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Intro

• In Scientific Computing, efficiency with respect to memory and
execution time is an issue.

• In this lecture, we will give a very short introduction to
programming principles enhancing the performance of a code.
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Instruction Execution: Pipelining
Every instruction is carried out in different stages. It could be
something like:

• Instruction fetch (IF)
• Instruction decode (ID)
• Execute (EX)
• Memory access (MEM)
• Register write back (WB)

Schematically:

A real processor has around 15 – 20 stages!
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Pipelining Stalling

Problem
The pipeline may stall.
Reasons:

• Data dependencies: An instruction needs data which a previous
instruction did not yet deliver.

• Interrupt of the sequential execution by branches.
• The data is not available.
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Pipelining: Hardware Optimizations

• Out-of-order execution (A good optimizing compiler does it, too,
during code generation)

• Speculative execution
• Prefetching (in connection with caches, even a good compiler
does it)

• Branch prediction
• Superscalar architecture (more than one execution pipeline)

• may lead to another problem if the number of identical execution
units is less than the number of pipelines)
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Memory Hierarchies
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Memory Access (Schematic)

• Hit: Use data provided from the cache
• No-Hit: Use data from memory and also store it in the cache
• Data are moved to memory in cache lines (architecture
dependent, typically 64 bytes).

• n-way associativity
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Conclusions

• Space locality: Access data located as close as possible to each
other

• Avoid indirect addressing

• Time locality: Identical data shall be accessed as short as
possible consecutively

• Reuse data if possible

• Avoid branches in loops.
• If there is a branch in a loop, the most often used alternative
should follow subsequently
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Consequences of Pipelining

Function for computing xk
i , where k = 2, 3:

void f1(int n, double x[], int k) {
for (int i = 0; i < n; i++)
if (k == 2) x[i] = pow(x[i],2);
else x[i] = pow(x[i],3);

}
void f2(int n, double x[], int k) {
if (k == 2)
for (int i = 0; i < n; i++)
x[i] = pow(x[i],2);

else for (int i = 0; i < n; i++)
x[i] = pow(x[i],3);

}

f1 and f2 perform the same calculations.
Execution time of f2 is usually faster than that of f1 (heavily
compiler dependent!)
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Array Indexing

C++ Traditional 2D arrays are stored in row-wise order,
although the language standard does not guarantee
this.

x = new double[10][5]

allocates 10 arrays of 5 elements each.
Fortran 2D arrays are stored in column-wise order (guaranteed

by the language standard).

Storage and Efficiency
Storage order is irrelevant for efficiency. Implementation of numerical
methods must be optimized depending on order!
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Example: Matrix-Vector
Multiplication

double A[N][N], x[N], y[N];
// initialize A, x; set y to zero
// Order: Traverse A continuously
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
y[i] += A[i][j]*x[j];

// Order: “Jump” through A
for (int j = 0; j < N; j++)
for (int i = 0; i < N; i++)
y[i] += A[i][j]*x[j];

Both versions are mathematically equivalent.
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Example (cont)

• Compiler: g++ 4.8.1, -O3
• Machine: My laptop (Intel 2720QM@2.20, 6 MB level 3 cache)
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Example (cont)

• Compiler: g++ 4.8.1, ATLAS 3.10.1, icpc 14.0
• Machine: My laptop (Intel 2720QM@2.20, 6 MB level 3 cache)

• What is going on??
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Example: Matrix-Matrix
Multiplication

• Problem: For C = A · B, we must evaluate

cij =
N∑

k=0

aikbkj

For forming cij , the matrices must be traversed in different order
(A row-oriented, B column-oriented)

• How to organise an efficient memory access pattern?

• Solution: Implement a block-wise algorithm which uses cache
efficiently!

• Nontrivial
• Hardware- and compiler-dependent
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Example (cont)
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Reference

• Compiler: ifort 8.1 (?), -O2
• Machine: Desktop, AMD Athlon XP

16 (42)



Introduction

Michael
Hanke

Introduction

Low Level
Optimization

Optimizing
Expression
Evaluation

Summary

Use Libraries

Moral: Small mistakes can ruine performance.
Use optimized numerical libraries whenever possible!

+ good performance with little effort
+ less programming, i.e. debugging and testing
+ one can focus on essentials, e.g. PDEs instead of linear algebra
- not all libraries are good, choose carefully
- must complain to certain storage formats

Recommandation: Replace X[m][n] by x[m*n] and map X[i][j] =
x[i+j*m] (column major)
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Example: Matrix-Vector
Multiplication

double A[N][N], a[N*N], x[N], y[N]
// Initialize A, a, x, set y to zero
// 2D access
for (i=0 ; i<n ; i++)
for (j=0 ; j<n ; j++)
y[i] += A[i][j]*x[j];

// 1D access (columnwise)
idx=0;
for (j=0 ; j<n ; j++)
for (i=0 ; i<n ; i++) {
y[i] += a[idx]*x[j];
idx++;

}
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Example (cont)

