
   

CEPSTRAL COEFFICIENTS, COVARIANCE LAGS AND POLE-ZERO
MODELS FOR FINITE DATA STRINGS

CHRISTOPHER I. BYRNES†, PER ENQVIST‡, AND ANDERS LINDQUIST‡

Abstract. One of the most widely used methods of spectral estimation in signal
and speech processing is linear predictive coding (LPC). LPC has some attractive
features, which account for its popularity, including the properties that the resulting
modeling filter (i) matches a finite window of n + 1 covariance lags, (ii) is rational
of degree at most n, and (iii) has stable zeros and poles. The only limiting factor
of this methodology is that the modeling filter is “all-pole”, i.e., an autoregressive
(AR) model.

In this paper, we present a systematic description of all autoregressive moving-
average (ARMA) models of processes that have properties (i)–(iii) in the context
of cepstral analysis and homomorphic filtering. Indeed, we show that each such
ARMA model determines and is completely determined by its finite windows of
cepstral coefficients and covariance lags. This characterization has an intuitively
appealing interpretation of a characterization by using measures of the transient
and the steady-state behaviors of the signal, respectively. More precisely, we show
that these nth order windows form local coordinates for all ARMA models of de-
gree n and that the pole-zero model can be determined from the windows as the
unique minimum of a convex objective function. We refine this optimization method
by first noting that the maximum entropy design of an LPC filter is obtained by
maximizing the zeroth cepstral coefficient, subject to the constraint (i). More gen-
erally, we modify this scheme to a more well-posed optimization problem where the
covariance data enters as a constraint and the linear weights of the cepstral coef-
ficients are “positive” – in a sense that a certain pseudo-polynomial is positive –
rather succinctly generalizing the maximum entropy method. This new problem is
a homomorphic filter generalization of the maximum entropy method, providing a
procedure for the design of any stable, minimum-phase modeling filter of degree less
or equal to n that interpolates the given covariance window.

We conclude the paper by presenting an algorithm for realizing these filters in
a lattice-ladder form, given the covariance window and the moving average part of
the model. While we also show how to determine the moving average part using
cepstral smoothing, one can make use of any good a priori estimate for the system
zeros to initialize the algorithm. Indeed, we conclude the paper with an example of
this method, incorporating an example from the literature on ARMA modeling.
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1. Introduction

A purely nondeterministic (zero-mean) Gaussian stationary process is fully character-
ized by its infinite sequence of covariance lags, which are in fact the Fourier coefficients
of its spectral density. In particular, if this density is rational, an infinite sample of
such a process determines a unique autoregressive moving-average (ARMA) model
for the process, leading to an explicit description of a spectral density and to a mod-
eling filter that can regenerate the entire process in the sense that it shapes white
noise into a process with the same covariance sequence. These equivalent models of
the process play a fundamental role in spectral estimation [11], system identification
[2, 23, 35, 39], speech processing [13, 24, 26, 32, 33] and several other applications in
signal processing and systems and control [19, 16, 20, 8, 9, 10]. However, one never
really has an infinite sample of a time series but rather a finite window of data, leading
to a far more complicated set of modeling issues. However, from this data one can
estimate a window of approximate covariances, having a rather appealing and useful
interpretation as moments that approximate the true covariances [22].

The basic inverse problem we begin with, then, is that of finding a spectral density,
positive on the unit circle, matching a finite covariance sequence that is positive
definite in an appropriate sense [19, 31]. An autoregressive (AR) solution to this
problem is provided by the linear predictive coding (LPC) filter [31]. The LPC filter
can be realized by an all-pole lattice filter architecture, whose gains can be easily
computed using standard algorithms. Nonetheless, the need for ARMA modeling,
incorporating both poles and zeros has long been understood in spectral estimation
and signal processing [21, 38, 18, 37]. For example in speech processing, Atal has
pointed out that the perceived differences between real speech and the best synthetic
speech obtainable using an LPC filter are at least partially due to the all-pole model
restriction [26, page 271], which limits its power spectral density from matching the
“nulls,” or “notches,” in the periodogram of the data. Indeed, it is widely appreciated
in the speech processing literature that regeneration of certain features of human
speech, for example sounds involving fricatives or nasals, requires the design of filters
having zeros (see, e.g., [5, page 1726], [26, pages 271–272], [33, pages 105, 76–78]).

On the other hand, we are interested in those ARMA models that match a given
window of covariances. To this end, we note that an alternative approach to pole-
zero modeling is offered by cepstral analysis and homomorphic filtering [29], where
pole-zero models are determined from the Fourier coefficients of the logarithm of the
spectral density, the so-called cepstral coefficients. As it turns out, the information
contained in a finite window of cepstral coefficients is complementary to the infor-
mation contained in a finite window of covariances, so that by combining cepstral
analysis with covariance methods one can actually obtain a solution to the problem
of covariance extension. Indeed, one of the main results obtained in this paper is that
any pole-zero model of fixed degree determines, and is uniquely determined by, a pre-
scribed window of cepstral coefficients and a prescribed window of covariances. This
result has a number of amplifications and new consequences for pole-zero modeling
of observed data.

We begin in Section 2 by setting notation and reviewing the derivation of linear
predictive coding filters from a covariance window or, what is equivalent, a window of
PARCOR coefficients. We then examine the LPC filter in terms of cepstral analysis
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obtaining an interesting interpretation of its maximum entropy filter aspects in terms
of maximization of cepstral gain, a problem that we later generalize in a substantial
way.

In Section 3, we present our first main result, viz., that the finite cepstral and covari-
ance windows can be interpreted as coordinates for stable, minimum-phase pole-zero
models of fixed degree. In particular, we give formulae for the cepstral coefficients in
terms of differences of Newton sums of the poles and of the zeros, generalizing the
usual formulae in terms of Newton sums of the poles for LPC filters. We then show
how a modeling filter of degree n arises as the unique minimum of an optimization
scheme involving cepstral and covariance functionals together with a generalized en-
tropy integral. After illustrating this minimization scheme in a simple example from
the literature, we modify this scheme to a more well-posed optimization problem
where the covariance data enters as a constraint and the linear weights of the cepstral
coefficients are “positive” – in a sense that a certain pseudo-polynomial is positive,
rather succinctly generalizing the maximum entropy method. This new problem is
a homomorphic filter generalization of the maximum entropy method, leading to the
design of all stable, minimum-phase modeling filters of degree n that interpolate the
given covariance window. We conclude Section 3 with an illustration taken from
speech synthesis.

ARMA processes can be realized as lattice-ladder filters, enhancing the lattice de-
scription of the AR model given by the LPC filter. In Section 4, we also show how
the generalized maximum entropy method leads to a convex optimization scheme that
uniquely determines the parameters in the lattice-ladder filter, given the window of
covariance lags and the choice of positive pseudo-polynomial in the generalized max-
imum entropy problem. It is also noted that, by spectral factorization, the choice of
positive pseudo-polynomial corresponds to a choice of stable zeros of the numerator
polynomial for the modeling filter. Thus, this homomorphic filtering generalization of
maximum entropy methods gives a new derivation, based on cepstral analysis, of the
recent resolution of the rational covariance extension problem. Briefly, in the early
1980’s Georgiou [16] proved the remarkable result that, for a given covariance window,
ARMA filters exist for any choice of stable zeros (inside the unit disc). Georgiou also
conjectured the uniqueness of such modeling filters, an issue finally resolved in the
positive in [8].

Since these filters can be realized in lattice-ladder form, and since this provides a
design method for deriving modeling filters matching a covariance window but having
arbitrary stable zeros (or “notches” in the power spectrum of the ARMA model),
these filters are referred to as “lattice-ladder notch” filters, or LLN filters. Thus, the
class of LLN filters coincide with the class of linear modeling filters, of degree at most
n, which shape white noise into a process with the observed covariance data. This
is illustrated using refinements of the spectral estimates developed in Section 3 for a
frame of unvoiced speech.

