<Matrix, Matrix>, Matrix>

Applying the index operator to an object of that type reduces to
an expression including all operations (in our example:
A[i1+B[il+C[i]).

The assignment operator becomes a type cast. It traverses
through all indices.

Note: Templates are instantiated during compile time!

Metaprogramming
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This technique may lead to an efficiency comparable to
hand-coded code for vector operations.

The first implementation is the blitz++ library by Todd
Veldhuizen.

e Expression templates have very high demands on the compiler!

Cf David Vandevoorde and Nicolai M. Josuttis: C++
Templates, The Complete Guide, Pearson 2003, Chapter 18
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Evaluation of the expression M = A+B+C with m = 500, n = 1:
Optimizing
Expression

Evaluation Classical Operator Overloading
Expression Templates
T 1 T T

0 05 1 1S 2 P
Normalized Execution Time

500

N

Machine: Intel i7 940
Compiler: g++ 4.4.1

Source: PhD Thesis Klaus Igelberger, FAU Erlangen-Niirnberg 2010
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e blitz++: Todd Veldhuizen (The first implementation of this
idea), http://sourceforge.net/projects/blitz/
Optimizing
EErassicn e Boost uBLAS: Joerg Walter and Mathias Koch,
http://www.boost.org/ (focus not on efficiency)
e Armadillo: Conrad Sanderson et al,
http://arma.sourceforge.net/
o MTLA4: Peter Gottschling et al,
http://www.simunova.com/de/home
e Eigen3: Benoit Jacob, Gaél Guennebaud et al,
http://eigen.tuxfamily.org/index.php?title=Main_Page
e blaze: Klaus Igelberger (smart ET)
https://bitbucket.org/blaze-lib/blaze

and many, many more.
The functionality is usually much larger than simple linear algebra
operations.

37 (42)



Introduction

Michal Example: Vector Addition

Hanke

Optimizing All the following examples are taken from: K. Igelberger, G. Hager, J.
ST Treibig, U. Riide: SIAM J Scientific Comp 34(2012), C42-C69. Pictures

taken from preprint.

Classic 852.6 MFpps/s. Classic [143.3 MFiops/s
Manual for-Loop Manual for-Loop 7.4 MFiopsis s
Plain Function Call E Plain Function Call| 416.0 MFiops/s. §
Blitz++ 2 Blitz++ 3078 MFlops's 2
Boost uBLAS Boost UBLAS| 3929 MFlopsis. 2
Blaze Blaze 414.8 MFiopsis
0 1 2 3 4 5 0 1 2 4

Normalized Execution Time Normalized Execution Time

Machine: Intel Westmere@2.93GHz, 12MB cache
Compiler: g++ 4.4.2
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Example: Matrix Multiplication

Classic
Plain Function Call

psis

1330

18400 Mifops's:

Flopsis

2 3 4
Normalized Execution Time

dgemm: Intel MKL

N = 5000

10 20 30 40 50 60 70 80 90 100

Normalized Execution Time
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Classic

Manual for-Loop|
Plain Function Call|
Blitz++

Boost uBLAS
Blaze|

The Importance of Inlining: Vector
Addition

1363 YuFiopsig

5 1

439 MFiopsis

Classic

Manual for-Loop
8Plain Function Call
2 Blitz++
Boost uBLAS|

Blaze|

0 15 20 25 30 35 40

Normalized Execution Time

Yellow: Complete inlining
Blue: No inlining

10000000

aa5MFogsis

N

12 3 456 7 89

Normalized Execution Time

10 11 12
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Objects

e The previous approach is well-suited for expressions like y =
Optimizing Axx.
Evalustion e However, the expression x = A*x cannot be handled this way
because a temporary is needed.

e [t cannot be decided at compile time if z and y are aliased!

o A different approach consists in doing the decision at execution
time: An expression is only evaluated if the assignment takes
place (lazy evaluation).

e Idea: If an expression like y = Axx+y (dgemv) is to be
evaluated, the * and + operators create only a structure with
information about the operations to be performed. It is
operator=() which performs the real operation, eg by calling
cblas_dgemv.

o Cf Suely Oliveira and David Steward: Wkiting Scientific
Software, Section 8.6

e Not as flexible as expression templates.
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e Libraries, libraries, libraries

SOy e The design and implementation of an efficient class requires a
deep understanding of hard- and software environment.

e Even if designed with efficiency in mind, careless use of C++
may lead to extremely inefficient executables.

e “00% of the computation time are spent in 10% of the code.”
Identify and optimize hotspots!

e Finally a reference: Agner Fog, Optimizing software in C++: An
optimization guide for Windows, Linux and Mac platforms.
http://www.agner.org/optimize/optimizing _cpp.pdf
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