• Compiler: g++ 4.8.3, -O6
• Machine. My laptop (Intel i7-5600U @ 2.60GHz, 4 MB cache)
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Standard Libraries

• De-Facto standard in Scientific Computing: (C)BLAS, LAPACK
for basic linear algebra routines (full and banded matrices)

• Fast Fourier transforms: FFTW
• Sparse linear algebra: PETSc (your milage may vary)
• Sparse LU etc: MUMPS, SuperLU, SuiteSparse
• Many, many, many more

Use vendor-supplied libraries whenever possible!
Examples: Intel MKL, AMD ACML, SPARC sunperf
Public domain replacements: ATLAS, OpenBLAS
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A Simple Matrix Class

Our aim is to construct a simple matrix class which behaves like
matrices in matlab:

• All reasonable operations should be allowed if they are
mathematically legal.

• Matrices with one dimension equal to 1 are considered to be
vectors.

• Matrices of dimensions (1,1) are scalars.
We intend to show performance issues. Therefore:

• We will not use generic programming.
• We will not use C++’s standard libraries (in particular
containers).
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The Basics

class Matrix {
int m, n; // should be size_t
double *A;

public:
Matrix(int m_ = 0, int n_ = 0) : m(m_), n(n_), A(nullptr) {

if (m*n > 0) {
A = new double[m*n];
std::fill(A,A+M*n,0.0);
// cblas_dcopy may be faster

}
}

~Matrix() { if (A != nullptr) delete [] A; }
double& operator()(int i, int j) { return A[i+j*m]; }
const double operator()(int i, int j) const { return A[i+j*m]; }
};

Notes:
• We used column-major for storing the matrix.
• Copy and move constructors will be needed, too.

22 (42)
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Additional Constructors

Matrix(const Matrix& B) : m(B.m), n(B.n), A(nullptr) {
if (n*m > 0) {
A = new double[n*m];
std::copy(B.A,B.A+m*n,A);

}
}

Matrix(Matrix&& v) noexcept : m(B.m), n(B.n), A(B.A) {
B.m = 0; B.n = 0; B.A = nullptr;

}

23 (42)
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Overloaded Operators I
Matrix& operator=(const Matrix& B) {
if (this != &B) {
if (m*n != B.m*B.n) {
if (A != nullptr) delete [] A;
if (B.A != nullptr) A = new double[B.m*B.n];

}
m = B.m; n = B.n;
std::copy(B.A,B.A+m*n,A); // ?

}
return *this;

}
Matrix& operator=(Matrix&& B) {
m = B.m; n = B.n;
if (A != nullptr) delete [] A;
A = B.A;
B.m = B.n = 0;
B.A = nullptr;

}

24 (42)
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Overloaded Operators II

const Matrix operator*(const Matrix& B) const {
if (n != B.m) error();
Matrix tmp(m,B.n);
if (tmp.A == nullptr) return tmp;
for (int i = 0; i < m; i++)
for (int j = 0; j < B.n; j++) {
tmp.A[i+j*m] = 0.0;
for (int k = 0; k < n; k++)
tmp.A[i+j*m] += A[i+k*m]*B.A[k+j*m];

}
return tmp;

}

This implementation is extremely slow as we have seen
before!

25 (42)
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Optimizing Overloaded Operators

#include <cblas.h>
const Matrix operator*(const Matrix& B) const {
if (n != B.m) error();
Matrix tmp(m,B.n);
if (tmp.A == nullptr) return tmp;
cblas_dgemm(CblasColMajor,CblasNoTrans,

CblasNoTrans,m,n,B.n,
1.0,A,m,B.A,n,0.0,tmp.A,m);

return tmp;
}

Note: The dgemm routine evaluates a much more complex expression:
C := αAB + βC .

26 (42)
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More Complex Expressions

For the following explanations assume that we have defined an
addition operation:

const Matrix operator+(const Matrix& B) const {
// Insert tests for correctness and memory management
Matrix tmp(m,n);
for (int i = 0; i < m*n; i++) tmp.A[i] = A[i]+B.A[i];
return tmp;

}

Note: The corresponding BLAS routine would be cblas_daxpy.

Problem: A temporary is created which is then copy-assigned to the
result.

27 (42)
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Optimizations: 1

• We have previously seen that a lot of copying can be avoided by
using the move-assignment operator:

Matrix& operator=(Matrix&& B);

• However, this operator will not be invoked because B is no
longer const! Hence, the signature of the addition operator
must be changed:

const Matrix operator+(const Matrix& B) const;

• A temporary object will be created anyway, but the assignment
is “light-weight”.

28 (42)
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Optimizations: 2

Define a member function:

void add(const Matrix& B, Matrix& C) const;

• Here, the creation of temporaries is avoided completely.
• Copy management is handed over to the user.
• However, the notation becomes rather clumsy: Instead of the
elegant notation

C = A+B;

• we have

A.add(B,C);

• How can we implement M = A+B+C; etc??
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Even More Complex Expressions

• Consider M = A+B+C;
• With the definitions above, this will be compiled to:

t1 = A+B; // Matrix A.operator+(const Matrix& B)
t2 = t1+C; // Matrix t1.operator+(const Matrix& C)
M = t2; // Matrix& operator=(Matrix&& t2)

• In order to avoid the deep copy we would need an operator
which takes temporaries as the first argument.