Finally, we wish to emphasize that the algorithm presented here provides a new
computational scheme for realizing these filters, given the covariance window and the
moving average part of the model. While we also show how to determine the moving
average part using cepstral smoothing, any a priori estimate of the zero polynomial
can be used as an initial condition in our algorithm. In particular, one can make use
of any ARMA modeling estimate for the system zeros to initialize an enhancement of
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the modeling filter as well as to obtain better covariance matching. Indeed, we con-
clude the paper with an example of this method, incorporating the ARMA modeling
techniques of [35] to obtain an initial estimate of the system zeros.

2. Preliminaries

A fundamental problem in systems and signals is to determine a model for a stationary
random process {y(t)} from a finite window of data. A linear model for the data
would consist either of a state-space model having the process as an output or of a
description of the z-transform of the system, which of course can be determined by
the filter zeros, poles and the high frequency gain. Among the popular approaches to
this problem are an approach based on matching the covariance lags – notably linear
predictive coding, an approach based on cepstral methods and homomorphic filtering,
and approaches based on variants of system identification methods for autoregressive
(AR) or autoregressive moving-average (ARMA) models.

2.1. Analysis based on infinite data. Of course, if one had an infinite data record,
the problem would be much easier. For example, it is well-known that the spectral
density Φ(z) of a (purely nondeterministic) stationary random process {y(t)} is given
by the Fourier expansion

Φ(eiθ) =
∞∑

k=−∞
rke

ikθ (2.1)

on the unit circle, where the covariance lags

rk = E{y(t+ k)y(t)} k = 0, 1, 2, . . . (2.2)

satisfy

rk =
1

2π

∫ π

−π

eikθΦ(eiθ)dθ. (2.3)

Consequently, the unique rational, stable, minimum-phase function W (z) satisfying

W (z)W (z−1) = Φ(z) (2.4)

is the transfer function of a modeling filter

input
u−→ W (z)

y−→ output, (2.5)

which shapes white noise into a random process with the covariance lags given by
(2.3). Here the rational transfer function

W (z) =
B(z)

A(z)
(2.6)

is minimum-phase, i.e., the denominator polynomial A(z) and the numerator polyno-
mial B(z) both have their roots strictly inside the unit circle; such a polynomial will
be called stable.

In particular, given an (infinite) string of observed data

y0, y1, y2, y3, . . . (2.7)
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satisfying an appropriate ergodicity property, the covariance sequence r0, r1, r2, r3, . . .
can be determined as

rk = lim
T→∞

1

T + 1

T∑
t=0

yt+kyt, (2.8)

which defines a unique spectral density and hence a unique modeling filter.
Cepstral analysis also provides a means of determining the poles, zeros and high

frequency gain of the modeling filter. The starting point is the Fourier analysis of the
(real) cepstrum

log Φ(eiθ) =
∞∑

k=−∞
cke

ikθ. (2.9)

The Fourier coefficients

ck =
1

2π

∫ π

−π

eikθ log Φ(eiθ)dθ. (2.10)

are known as the cepstral coefficients. We note that c−k = ck for all k. Computing
the logarithmic derivative of Φ, it can be seen that the series with Fourier coefficients
kck has its poles at the poles and zeros of the modeling filter [29]. A second property
of the cepstrum is key to homomorphic filtering, viz., if the process {y(t)} is the
response to a signal {u(t)} driving the modeling filter W (z), then the cepstrum of
{y(t)} is the superposition of the cepstrum of the impulse response of the modeling
filter and the cepstrum of the input. In particular, if the impulse response of the
filter is slowly varying compared to the input, a finite window of cepstral coefficients
will capture most of the information about the filter. Of course, there is a one-to-one
correspondence between the infinite sequences r0, r1, r2, . . . and c0, c1, c2, . . . .

2.2. LPC filters. In practice, however, only a finite string of observed data

y0, y1, y2, . . . , yN (2.11)

is available and both of the approaches outlined above need considerable refinement.
If N is sufficiently large, the estimate

1

N + 1

N−k∑
t=0

yt+kyt, (2.12)

for example, is a good approximation of rk, but now only a finite covariance sequence

r0, r1, r2, . . . , rn, (2.13)

where n << N , can be produced. However, at least using the covariance estimates
(2.12), the Toeplitz matrix

Tn =



r0 r1 · · · rn
r1 r0 · · · rn−1
...

...
. . .

...
rn rn−1 · · · r0


 (2.14)

is positive definite, as required.
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Indeed, in spectral estimation [11], identification [2, 23, 39], speech processing [13,
24, 26, 32, 33] and several other applications in signal processing and systems and
control [19, 16, 20, 8, 9, 10], one is typically faced with the inverse problem of finding
a spectral density, positive on the unit circle and of degree at most n, given only a
sequence (2.13) for which the Toeplitz matrix (2.14) is positive definite. Finding any
such spectral density is the same as finding a modeling filter, of degree at most n,
which shapes white noise into a process with the observed window of covariance data.
An autoregressive solution to this problem is provided by the linear predictive coding
(LPC) filter [31], which as is well-known can be realized by a lattice filter, containing
unit delays z−1, summing junctions, and gains, as illustrated below.

-

z-1

ρn
1/2

+

u

-

+

+

+

+z-1z-1

y

+

n-1- γ

γn-1

1γ

1γ 

0γ

0γ 

Figure 1: Lattice filter representation of an LPC filter

The gains γ0, γ1, γ2, . . . , γn−1 and

ρn := r0

n−1∏
k=0

(1 − γ2
k)

are recursively defined from the covariance lags r0, r1, r2, . . . , rn via the Levinson al-
gorithm

γt =
1

ρt

t∑
k=0

ϕt,t−krk+1 (2.15)

ϕt+1,j = ϕtj − γtϕt,t+1−j; ϕ00 = 1 (2.16)

ρt+1 = ρt(1 − γ2
t ); ρ0 = r0, (2.17)

where ϕt0 = 1 and ϕt,t+1 = 0; see, e.g., [31, 26]. The gains γ0, γ1, γ2, . . . , γn−1 are
called reflection coefficients or Schur parameters and have the property that |γk| < 1
for k = 0, 1, . . . , n.

The reflection coefficients can be determined either directly from the data (2.13)
by some version of the Burg’s algorithm [31, p. 175] or from the covariance estimates
(2.12) via (2.15). The filter has the transfer function

W (z) =

√
ρnz

n

ϕn(z)
(2.18)

where ϕn(z) is the n:th Szegö polynomial

ϕn(z) = zn + ϕn1z
n−1 + · · · + ϕnn (2.19)
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with the coefficients {ϕnj} being defined by (2.15), leading to the AR model

y(t) + ϕn1y(t− 1) + · · · + ϕnny(t− n) =
√
ρnu(t), (2.20)

where {u(t)} is normalized white noise, i.e., E{u(t)u(s)} = δts.

2.3. Cepstral maximization and LPC filters. Returning briefly to the case of
infinite data, any modeling filter gives an infinite sequence of covariance lags from
which one can generate an infinite sequence of Schur parameters satisfying

|γk| < 1, k = 0, 1, 2, . . . (2.21)

via Levinson’s algorithm. In this case, the square of the filter gain is given by

W (∞) = ρ∞ := r0

∞∏
k=0

(1 − γ2
k). (2.22)

(See, e.g., [8].) Every choice of Schur parameters satisfying (2.21) corresponds to a
not necessarily rational filter that shapes white noise into a process with the given
covariance lags. The problem of determining which Schur sequences are rational of
degree at most n is challenging and unsolved [19, 15, 9]. However, it is known that
the choice

γn = γn+1 = · · · = 0 (2.23)

always leads to an LPC filter.
In fact, the LPC filter is the filter obtained by maximizing the zeroth order cepstral

coefficient c0, once the correlation coefficients r0, r1, . . . , rn have been fixed. To see
this well-known fact, note that the cepstral gain c0 is the logarithm of the modeling
filter gain (2.22), i.e.,

c0 = −2 log a0 = log ρ∞. (2.24)

Again appealing to (2.22), this yields

c0 = log r0 + log
n−1∏
k=0

(1 − γ2
k) + log

∞∏
k=n

(1 − γ2
k). (2.25)

