Introduction

Michael
Hanke

Operator Overloading

Michael Hanke

School of Engineering Sciences

Program construction in C++ for Scientific Computing

1 (26)

Introduction

Michael
Hanke
Introduction

Copy-
Assignment

Operator
Overloading

Good
Practices

@k
1/O Operators

Summary

@ Introduction

@® Copy-Assignment

© Operator Overloading

O Good Practices

@ Overloading 1/0O Operators

® Summary

Outline

2 (26)

Introduction
h:l:::z:l |ntrOdUCt|On

Introduction

e Our Point class is a model for the vector space R?. In this
space, operations like vector addition and multiplication by a
scalar are defined.

e What we can do right now: Define a function

const Point add(const Point &P, const Point &Q);
Point W = add(P,Q);

Note: The symbol = indicates an initialization of W. This is the
copy constructor.
e Wish: How can we make sense to statements like
Point P, Q, W;
W = P+Q;

Note: Here, the = symbol stands for the assignment operator.
We will need another type of constructor here
(copy-assignment).

3 (26)

Introduction

Michacl Operators

Hanke

Introduction

Operator Overloading

In C++, operators are considered to be special kind of function (with
predefined structure of the argument list, compatible with the C++
syntax). So they can be redefined for new data types. This is called
overloading.

4 (26)

Introduction

Michael Lvalues and Rvalues

Hanke

Introduction

In C, Ivalues are expressions which can appear at the left-hand
side of the assignment operator; rvalues appear on the
right-hand side of it:

lvalue = rvalue;

The semantics is that rvalue will be evaluated and assigned to
the Ivalue.

The assignment operator is right-associative meaning that a =
b = c; isequivalenttoa = (b = ¢);

o Consequence: An assignment a = b has a value!
Question: What is the result of (a = b) = c;? (Demo!)

5 (26)

Introduction

Michael
Hanke

Introduction

Lvalues and Rvalues (cont)

Operators differ as to wether they require an lvalue or an rvalue
as operands or wether they return lvalues or rvalues.

C++ has a rather complex behavior here.
Heuristically:

e When we use an object as rvalue, we use the object’s value (its
contents).

e When we use an object as lvalue, we use the object's identity
(its address).

Most often, an Ivalue can be used when an rvalue is required.

Example: An expression like a + b can never be an lvalue.
Why?

6 (26)

Introduction

Michael
Hanke

Introduction

Operators in C++

Arithmetic operators (+,-,*%,/, %) - standard precedence and
associativity rules

Logical and relational operators - standard precedence and
associativity rules

Assinment operator (=) - right associative, lowest precedence
Increment and decrement operators (i++, ++i, i--, --1i)

Member access operator (left associative), function call,
subscript (., (), [])
many more

All these operators can be overloaded (exception here: member
access operator)!

7 (26)

Introduction

Michael
Hanke

Introduction

A Final Bit To Know: this

When calling a member function there is always a concrete
object involved:

Point P, Q; P.XQO);
The latter will return the contents of x of the instance P.

How can the runtime system decide between x belonging to P
and the one belonging to Q7

The distinction is provide by an implicit variable defined by the
compiler for every class:

class *this;

In our example, the statement return x; is interpreted as
return (*this).x;

equivalently, return this -> x;

All member functions have the implicit first argument this.

8 (26)

Introduction

Michael
Hanke

Aim

Copy- How to define a version of the assignment operator such that an
assignment of the kind

Assignment

P=Q=W;

makes sense?

Since the interpretation is rather close to the copy constructor,
we should expect similar properties.

However, as an operator, the assigment must have a value.

After assignment both objects should be the same (but not
identicall).
The value returned should be (a reference to) the rightmost
expression.

For consistency with the built-in types, it should be a reference
to the left-hand operator.

9 (26)

Introduction

Michael The Copy-Assignment Constructor

Hanke

Copy-
Assignment

The copy-assignment constructor must be a public member
function.

It must have the form

class& operator=(const class&);

The this pointer points to the left-hand side operand of the
assignment.

The argument should be a reference.

10 (26)

Introduction

Michal Extending The Point Class

Hanke

Copy-
Assignment

class Point {

private: // Can be omitted here
double x;
double y;

public:
Point(double xx = 0.0, double yy = 0.0)

x(xx), ylyy) { X

Point(const Point& Q): x(Q.x), y(@Q.y) { }
“Point() { }
double X() const { return x; }
double Y() const { return y; }
void zero() { x =y = 0.0; }

11 (26)

Introduction

Michacl The Point Class (cont)

Hanke

Copy-
Assignment

Point& Point::operator=(const Point& P) {
if (this !'= &P) {
x = P.x; // equivalent: (*this).x = P.x;
y =P.y;
}
return *this; // dereferencing!

}

e This copy-assignment constructor corresponds to the
automatically generated one.

e As a rule of thumb, an individual version is necessary if you need
an individual copy constructor.