30 (42)
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Operators With Temporary
Expressions

• If the first argument is an rvalue reference, the operator cannot
be a member of the class. So we must declare it a friend:

friend Matrix operator+(Matrix&& A, const Matrix& B);

• So a definition might be:

Matrix operator+(Matrix&& A, const Matrix& B) {
A += B; // Assumes a standard definition of +=
return std::move(A); // Invokes the move-constructor

}

• The call to the move-constructor could have been replaced by an
explicit type cast:

return static_cast<Matrix&&> A;

31 (42)
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Temporary Expressions (cont)

Our statement M = A+B+C becomes now:

t1 = A+B; // Matrix A.operator+(const Matrix& B)
t2 = t1+C; // Matrix operator+(Matrix&& t1, const Matrix& C)
M = t2; // Matrix& operator=(Matrix&& t2)

32 (42)
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Temporary Expressions (cont)

A very good compiler would inline the corresponding functions and
generate a code like the following:

for (int i = 0; i < m*n; i++) t1[i] = A[i]+B[i];
for (int i = 0; i < m*n; i++) M[i] = t1[i]+C[i];

However, the optimal implementation would be something like this:

for (int i = 0; i < m*n; i++)
M[i] = A[i]+B[i]+C[i];

This is called loop fusion.
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Expression Templates

• Basic idea: Create types which encode complex expressions. In
our example, it may be something like

Sum< Sum<Matrix, Matrix>, Matrix>

• Applying the index operator to an object of that type reduces to
an expression including all operations (in our example:
A[i]+B[i]+C[i]).

• The assignment operator becomes a type cast. It traverses
through all indices.

• Note: Templates are instantiated during compile time!
• Metaprogramming

34 (42)
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Expression Templates (cont)

• This technique may lead to an efficiency comparable to
hand-coded code for vector operations.

• The first implementation is the blitz++ library by Todd
Veldhuizen.

• Expression templates have very high demands on the compiler!
• Cf David Vandevoorde and Nicolai M. Josuttis: C++
Templates, The Complete Guide, Pearson 2003, Chapter 18
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A Simple Comparison

Evaluation of the expression M = A+B+C with m = 500, n = 1:

Machine: Intel i7 940
Compiler: g++ 4.4.1

Source: PhD Thesis Klaus Igelberger, FAU Erlangen-Nürnberg 2010
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ET: Libraries

• blitz++: Todd Veldhuizen (The first implementation of this
idea), http://sourceforge.net/projects/blitz/

• Boost uBLAS: Joerg Walter and Mathias Koch,
http://www.boost.org/ (focus not on efficiency)

• Armadillo: Conrad Sanderson et al,
http://arma.sourceforge.net/

• MTL4: Peter Gottschling et al,
http://www.simunova.com/de/home

• Eigen3: Benoît Jacob, Gaël Guennebaud et al,
http://eigen.tuxfamily.org/index.php?title=Main_Page

• blaze: Klaus Igelberger (smart ET)
https://bitbucket.org/blaze-lib/blaze

and many, many more.
The functionality is usually much larger than simple linear algebra
operations.
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Example: Vector Addition

All the following examples are taken from: K. Igelberger, G. Hager, J.
Treibig, U. Rüde: SIAM J Scientific Comp 34(2012), C42-C69. Pictures
taken from preprint.

Machine: Intel Westmere@2.93GHz, 12MB cache
Compiler: g++ 4.4.2
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Example: Matrix Multiplication

dgemm: Intel MKL
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The Importance of Inlining: Vector
Addition

Yellow: Complete inlining
Blue: No inlining

40 (42)
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Stroustrup’s Proposal: Composite
Objects

• The previous approach is well-suited for expressions like y =
A*x.

• However, the expression x = A*x cannot be handled this way
because a temporary is needed.

• It cannot be decided at compile time if x and y are aliased!

• A different approach consists in doing the decision at execution
time: An expression is only evaluated if the assignment takes
place (lazy evaluation).

• Idea: If an expression like y = A*x+y (dgemv) is to be
evaluated, the * and + operators create only a structure with
information about the operations to be performed. It is
operator=() which performs the real operation, eg by calling
cblas_dgemv.

• Cf Suely Oliveira and David Steward: Writing Scientific
Software, Section 8.6

• Not as flexible as expression templates.
41 (42)
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Summary

• Libraries, libraries, libraries
• The design and implementation of an efficient class requires a
deep understanding of hard- and software environment.

• Even if designed with efficiency in mind, careless use of C++
may lead to extremely inefficient executables.

• “90% of the computation time are spent in 10% of the code.”
Identify and optimize hotspots!

• Finally a reference: Agner Fog, Optimizing software in C++: An
optimization guide for Windows, Linux and Mac platforms.
http://www.agner.org/optimize/optimizing_cpp.pdf
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