Therefore, if the correlation coefficients r0, r1, . . . , rn are given, the first two terms in
(2.25) are fixed and all possible modeling filters having this window of covariance lags
are obtained by choosing γn, γn+1, . . . in the last term appropriately. Obviously the
entropy gain c0 is maximized if these free reflection coefficients are chosen to be all
zero as in (2.23), which is the LPC solution. On the other hand, by definition, the
cepstral gain c0 is given by

c0 =
1

2π

∫ π

−π

log Φ(eiθ)dθ, (2.26)

which gives a derivation interpreting a LPC filter as a maximum entropy filter.
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3. Homomorphic filtering and generalizations of linear predictive filtering

In the previous section, we noted that the maximum entropy design of LPC filters can
be interpreted as a problem of maximizing a very special piece of the cepstral window,
subject to constraints on a given window of covariance data. Indeed, maximizing the
zeroth cepstral coefficient yields the unique all-pole, or autoregressive (AR), modeling
filter that matches the given covariance data. The point of this paper is a generaliza-
tion of this observation. That is, by blending the information in a covariance window
with a window of cepstral coefficients, rather than with just the zeroth cepstral coeffi-
cient, it should be possible to develop a parameterization of the ARMA, or pole-zero,
model that generates these windows. Based on such a generalization of LPC filter
design, one could also ask whether, given the possible windows of cepstral coefficients
of covariance lags, we can parameterize each of the corresponding modeling filters
as the solution of some parameterized family of optimization problems. Indeed, it
turns out that each modeling filter – with a priori constrained covariance lags – is
the maximum of an optimization problem for some (positive, in a suitable sense) lin-
ear combination of cepstral coefficients, generalizing maximum entropy filtering in a
homomorphic filtering context.

3.1. Cepstral and covariance windows as local coordinates for pole-zero
models. On the real number line R there are many choices of coordinates. A smooth
function g is said to be a local coordinate near x = 0 if every smooth function f can
be expressed, near 0, as f(x) = h(g(x)) for some smooth function h. For example,
g(x) = sinx is a local coordinate near x = 0, g(x) = x2 is not. In general, in RN ,
N smooth real-valued functions g1, g2, · · · , gN are local coordinates near x0 if every
smooth real-valued function f can be expressed, near x0, as

f(x) = h(g1(x), g2(x), · · · , gN(x))

for some smooth function h. In particular, we are interested in whether the coefficients
of pole and zero polynomials are functions of cepstral coefficients and covariance lags.

The methods we now describe for pole-zero models for finite data strings retain
some of the most important features of LPC design: we require that the resulting
modeling filter be rational of degree at most n, have stable zeros and poles, and match
the finite window of covariance lags. As in [21], we will begin by also incorporating
the superposition property of homomorphic filtering, viz., we will initially require the
resulting modeling filter to also match a finite window of cepstral coefficients.

Our first new result is that there is a one-to-one correspondence between the 2n+1
coefficients r0, r1, . . . , rn, c1, c2, . . . , cn and the 2n+1 coefficients a0, a1, . . . , an, b1, b2, . . . , bn
of the denominator and numerator polynomials

A(z) = a0z
n + a1z

n−1 + · · · + an (a0 > 0) (3.1)

B(z) = zn + b1z
n−1 + · · · + bn (3.2)

of the corresponding modeling filter (2.6), provided W has exactly degree n.

Theorem 3.1. Each modeling filter (2.6) of degree n determines and is uniquely
determined by its window r0, r1, . . . , rn of covariance lags and its window c1, c2, . . . , cn
of cepstral coefficients.
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It is, of course, clear that r0, r1, . . . , rn, c1, c2, . . . , cn is determined by a modeling
filter (2.6) of degree n.

For example, for any (stable) polynomials (3.2) and (3.1), the coefficients r0, r1, . . . , rn
in the expansion

|B(eiθ)|2
|A(eiθ)|2 = r0 + 2

∞∑
k=1

rk cos(kθ) (3.3)

can be determined from (2.6) via (2.3) and (2.4), using the inverse Levinson algorithm
[31] in the following way. We begin by determining the coefficients g0, g1, . . . , g2n in
the expansion

1

|A(eiθ)|2 = g0 + 2
∞∑
k=1

gk cos(kθ)

corresponding to a LPC filter. This is done by first applying the inverse Levinson
algorithm [31, pp. 47,165] to A(z) for computing the reflection coefficients, then the
inverse Schur algorithm [31, page 166] for computing g0, g1, . . . , gn, after which the
recursion

gn+k = −
k−1∑
i=0

ai
a0

gn−i+1

yields gn+1, gn+2, . . . , g2n. Finally, the coefficients r0, r1, . . . , rn are obtained from

rj = p0gj +
m∑
i=1

pi(g|i−j| + gi+j) (3.4)

where p0, p1, . . . , pn are the coefficients in the pseudo-polynomial

P (z) = p0 + 1
2
p1(z + z−1) + · · · + 1

2
pn(z

n + z−n) (3.5)

where

P (z) = B(z)B(z−1). (3.6)

Consequently, the covariance coefficients r0, r1, . . . , rn can be computed using just
recursive algorithms and ordinary arithmetic operations.

For the sake of completeness, we also give the explicit formulae for the cepstral
coefficients c1, c2, . . . , cn in terms of the poles and zeros of (2.6), generalizing the
well-known formulae for the case of LPC filters in the literature [25].

c0 = −2 log a0

ck =
1

k
{sk(A) − sk(B)} k = 1, 2, 3, . . . (3.7)

where

sk(A) = pk1 + pk2 + · · · + pkn (3.8)

sk(B) = zk1 + zk2 + · · · + zkn, (3.9)
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and where p1, p2, . . . , pn are the roots of A(z) and z1, z2, . . . , zn are the roots of B(z).
Moreover, by Newton’s identities [14], we have the recursion formulae for the cepstral
coefficients, generalizing those known in the literature for the case of LPC filters:

sk(A) = −kak
a0

−
k−1∑
j=1

ak−j

a0

sj(A) (3.10)

sk(B) = −kbk −
k−1∑
j=1

bk−jsj(B). (3.11)

where for k > n we set ak = 0 and bk = 0 .
Conversely, it is much more nontrivial, and certainly new, that the modeling filter

can be recovered from the observed covariance and cepstral windows. One of the key
points of this observation, then, is that r0, r1, . . . , rn, c1, c2, . . . , cn form local coordi-
nates for the space of pole-zero filters of degree n, with respect to which one can
use calculus. In fact the proof of the converse uses a minimization argument in the
coefficients of A and B, in a coordinate system adapted to take advantage of tools,
such as convexity, in optimization. More explicitly, the pseudo-polynomial P that we
constructed from B above lies in the space D of all pseudo-polynomials (3.5) of de-
gree n that take nonnegative values on the unit circle. D is a closed, convex set with
interior consisting of D+, those pseudo-polynomials that take positive values on the
unit circle. Since B is a Schur polynomial, i.e. a monic polynomial with all its roots
in the open unit disc, P actually lies in D+. Since the space of Schur polynomials is
not convex for n ≥ 3 [6], we will also convert A to a pseudo-polynomial

Q(z) = q0 + 1
2
q1(z + z−1) + · · · + 1

2
qn(z

n + z−n) (3.12)

defined via

Q(z) = A(z)A(z−1). (3.13)

The polynomials A and B can, of course, be recovered from P and Q using spectral
factorization.

In this context, given r0, r1, . . . , rn, c1, c2, . . . , cn, we propose to minimize the convex
functional

J(p, q) = r0q0 + r1q1 + · · · + rnqn − c1p1 − c2p2 − · · · − cnpn

+
1

2π

∫ π

−π

P (eiθ) log
P (eiθ)

Q(eiθ)
dθ (3.14)

with the pseudo polynomials (3.5) and (3.12), given by (3.13) and (3.6) respectively,
ranging over the closed convex region in R2n+1 of variables p1, p2, . . . , pn, q0, q1, . . . , qn
such that the pseudo-polynomials (3.5) and (3.12) are nonnegative on the unit circle.