12 (26)

Introduction

Michasl Remarks

E AN e We can write simply P = Q = W; now if P, Q, and W are
A))
instances of class Point.

e We can even write P = 1.0; since we have available a type
conversion double to Point.

e The latter is slightly inefficient because first, a temporary object
of class point is created and only then the assignment takes
place.

e For efficiency reasons, it might be better to have an explicit
definition:

Point& Point::operator=(const double& xx) {

X = XX;
y = 0.0;
return *this;

}

13 (26)

Introduction

Michae! A First Operator
e Previously, we defined the negative of a Point (nonmember
function):

Operator

Overloading const Point negative(const Point& P) {
return Point(-P.X(),-P.Y());
}
e This can easily transformed in a unary minus operator (member
function):
const Point Point::operator-() const {
return Point(-x,-y);

}

e Note the first implicit parameter this!
e The old object will not change, therefore const.
e As previously, the result cannot be a reference.

e Now we can write

P =-Q;

14 (26)

Introduction

it Another Operator: +=

Operator It is as simple as this:

Overloading

const Point& Point::opertor+=(const Point& Q) {

x += Q.x;
y += Q.y;
return *this;

}

e We can write now W = P += Q; but not (P += Q) = W. Why?
Design error?

e We can also write P += 1.0; Might be better to define it
explicitely.

15 (26)

Introduction

Michael
Hanke

Operator
Overloading

And Finally: +

const Point Point::operator+(const Point& Q) const {

return Point (x+Q.x,y+Q.y);

}

Note: Creation of a temporary object!

16 (26)

Introduction

Michael
Hanke

Operator
Overloading

Point&
const Point
const Point&
const Point

Compare

operator= (const Point&) ;
operator- () const;
operator+=(const Point&);
operator+ (const Point&) const;

17 (26)

Introduction

Michael
Hanke

Operator
Overloading

A Final Subtlety

e The following code is valid:
Point P, Q(1.0,2.0);
P = Q+3;
Note: The int 3 is converted to a double is converted to a
Point.

e Addition should be commutative. However, the expression P =
3.0+Q; leads to a compile time error. Why?

e Operators defined as member functions are “unsymmetric”!

We will need operators that are not member functions.

18 (26)

Introduction

Michael
Hanke

Operator
Overloading

Friend Functions

For implementing our operation, we would need a nonmember
function of the kind

const Point operator+(double x, const Point& Q);
Even if this fucntion belongs to the interface, it is not part of
the class. Consequently, it does not have access to the private
members.

Access can granted by providing the friend attribut in the class
declaration:

class Point {

friend const Point operator+(const double x,
const Point& Q);
}

In the implementation, the actual definition takes place:

const Point operator+(double x, const Point& Q) {
return Point(x+Q.x,Q.y);

3

19 (26)

Introduction

Michasl Remarks

Hanke

Operator

Overloading e In the previous case, a non-friend, nonmember implementation
could have been provided:

const Point operator+(double x, const Point& Q) {
return Q+x;
}
e |t is slightly more expensive because of the additional function
call.
e |t is slightly better maintainable because it does not use the
internals of Point directly.

20 (26)

Demo

typetst.cpp

21 (26)

Introduction

Michael Good Practices

Hanke

e Define overloaded operators consistently with the user’s
expectations. For example,

cond e P + Q and P += Q should deliver identical values.
Practices e The operator + should not be overloaded with a subtraction-like
operation.

e If the class does |/O, define the shift operator consistently with
those of the built-in types.

o If a class has operator==, it should also provide operator!=.

e Be careful when overloading logical operators. Evaluation rules
of the built-in functions do not survive (short-circuit evaluation).

e Assignment and compound assignment should return a reference
to the left-hand operand.

e If a (commutative) binary operator accepts operands of different
types, both orders should be available.

22 (26)

Introduction

Michael
Hanke

Overloading
1/O Operators

Conventions

Similarly to arithmetic or assignment operators, both << and >>
should return a reference to its left-hand argument.

<< and >> are left associative. So the left-hand argument is
always a stream.

So the overloaded operators can neither be a member of the
stream class (we cannot add members to library classes) nor a
member of our own class.

The declaration looks something like this:

ostream& operator<<(ostream& os, const class& item
istream& operator>>(istream& is, class& item

Note: Input operators must deal with the possibility that the
input might fail; output operators usually don’t bother.

23 (26)

Introduction

Michael
Hanke

Overloading
1/O Operators

Example: << for Point

ostream& operator<<(ostream& os, const Point& P) {
os << ::(u << PX() << u’ 3 << PY() << K())’;
return os;

}

Note: This operator could be made slightly more efficient by defining

it as a friend.
How?

24 (26)

Introduction

Michael
Hanke

Overloading
1/O Operators

Example:

istream& operator>>(istream&
double x, y;
is >> x >> y;
if (is) // Success?
P = Point(x,y);

else
P = Point();
return is;

>> for Point

is, Point& P) {

25 (26)

Introduction

Michael S umma ry

Hanke

How to overload operators
e Assignment operators

e this

friend

Summary

What comes next:

e Some more details about I/O

26 (26)

	Introduction
	Copy-Assignment
	Operator Overloading
	Good Practices
	Overloading I/O Operators
	Summary