While J is nonlinear, it always has a minimum since it is a convex function defined
on a closed convex set. Moreover since we assume that the data r0, r1, . . . , rn, c1, c2, . . . , cn
is generated by a pair (2.6) of Schur polynomials, the corresponding pseudo-polynomials
lie in the open set D+. Therefore, to establish uniqueness of the pair (2.6), it is suf-
ficient to show that J has a unique minimum in D+, which we can do by using the
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first derivative test (since J is convex). Such a minimum therefore must satisfy

∂J

∂qk
=

1

2π

∫ π

−π

eikθ
P (eiθ)

Q(eiθ)
dθ − rk = 0 (3.15)

∂J

∂pk
= ck −

1

2π

∫ π

−π

eikθ log
P (eiθ)

Q(eiθ)
dθ = 0, (3.16)

In particular, it follows from (2.3) and (2.10) that any minimum of J must define
a modeling filter that matches the covariance and the cepstral window. Moreover,
when A and B are coprime polynomials, i.e., when the filter is of degree precisely n,
the modeling filter is uniquely determined by the spectral density

Φ(z) =
P (z)

Q(z)
.

Now, r0, r1, . . . , rn, c1, c2, . . . , cn can be estimated from data; see, for example, (2.12)
for the covariance lags and [30] for the cepstral coefficients. A modeling filter (2.6)
obtained in this way by minimizing (3.14) will be referred to as a Cepstral-Covariance
Matching (CCM) filter.

This result gives a method for regenerating a modeling filter of degree n from its
covariance and cepstral windows of length n. In Figures 2 and 3, we illustrate this
result in the case n = 1 by showing the level sets for the cepstral coefficient c1 and
the covariance lag r1, where we have set r0 = 1.

We note that the level sets coincide when c1 = 0 and r1 = 0, i.e., when A and B
have a common factor (and therefore coincide). This holds for all n, mutatis mutandis.

Remark 3.2. In Figures 2 and 3, the maximum entropy filters lie on the horizontal
line b1 = 0. One can see that, when restricted to this (or any horizontal) line, either
c1 or r1 is a coordinate function and hence – for maximum entropy filters – one can
express c1 or r1 as a function of r1 or c1, respectively. While this result holds for
arbitrary n, when restricted to (the n-dimensional submanifold of) LPC filters, for
arbitrary ARMA models our result asserts that rather than being dependent variables
of one another, the windows r0, r1, . . . , rn and c1, c2, . . . , cn are complementary sets
of partial coordinates, which together are uniquely defined by, and uniquely define,
stable, minimum phase filters of degree n.
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Figure 2: Level sets for r1 (left) and c1 (right) in the case n = 1.
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Figure 3: The transversality of the level sets for n = 1 when A = B.

In general, it has been long appreciated that autoregressive, moving-average (ARMA)
alternatives to LPC filter design would be desirable in signal processing. Early work
in this direction was developed in [21] in which the LPC method was used to first find
a candidate pole polynomial from which a zero polynomial was found using Shanks’
method [26]. Inspired by this work, Stieglitz [38] developed a method to simultane-
ously estimate the poles and zeros of the modeling filter noting, however, that the
algorithm could lead to unstable pole polynomials, which would cause divergence. In
general, algorithms producing pole-zero models, or equivalently the parameters in an
ARMA model, are known to have convergence problems and several proposed schemes
[18, Chapter 10] do not guarantee that the numerator or denominator in a resulting
modeling filter will be stable. This is in part because these optimization schemes are
nonlinear but nonconvex, as can be seen in detail in, for example, [36, p. 333, eqn
(9.47), p. 334, eqn (9.48)].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−40

−30

−20

−10

0

10

20

30

Frequency

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (

dB
)

Figure 4: The first order CCM spectral envelope (dashed line) for [36, p. 340, Example 9.6]

The example analyzed in [36, p. 340, Example 9.6], which is a one-dimensional
ARMA process with a pole and zero near the unit circle, illustrates the fact that
global convergence of the associated algorithms may fail depending on the choice of
certain design parameters (e.g., forgetting factors) that need to be set in the standard
algorithms – in sharp contrast to the convex minimization scheme presented here. In
Figure 4, we depict the periodogram of the system response to white noise and the



    

CEPSTRAL COEFFICIENTS, COVARIANCE LAGS AND POLE-ZERO MODELS 13

corresponding true spectrum as a solid curve, while the dashed curve represents the
spectral envelope of the corresponding CCM filter. This compares quite favorably to
the simulations in [36] for various choices of forgetting factors.

If n = 1, it follows that the cepstral coefficient must satisfy −2 ≤ c1 ≤ 2 while the
positive definiteness of the associated Toeplitz matrix (2.14) constrains the covariance
lags to satisfy r20 −r21 > 0. Normalizing r0 = 1, Figure 5 illustrates the possible values
of an attainable cepstral coefficient, covariance coefficient pair (c1, r1) as the shaded
subregion within the larger region dictated by the constraints on c1 and r1 separately.
One also sees that the coordinates (c1, r1) are singular at (c1, r1) = (0, 0), where A
and B have a common factor.
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Figure 5: Feasible (c1, r1) pairs for n = 1.

Figure 6 shows that the problem data for [36, p. 340, Example 9.6], depicted by a
dot, does lie in the feasible region of cepstral/covariance pairs.
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Figure 6: Showing feasibility for cepstral/covariance data for [36, p. 340, Example 9.6]
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Figure 7: The second-order LPC spectral envelope (dashed line) for [36, p. 340, Example 9.6]
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We also note that, for this example, the first covariance coefficient r1, with r0
normalized to be 1, lies in the feasibility region 1 > r21 for LPC filtering. Moreover,
estimating r2 for Example 9.6 in [36] renders the corresponding Toeplitz matrix (2.14)
positive definite. The spectral envelope, for the second-order LPC filter fitting this
pair of data, is illustrated in Figure 7 with a dashed curve.

As another illustration, let us consider an example in [35]. Consider a data string
(2.11) with N = 512 obtained by passing white noise through a fourth order filter with
poles at 0.95e±i0.4π, 0.95e±i107π/180 and zeros at 0.85e±i70.4π/180, 0.85e±i109.6π/180. The
performance of three methods are compared in [35]. The first and second are ARMA
algorithms that see (r0, r1, . . . , r8) and (r0, r1, . . . , r9), respectively, and estimate the
AR and MA parts separately [27, 34]. The third ARMA algorithm estimates the model
components simultaneously [1]. The corresponding estimates in [35] are determined
from the pole and zero averages computed there from 100 Monte-Carlo runs and are
shown in Table 1. The three algorithms in [35] are here denoted (i), (ii) and (iii).
For comparative purposes, algorithms 32(i) and 32(iii) are closest to what we shall
employ here, since the covariance lag records have the same length.

For the sake of illustration, in this paper we describe two sets of simulations
with this example, returning to the second in Section 4. For this simulation, we
made one, ten or 100 Monte-Carlo runs and take the avarage of the filter coefficients
a0, a1, . . . , an, b1, b2, . . . , bn thus obtained from the underlying model data. Based on
these averages the corresponding values of r0, r1, . . . , rn, c1, c2, . . . , cn are computed via
(3.4) and (3.7), and the '2-norms of the errors in the vectors of cepstral and covari-
ance lags are computed. The results are shown in Table 1 below. For comparison, the
corresponding errors in [35], determined from the pole and zero averages computed
there from 100 Monte-Carlo runs, are shown in Table 1.

1 time 10 times 100 times [35](i) [35](ii) [35](iii)
cepstral error .1404 .0300 .0098 .0561 .1005 .1549
covariance error .0789 .0334 .0128 .0765 .0677 .3348

Table 1: Cepstral and covariance errors.

We note that the average covariance errors incurred in the CCM algorithm and
the algorithm [35](i) are of the same order of magnitude for 100 Monte Carlo runs.
There is, however, a greater difference in the cepstral coefficients, presumably since
[35](i) did not use any measure of cepstral distance as a penalty function. In Figure 8
we depict the estimated poles and zeros (as ◦ and ×, respectively), versus the true
poles and zeros (in bold), for both the CCM algorithm and the algorithm [35](i). The
results compare favorably as one should expect from the closeness of the cepstral and
covariance approximations.

These examples are in harmony with our experience, viz., such simulations work
reasonably well when the cepstral and covariance data are generated by a modeling
filter of degree n. However, the problem of optimizing a modeling filter from candi-
date cepstral and covariance data requires, of course, some knowledge of the inverse
problem of determining which windows can arise from a modeling filter of degree
n. We have already seen that this problem is considerably complicated by the fact
that there is a nontrivial coupling between attainable joint windows, even in the case
n = 1.
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Figure 8: Poles and zeros for CCM filtering (left) and [35](i) (right) vs. true poles and zeros (bold).

As we show in the next subsection, there is a rather appealing alternative opti-
mization problem for which the parameters can be chosen from an a priori given set
and which provides a direct generalization of the maximum entropy design for LPC
filters.

3.2. Cepstral maximization and a generalization of LPC design. In contrast
to the cepstral window, for which we have only necessary conditions, the constraints
on the covariance lags for higher n are given by the positive definiteness of the Toeplitz
matrix (2.14).

This suggests a generalization of the maximum entropy approach in a homomorphic
filtering context. More explicitly, we consider maximizing a linear combination of the
window of cepstral coefficients

p0c0 + p1c1 + · · · + pncn (3.17)

subject to the interpolation condition

1

2π

∫ π

−π

eikθΦ(eiθ)dθ = rk, k = 0, 1, . . . , n. (3.18)

For the maximal entropy filter, one chooses p0 > 0 and p1 = · · · = pn = 0. The
positivity of p0 reflects the fact that in any maximization (or minimization) problem,
there needs to be some fixing of sign definiteness. In the more general case, we ask
that the associated pseudo-polynomial (3.5) be positive on the unit circle, i.e. that
P lie in D+. This maximization problem leads to a rather neat solution, directly
generalizing linear predictive code filters.

Theorem 3.3. The problem to maximize (3.17) subject to (3.18) has a finite solution
only if the pseudo-polynomial (3.5) belongs to D. If P ∈ D+, there is a unique solution
Φ, and this solution has the form

Φ(z) =
P (z)

Q(z)
, (3.19)

where Q ∈ D+. The corresponding modeling filter is obtained from the stable, mini-
mum phase spectral factor

W (z) =
B(z)

A(z)

of Φ(z). In particular, A(z) and B(z) are the unique stable polynomial factors
(3.13),(3.6) of Q(z) and P (z), respectively.
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Thus, in contrast to the nontrivial coupling between attainable cepstral and covari-
ance pairs, the feasible covariance windows and the set of positive pseudo-polynomials
are independent quantities. Indeed, one should expect that these sets of quantities
would form complementary sets of coordinates for the space of modeling filters, a fact
which we illustrate in Figures 9 and 10 for the case n = 1, where we have normalized
P so that p0 = 1.
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Figure 9: Level sets for r1 (left) and p1 (right) for n = 1.
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Figure 10: Complementarity of the level sets for r1 and p1 for n = 1.

These figures are in sharp contrast to Figures 2 and 3, in a fundamental way. In
contrast to the level sets for cepstral coefficient, covariance coefficient pairs, each
covariance level set meets each level set of the linear combination vector p in one
and only one point. In particular, the set of feasible pairs is uncoupled, being de-
termined separately by the positive definiteness of the corresponding Toeplitz matrix
and the corresponding pseudo-polynomial. This overcomes the limitations of cepstral-
covariance minimization in a very effective manner. For example, choosing a cepstral
coefficient, covariance coefficient pair (c1, r1) outside the attainable region in Figure
5 and running the minimization algorithm always yields an ARMA system with zeros
on the unit circle because, while the stationarity condition (3.15) – ensuring covari-
ance matching – will always be satisfied, the cepstral matching condition (3.16) may
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fail. Theorem 3.3 asserts that this strong form of transversality of the level sets holds
for all n.

We now briefly outline the proof of Theorem 3.3. In view of (2.10) and (3.5), the
cost function (3.17) can be written

1

2π

∫ π

−π

P (eiθ) log Φ(eiθ)dθ. (3.20)

Therefore, the optimization problem of Theorem 3.3 is reduced to finding the spectral
density

Φ(eiθ) = f0 + 2
∞∑
k=1

fk cos kθ

that maximizes the generalized entropy gain (3.20) subject to the covariance matching
condition (3.18).

More precisely, consider the infinite-dimensional convex optimization problem to
maximize (3.20) subject to the n + 1 constraints (3.18) over all sequences f =
(f0, f1, f2, . . . ) such that Φ(eiθ) > 0 for all θ ∈ [0, 2π]. In order to solve this (pri-
mal) problem we must find the saddle point of the Lagrangian

L(f, q) =
1

2π

∫ π

−π

log

[
f0 + 2

∞∑
k=1

fk cos kθ

]
P (eiθ)dθ +

n∑
k=0

qk(rk − fk), (3.21)

as, for example, in [28]. It is not hard to see that the Lagrangian has a finite maximum
only if both P and Q belong to D. Any feasible maximum will occur in a stationary
point

∂L

∂fk
= 0, k = 0, 1, 2, . . . .

This stationarity condition can be seen to be equivalent to (3.19), and hence we must
have P and Q in D+ for Φ(eiθ) > 0 to hold for all θ ∈ [0, 2π].

Forming the function q �→ maxL(f, q) then leads to a finite-dimensional dual prob-
lem, namely the problem to minimize the function

JP (q0, q1, . . . , qn) = r0q0 + r1q1 + · · · + rnqn −
1

2π

∫ π

−π

P (eiθ) logQ(eiθ)dθ, (3.22)

in the n + 1 variables q0, q1, . . . , qn, the coefficients of Q, over all choices of variables
(q0, q1, . . . , qn) such that

Q(eiθ) > 0 for all θ ∈ [−π, π]. (3.23)

The functional (3.22) was introduced in [10], where it was shown that it has a unique
minimum in D+.

It is readily seen that the gradient of (3.22) is given by

∂JP
∂qk

(q0, q1, . . . , qn) = rk − fk (3.24)

where

fk =
1

2π

∫ π

−π

eikθ
P (eiθ)

Q(eiθ)
dθ for k = 0, 1, 2, . . . , n (3.25)
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are the covariance lags corresponding to a process with spectral density

P (eiθ)

Q(eiθ)
= f0 + 2

∞∑
k=1

fk cos(kθ). (3.26)

Since the gradient is zero at the minimizing point (q0, q1, . . . , qn), we have at this point

rk =
1

2π

∫ π

−π

eikθ
P (eiθ)

Q(eiθ)
dθ, k = 0, 1, 2, . . . , n,

which, as seen from (2.3), are precisely the n+1 first covariance lags where Φ is given
by (3.19).

Example 3.4. We now illustrate the use of this generalized maximization problem in
the design of filters for signals arising in speech analysis. In speech synthesis, conven-
tional vocoders identify phonemes into voiced and unvoiced speech. A single phoneme
evolves on the order of magnitude of 100 ms. The speech pattern is usually divided
into frames of a few tens of ms, where it is regarded to be stationary. On each such 20–
30 ms frame of speech the signal is sampled to yield the speech data y0, y1, y2, . . . , yN ,
where N is typically on the order of 200 to 300. To illustrate Theorem 3.3, we will
compare the performance of three filters with respect to a frame of speech acquired
during the formation of the voiced nasal [ng] . We have sampled the phonemes at
a rate of 8,000 samples per second and retained 250 sample points for each frame.
Thus, each frame represents a time history of speech over a period of roughly 30 ms.
From this data the first n + 1 covariance lags r0, r1, r2, . . . , rn have been estimated,
For the sake of exposition, we begin with n = 6 and two choices of a sixth degree posi-
tive pseudo-polynomials. Using ergodic estimates (2.8) we obtain (r0, r1, r2, . . . , r6) =
(.7468, .6487, .4335, .1885,−.0040,−.0990,−.1265). For the sake of comparison, we
then illustrate the case of a 12th order LPC filter, for which we also need the estimates
(r7, r8, . . . , r12) = (−.1105,−.0700,−.0085, .0706, .1559, .2160). Figure 11 shows a pe-
riodogram determined from the frame of the voiced nasal [ng] together with the spec-
tral envelope of a 6th order optimal filter with p0 = 1 and p1 = · · · = p6 = 0, designed
from this frame.
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Figure 11: 6th order filter with p0 = 1 and p1 = p2 = · · · = p6 = 0.
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Figure 12 shows the same periodogram together with the spectral envelope of a 6th
order optimal filter with (p0, p1, . . . , p6) = (1, .0478,−.4831,−.4440,−.7453, .5203, .4486),
designed from the same frame of the voiced nasal [ng].

0 20 40 60 80 100 120 140 160 180
−50

−40

−30

−20

−10

0

10

20

Frequency

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (

dB
)

Figure 12: 6th order filter with (p0, p1, . . . , p6) = (1, .0478,−.4831,−.4440,−.7453, .5203, .4486).

Following our derivation of the generalized maximum entropy optimization crite-
rion, it is clear that the spectral envelope depicted in Figure 11 is that of the LPC
filter determined by the covariance window of length 6. While this filter does cor-
respond to the default choice p0 = 1 and p1 = · · · = p6 = 0 in our current design
scheme, it is also fair to note that in general this filter only makes use of the data
r0, r1, r2, . . . , r6, while the filter of Figure 12 makes use of the additional data string
p1, . . . , p6. Therefore, it is better to compare the performance of the second filter with
an LPC filter of order 12, obtained from the data string r0, r1, r2, . . . , r12. Figure 13
shows a periodogram determined from the frame of the voiced nasal [ng] together with
the spectral envelope of a 12th order optimal filter with p0 = 1 and p1 = · · · = p12 = 0,
designed from the same frame of the voiced nasal [ng].
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Figure 13: 12th order filter with p0 = 1 and p1 = p2 = · · · = p12 = 0.

While the spectral envelope derived from a generalized maximum entropy design
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compares favorably with the spectral envelopes of an LPC filter with twice the order
(but, of course, an equal amount of data points), a key issue is how to choose the
coefficients pi. We note from Figure 9 that, for n = 1, to set p1 constant is to
set b1 constant. More generally, from spectral factorization it follows that to fix the
positive pseudo-polynomial P constant is to set the numerator polynomial B constant.
Tuning the zeros of a modeling (or shaping) filter has long been a desired goal in
the ARMA modeling of signals and systems. One approach to the identification
of zeros (and poles) from data has been cepstral analysis, particularly the use of
cepstral windowing and smoothing. In the next section, we will describe methods
for using cepstral analysis to estimate the zeros, as well as to compute the pole
polynomial A from the estimates of the zeros and the covariance window – leading
to a realization algorithm for representing this particular ARMA model in a lattice-
ladder architecture, as depicted in Figure 14.
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Figure 14: Lattice-ladder filter.

We conclude this section by illustrating that the realization issues here need to take
into account the fact that we are developing models from a finite, not an infinite, data
string.

Remark 3.5. At first blush, given the numerator polynomial B(z), it might seem
possible to develop an ARMA model for a finite covariance window by first passing
the observed signal through a zero filter as a prefilter

input
y−→ W0(z)

v−→ output (3.27)

with transfer function

W0(z) =
zn

B(z)
,

and then to derive an LPC “all pole” filter from the filtered observations in or-
der to generate an ARMA model. To this end, suppose for the moment that the
output process v is stationary having partial covariance sequence r̃0, r̃1, . . . , r̃n, and
let γ̃0, γ̃1, . . . , γ̃n−1, ρ̃0, ρ̃1, . . . , ρ̃n and the Szegö polynomials ϕ̃0(z), ϕ̃1(z), . . . , ϕ̃n(z)
be the corresponding output from the Levinson algorithm (2.15). Moreover, for
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k = 0, 1, . . . , n, let Bk(z) be a polynomial of degree k generated by the recursion

Bk−1(z) = z−1[Bk(z) −Bk(0)zkϕ̃k(z
−1)], Bn(z) = B(z). (3.28)

Then using formulas in [3, pages 117–118], the pole-zero model obtained in this way
can be realized by the lattice-ladder filter depicted in Figure 14, where the gains

α0, α1, . . . , αn−1, β0, β1, . . . , βn (3.29)

are given by

αk = γ̃k, k = 0, 1, . . . , n− 1

βk = − ρ̃k√
ρ̃n
Bk(0), k = 0, 1, . . . , n.

This approach, however, turns out to be naive in that it does not solve the problem
stated above. In fact, if

W0(z) = h0 + h1z
−1 + h2z

−2 + . . .

is the Laurent expansion of the proper rational function W0 about infinity,

r̃k := E{v(k)v(0)} =
∞∑
�=0

∞∑
m=0

h�hmr�+k−m,

and consequently the partial covariance sequence r̃0, r̃1, . . . , r̃n will depend on the
infinite sequence r0, r1, r2, . . . rather than on the partial covariance sequence (2.13).
Therefore, this construction of an ARMA model will not reproduce the covariance
data of the original process. Moreover, to obtain a stationary output process {v(t)}
in (3.27) we need to let the system come to steady state, which will require many
steps if the roots of B(z) are close to the unit circle.

4. Realization algorithms for lattice-ladder notch (LLN) filters

The desirability of being able to assign zeroes to modeling (or shaping) filters has
been widely cited, for example, in speech processing ([5, page 1726], [26, pages 271–
272], [33, pages 105, 76–78]). With its ability to guarantee stability of the numerator
and denominator of the ARMA model, the generalized maximum entropy scheme
we presented in the previous section also gives an independent solution of the long
standing problem of realizing a covariance window with a guaranteed stable and
minimum phase modeling filter. This is the problem of covariance extension by a
positive real rational function of bounded degree.

In [15, 16], T. T. Georgiou proved that, given a covariance window for which the
Toeplitz matrix (2.14) is positive definite, for any choice of a Schur polynomial B
of degree n, there exists a Schur polynomial A of degree n for which the modeling
filter W determines a spectral density Φ matching the window of covariance lags.
He also conjectured uniqueness of A, and hence W and Φ, which would give a well-
posed solution of the covariance matching problem with guaranteed stability of the
numerator and denominator of the (unique) modeling filter. Georgiou’s conjecture
was finally established in [8] using geometric methods and later in [10] using a con-
vex minimization argument that turns out to be equivalent to the dual optimization
problem used in the above proof (after one identifies the linear coefficients in the cep-
stral maximization problem with the coefficients of the defining pseudo-polynomial
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P ). The primal problem of maximization of the cepstral coefficients presented here
is, however, new and has the results of [8] as a corollary, which we now state for the
sake of completeness.

Corollary 4.1 (Moving-Average Assignability Theorem). Let r0, r1, . . . , rn be
a given positive partial covariance sequence. Then, given any stable polynomial (3.2),
there exists a unique stable polynomial (3.1) such that

W (z) =
B(z)

A(z)
(4.1)

is a minimum phase spectral factor of a spectral density Φ(z) satisfying

Φ(eiθ) = f0 + 2
∞∑
k=1

fk cos kθ; fk = rk for k = 0, 1, . . . , n.

In particular, all nth order ARMA models for the given partial covariance data are in
one-one correspondence with self-conjugate sets of n points (counted with multiplicity)
lying in the open unit disc, i.e. with all possible zero structures of modeling filters.
Moreover, the modeling filter W (z) depends analytically on the covariance data and
the choice of zero polynomial B(z).

Taking this intuitive parameterization of all ARMA modeling filters that match
the given covariance data as the starting point, the purpose of this section is to
describe a computationally effective algorithm for realizing filters satisfying the same
interpolation properties as the LPC filter, but allowing for the coefficients of the
positive pseudo-polynomial P – or equivalently the zeros of the modeling filter – to
be set arbitrarily or to be determined from data using, for example, cepstral methods.
In this section, we shall also develop an algorithm for computing the pole polynomial
and we shall also illustrate how to update the parameters of a lattice-ladder filter
realization of such modeling filters, enhancing the lattice realization of LPC filtering.

In this language, we require the filter to meet the following specifications.

(i) For the covariance coefficients r0, r1, r2, . . . , rn extracted from the finite data
record, the (stable) transfer function satisfies

|W (eiθ)|2 = f0 + 2f1 cos θ + 2f2 cos 2θ + . . . , (4.2)

where

fk = rk for k = 0, 1, . . . , n. (4.3)

(ii) The filter has prescribed zeros, ζ1, ζ2, . . . , ζn, inside the unit disc, determined
by a prescribed positive pseudopolynomial P .

Here P (z) = B(z)B(z−1) and the transmission zeros are determined as the (self-
conjugate) roots of the numerator polynomial

B(z) := (z − ζ1)(z − ζ2) · · · (z − ζn) = zn + b1z
n−1 + · · · + bn. (4.4)

By Theorem 4.1, there is exactly one filter (4.1) that satisfies these specifications.
In automatic control, filters having prescribed transmission zeros are referred to

as notch filters. Notch filters have been used as dynamic compensators to attenuate
stable harmonic fluctuations by achieving desired pole-zero cancellations. Although
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the desirability of notches in the power spectrum of the filters presented in this paper
plays a quite different role for signal processing and speech synthesis than the role
played by notch filters in automatic control, the analogy suggests that we refer to
the filters satisfying specifications (i) and (ii) as LLN filters, or Lattice-Ladder Notch
filters. This acronym also reflects the lattice-ladder architecture that can be used to
implement these filters, as illustrated in Figure 14.

We observe that the lattice-ladder filter representation is an enhancement of the
lattice filter representation depicted in Figure 1, the difference being the incorpora-
tion of the spec parameters denoted by β, which allow for the incorporation of the
prescribed zeros into the filter design. In fact, the lattice filter representation of an
all-pole filter can be designed from the lattice-ladder filter architecture by setting

the parameter specifications: β0 = r
−1/2
n , β1 = β2 = · · · = βn = 0 and αk = γk for

k = 0, 1, . . . , n− 1.
In this section, we shall describe an effective computational algorithm for finding

the parameters (3.29) for an LLN filter, given a fixed positive pseudo-polynomial and
covariance window. We begin by discussing various methods for choosing the positive
pseudo-polynomial from covariance and cepstral data, presenting a form of cepstral
smoothing as the preferred method when the positive pseudo-polynomial is not a
priori available.

4.1. Selecting the positive pseudo-polynomial. As mentioned above, LPC de-
sign has some attractive features that account for its popularity. These include the
properties that the resulting modeling filter is rational of degree at most n, has stable
zeros and poles, and matches the finite window of covariance lags. The major disad-
vantage is that the zeros are in the default setting z = 0. The LLN filter allows for
placing the zeros arbitrarily, while retaining the features of LPC filtering mentioned
above. The basic idea is that even an approximate choice of zeros is better than just
placing them at the origin. Therefore, except for certain applications where zeros are
part of the specifications, when this is a measured variable for example through an
enrollment session such as occurs in speaker verification, we are left with the task of
estimating the positive pseudo-polynomial P or, equivalently, the numerator polyno-
mial B.

A straightforward way to determine P would be to estimate the phase and the
moduli of the zeros from the notches in an observed spectrum, as represented by a
periodogram or as computed using Fast Fourier Transforms (FFT). This is depicted
in Figure 15 where a periodogram is used. The depth of the notches determines the
closeness to the unit circle.

Alternatively, B could be determined from any of the ARMA (or MA) procedures
described in [26, pages 271–275] or [18, Chapter 10], including Prony’s method with
constant term. These methods are by themselves less than satisfactory in producing
synthetic speech, because they do not matches the finite window of covariance lags
and may not yield stable minimum-phase models. However, the estimates of the
zeros need not be perfect, since our procedure produces corresponding poles so that
the overall zero-pole model matches the finite window of covariance lags and is stable
minimum-phase.
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Figure 15: Selecting the zeros from a periodogram.

With all this in mind, we now proceed to describe the method for zero estimation
that we propose and that we have used in the simulations in this paper. It has several
features in common with the procedures described in [38], but it always yields a stable
numerator polynomial B. The spectrum is estimated using a smoothed periodogram
obtained by cepstral smoothing. Explicitly, the cepstral parameters are calculated
from the data (2.7) using an inverse discrete Fourier transform on the logarithm of
the periodogram, after which the cepstral coefficients are windowed and inversely
transformed [30, p. 494–495]. Using this procedure we obtain a smooth estimate

Φ̂(eiθk), k = 1, . . . , N. (4.5)

Then, in view of (2.4), (2.6), (3.13) and (3.6), the basic spectral estimation problem
could be formulated in the following way: Given the estimates (4.5), find pseudo-
polynomials P and Q of the form (3.5) and (3.12) such that

max
k

|Q(eiθk)Φ̂(eiθk) − P (eiθk)|

is minimized. This leads to a standard linear programming problem in the 2n + 2
variables δ, p1, . . . , pn, q0, q1, . . . , qn, namely to find δ, P,Q that minimizes δ subject to
the 4N constraints that

Q(eiθk)Φ̂(eiθk) − P (eiθk) − δ ≤ 0,

−Q(eiθk)Φ̂(eiθk) + P (eiθk) − δ ≤ 0,

P (eiθk) ≥ ε,

Q(eiθk) ≥ ε

hold for k = 1, 2, . . . , N . Here the design parameter ε > 0 must be be chosen large
enough to insure that P and Q are positive on the unit circle. Given the solution to
this linear programming problem, A and B can be obtained via spectral factorization
(3.13) and (3.6) of P and Q.
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Note that this procedure in general only provides a good estimate of the positive
pseudo-polynomial P , which is precisely what we need. However, the estimate of Q
is good enough to serve as an initial condition for the optimization algorithm, which
we shall present next.

4.2. The algorithm. The minimization of (3.22) given the constraints (3.23) is
a convex optimization problem for which there are many standard algorithms and
software that determine the minimizing (q0, q1, . . . , qn) recursively. Most generic codes
for convex optimization will compute the gradient (first derivative) and/or Hessian
(second derivative) for use in a recursive algorithm, such as defined, for example,
by Newton’s method. However, for the specific problem of minimizing JP , both the
gradient and the Hessian can be computed directly, without computing the values
of the function (3.22), using the computation of the covariances of an associated
process and using Fourier transforms. (On the other hand, also the values of JP can
be computed in this way. These may be useful in deciding the step size.) While
the covariance data are well known to be computable using just recursive algorithms
employing only ordinary arithmetic operations, the fact that the computation of the
Fourier coefficients can be computed using just recursive algorithms and ordinary
arithmetic operations is quite unexpected. For this reason, a direct application of
Newton’s method gives an efficient and easily implementable algorithm.

More precisely, the gradient is given by (3.24), where the covariances f0, f1, . . . , fn
can be determined, via ordinary arithmetic operations, by first performing the factor-
ization (3.13) and then applying the procedure to determine covariance lags described
in Subsection 3.1 to A(z). To implement Newton’s method we also need the Hessian
of (3.22), i.e., the matrix function of second derivatives of (3.22), i.e.,

Hij(q0, q1, . . . , qn) :=
∂2JP
∂qi∂qj

(q0, q1, . . . , qn)

= 1
2
(hi+j + hi−j) i, j = 0, 1, 2, . . . , n, (4.6)

where

hk =
1

2π

∫ π

−π

eikθ
P (eiθ)

Q(eiθ)2
dθ for k = 0, 1, 2, . . . , 2n (4.7)

and h−k = hk. Consequently, h0, h1, . . . , h2n are the 2n+ 1 first Fourier coefficients of
the spectral representation

P (eiθ)

Q(eiθ)2
= h0 + 2

∞∑
k=1

hk cos(kθ), (4.8)

so, in the same way as above, the procedure described in Subsection 3.1 to compute
covariance lags can be used to compute h0, h1, . . . , h2n. Since the Hessian is the sum of
a Toeplitz matrix and a Hankel matrix, the search direction at the point q0, q1, . . . , qn,
i.e.

d := H−1(f − r) (4.9)

(where r and f are the n+ 1 vectors with components r0, r1, . . . , rn and f0, f1, . . . , fn
respectively) can then be determined directly or via a fast algorithm [17].
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In fact, Newton’s method amounts to recursively updating the vector q with com-
ponents q0, q1, . . . , qn according to the rule

qk+1 = qk + λkd
k, (4.10)

where dk is the search direction (4.9) at the point qk; see e.g. [28, pages 94–95]. Here
the step size λk is chosen so that qk+1 satisfies the constraints (3.23), which could be
tested, for example, in a preselected number of points on the interval [−π, π] and/or
through the positivity test performed in conjunction with the factorization (3.13).
An efficient alternative test is given in [7]. For the initial point q0 we may use the
Q obtained by the linear programming procedure in Subsection 4.1, or q0 can be
obtained via

Q0(eiθ) = q00 + q01 cos θ + q02 cos 2θ + · · · + q0n cosnθ = |A0(eiθ)|2,

where A0(z) is an arbitrary stable polynomial. For A0(z) we could choose the poly-
nomial A(z) obtained by the LPC (maximum entropy) procedure.

We can determine the gain parameters (3.29) from the LLN filter polynomials A
and B in the following way. For k = n, n− 1, . . . , 1, solve the recursions


ak−1,j = akj + αk−1ak,k−j, anj = aj
αk−1 = −akk

ak0

bk−1,j = bkj − βkak,k−j, bnj = bj
βk = bkk

ak0

(4.11)

for j = 0, 1, . . . , k, and set β0 = b00
a00

. This is a well-known procedure; see, e.g., [3, 4].
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Figure 16: Determining the LLN parameters.
Given r and B(z), the recursive selection method for determining the LLN gains

is described in the flow chart of Figure 16. Starting with the initial pole polynomial,
in each step we first determine the vector f with components f0, f1, . . . , fn via (3.26)
in the manner described above, taking Q(eiθ) = |A(eiθ)|2. Next, we test whether the
current approximation r̂ of the partial covariance sequence c is within the tolerance
ε of c. If it is not, we continue the recursive algorithm by updating A(z). If it
is, we terminate the recursive steps and determine the filter parameters (3.29) via
the recursions (4.11). The updating is performed by taking a Newton step (4.10) as
described above, computed from the present A(z) by setting Q(eiθ) := |A(eiθ)|2. The
updated A(z) polynomial is obtained by factoring the pseudo polynomial Qk+1(z)
corresponding to the updated point qk+1, thereby also checking that the positivity
condition (3.23) is fulfilled.

4.3. Examples. In this example, we continue the analysis of the frame of speech
acquired during the formation of the voiced nasal [ng]. Using the algorithm presented
in this section, we developed an LLN filter of order ten, corresponding to p0, p1, . . . , p10

estimated as

8.5239,−12.7547, 3.6721, 4.4813,−8.4441, 7.3920,−3.3536, 0.1054, 0.9298,−0.6658, 0.1987,

and matching the covariance lags (r0, r1, . . . , r10), given by

(.7468, .6487, .4335, .1885,−.0040,−.0990,−.1265,−.1105,−.0700,−.0085, .0706).

To the left in Figure 17 we show a periodogram determined from the frame of
the voiced nasal [ng] together with the spectral envelope of the corresponding 10th
order LLN filter. To the right in Figure 17 we compare the performance of this
10th order LLN filter with an LPC filter of order 20, obtained from the data string
r0, r1, r2, . . . , r20, where the additional data (r11, r12, . . . , r20) is given by

(.1559, .2160, .2192, .1591, .0413,−.0968,−.2131,−.2811,−.2772,−.2103).
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Figure 17: Periodogram with a tenth order LLN (left) and 20th order LPC spectral envelope (right).

Unlike the sixth order LLN filter presented in the previous section (Figure 12), the
20th order LPC filter uses 8 more parameters, but still cannot incorporate the notch
occurring at roughly θ = π/2. This series of simulations suggests that, at least for
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certain signals, it is better to use extra parameters to fit zeros than to fit additional
poles, in harmony with the literature on speech synthesis [5, 26, 33].

As a final illustration, we return to the example in [35] studied in Section 3, in the
context of designing LLN filters. More explicitly, we wish to illustrate the option,
mentioned above, of using good a priori estimates of the modeling filter zeros as
an initial condition for the LLN algorithm. One source of such a priori estimates
is, of course, zero estimates obtained from an ARMA estimation scheme, where the
estimated zeros can then be used to produce an enhanced ARMA model matching
the covariance window. Here, as an initial condition for the LLN algorithm we have
used two sources for estimates of the zeros, the zero estimates obtained from the
CCM algorithm and the zero estimates obtained in [35](i) as described above. (See
Figure 18.)
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Figure 18: Poles and zeros for using CCM zeros (left) and zeros from [35](i) (right) vs. true ones (bold).

We then compare the resulting sequence of covariance lags and the pole locations
derived from this combination of CCM/LLN with the locations obtained with CCM,
and from the combination of [35](i)/LLN with the locations obtained in [35](i).

LLN with CCM zeros LLN with zeros from [35](i) CCM [35](i)
cepstral error .0270 .0395 .0098 .0561
covariance error .0099 .0191 .0428 .0765

Table 2: Comparing LLN using zeros CCM and from [35] with the corresponding result in [35].

It is interesting to note the trade-off in cepstral matching for the CCM filter – which
was designed using a cepstral penalty – for improved covariance matching for the
CCM/LLN filter, while in the case of the [35](i)/LLN filter both cepstral matching
and covariance matching were improved, as shown in Table 2. These results both
confirm the fact that the use of good a priori information or estimation of the zero
polynomial will be reflected in the quality of the pole estimates for this method, and
that existing ARMA schemes may in fact be used in conjunction with LLN techniques
to enhance the performance of both algorithms with respect to covariance matching.

5. Conclusions

The methods for pole-zero modeling that we described in this paper retain some
of the most important features of LPC design, namely that the resulting modeling
filter be rational of degree at most n, have stable zeros and poles, and match the
finite window of covariance lags. To start, we required the resulting modeling filter
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to also match a finite window of cepstral coefficients. Generalizing the Newton sum
formulae for LPC filters to the case of pole-zero models, we show that each modeling
filter of degree n determines, and is uniquely determined by, its nth order windows of
cepstral and covariance coefficients. This characterization has an intuitively appealing
interpretation of a characterization in terms of measures of the transient and the
steady-state behaviors of the signal, respectively. We show that this follows from
a convex minimization algorithm that yields a model with the required matching
properties, provided the filter has degree n.

Generalizing the maximum entropy construction of LPC filters, we modified this
scheme to a more well-posed optimization problem where the covariance data enters
as a constraint and the linear weights of the cepstral coefficients are “positive” – in
a sense that a certain pseudo-polynomial is positive. This new problem is a homo-
morphic filter generalization of the maximum entropy method, leading to the design
of all stable, minimum-phase modeling filter of degree n that interpolate the given
covariance window. This was illustrated in the context of developing a spectral en-
velope for a frame of speech extracted from an unvoiced sample, in the case of both
the new cepstral maximization method for a system of order six and for the classical
construction of an LPC (all pole) model of order 12.

In the last section, it was first observed that, by spectral factorization, each choice
of positive pseudo-polynomial determines, and is determined by, a choice of stable
zeros for the modeling filter, giving an alternative derivation of the recent solution to
the rational covariance extension problem in terms of the assignability of the moving
average part. This parameterization of all modeling filters in terms of the modeling
zeros and the covariance window is another manifestation of our earlier description of
modeling filters using measures of the transient and the steady-state behaviors of the
signal. Indeed, the choice of zeros and covariance window determines, and is uniquely
determined, by a choice of zeros and poles of the modeling filter.

Since these filters can be realized in lattice-ladder form, and since this provides a
design method for deriving modeling filters matching a covariance window but having
arbitrary stable zeros (or “notches” in the power spectrum of the ARMA model),
these filters are referred to in this paper as “lattice-ladder notch” filters, or LLN
filters. An algorithm is presented for realizing LLN filters in lattice-ladder form,
given the covariance window and the moving average part of the model. This is
illustrated using refinements of the spectral estimates developed in Section 3 for a
frame of unvoiced speech.

Finally, we illustrate the fact that, while we also show how to determine the moving
average part using cepstral smoothing, one can make use of any a priori (e.g., ARMA
modeling) estimate for the system zeros to initialize an enhancement of the modeling
filter as well as to obtain better covariance matching. Indeed, we concluded the paper
with an example of this method, incorporating an ARMA modeling technique from
the literature to obtain an initial estimate of the system zeros.
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