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Abstract. Traditional maximum entropy spectral estimation determines a power spec-
trum from covariance estimates. Here we present a new approach to spectral estimation,
which is based on the use of filter banks as a means of obtaining spectral interpolation
data. Such data replaces standard covariance estimates. A computational procedure for
obtaining suitable pole-zero (ARMA) models from such data is presented. The choice of
the zeros (MA-part) of the model is completely arbitrary. By suitably choices of filter-
bank poles and spectral zeros the estimator can be tuned to exhibit high resolution in
targeted regions of the spectrum.

1. Introduction

In this paper we present a novel approach to spectral estimation, which relies on new results
in analytic interpolation theory, developed in [10] and based on efforts by the authors over a
number of years [2]–[10], [16]–[19].

The approach leads to a Tunable High REsolution Estimator (THREE), based on three ele-
ments, namely (i) a bank of filters, (ii) a theory for parameterizing the complete set of spectra
which are consistent with the “filter measurements” and have bounded complexity, and (iii)
computational procedures for constructing spectra from the set described in (ii).

The purpose of the bank of filters is to process, in parallel, the observation record in order
to obtain estimates of the power spectrum at desired points. These points are related to the
filter-bank poles and can be selected to give increased resolution over desired frequency bands.
The theory in (ii) implies that a second set of tunable parameters are given by so-called spectral
zeros which determine the Moving-Average (MA) part of solutions. The solutions turn out to
be spectra of Auto-Regressive/Moving-Average (ARMA) filters of complexity at most equal to
the dimension of the filter bank, and hence the method provides parametric spectral models.

The computational procedures in (iii) come in two forms: For the default setting when the
spectral zeros are chosen equal to the filter-bank poles, a particularly simple algorithm, based
on the so-called central solution of the classical interpolation theory, is available. For any other
setting, a convex optimization problem needs to be solved. The theory for this was introduced
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in our companion paper [10], and for a similar problem in [9]. In this paper we consider only
real processes. However, the framework is quite general and applies also to complex-valued
stochastic processes [11].

Typically, the resulting spectra show significantly higher resolution as compared to traditional
linear predictive filtering. Moreover, they appear to be more robust than linear predictive
filtering due to the fact that we use statistical estimates of only zeroth, or first order, covariance
lags as opposed to high order lags. Therefore THREE appears to be especially suitable for being
applied to short observation records.

We demonstrate the applicability of the approach in identifying spectral lines and in estimating
power spectra with steep variations. Such problems occur in many areas of signal processing and
statistical prediction. In particular, in communications, radar, sonar and geophysical seismology,
spectral analysis methods are needed which estimate or describe the signal as a sum of harmonics
in additive noise [29, page 139]. The case when the noise is colored is considered especially
challenging. Therefore, we illustrate the effectiveness of THREE filters for the problem of line-
spectra estimation in colored noise and compare with periodogram and AR-based methods. We
also demonstrate the effectiveness of THREE filters in estimating spectra with zeros and poles
close to each other.

The structure of the paper is as follows. In Section 2 we introduce the bank of filters and
discuss how the covariances of their outputs provide estimates of the power spectrum at the
reflected pole positions. The variability of such statistical estimates and how they are affected
by the position of the poles is briefly considered. Section 3 presents the basic elements of analytic
interpolation that are relevant to the current problem. The classical results are reviewed first,
and then our recent theory of analytic interpolation with degree constraint is explained in the
context of spectral estimation. In Section 4 the computational procedure for the default setting
when the spectral zeros coincide with the filter-bank poles is introduced, and the method is
illustrated by estimation of spectral lines in colored noise. We present a simulation study
comparing THREE with traditional AR filtering and with periodogram analysis. We also give an
example indicating that spectral estimation of certain processes can be considerably improved if
tuning of spectral zeros is used. This leads to Section 5, where the convex optimization approach
is presented. This is based on a generalized concept of entropy and leads to state-space formulae
for the bounded-complexity interpolants. The section is concluded by simulations illustrating
the improved resolution of the THREE method in comparison with other methods.

To improve readability we defer mathematical proofs and certain technical details to the
appendices.

2. Framework for spectral estimation

Let {y(t); t = . . . ,−2,−1, 0, 1, 2, . . . } be a scalar, real-valued, zero-mean, stationary (Gaussian)
stochastic process, and consider the basic problem of estimating its power spectral density Φ(eiθ),
θ ∈ [−π, π], from a finite observation record

{y0, y1, y2, . . . , yN}. (2.1)

Modern spectral estimation techniques typically rely on estimates of covariance lags

c0, c1, c2, . . . , cn, where ck := E{y(t)y(t + k)}. (2.2)
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Here n << N , and E{·} denotes mathematical expectation. Typically, these estimates are
obtained either by suitable averaging of products ytyt+k, or by estimating the partial autocor-
relation coefficients first, using averaging schemes such as Burg’s algorithm. In either case, the
statistical reliability of such estimates decreases with the order k of the lag, due to the fact that
averaging takes place over a shorter list of such cross products.

In this paper, the function

f(z) =
1
4π

∫ π

−π

Φ(eiθ)
z + e−iθ

z − e−iθ
dθ, (2.3)

will play a key role. It is analytic in |z| > 1 and has a positive real part there – such functions
are called positive real. In fact, the spectral density can be written

Φ(eiθ) = 2Re{f(eiθ)}, (2.4)

and f admits a series representation

f(z) = 1
2c0 + c1z

−1 + c2z
−2 + c3z

−3 + . . . for |z| > 1. (2.5)

Equation (2.3) provides a bijective correspondence between positive-real functions f and func-
tions Φ which are positive on the unit circle. We should note that in general Φ has to be
interpreted as a distribution and, in such a case, (2.4) has to be understood as Φ(eiθ) =
2 limr↘1 Re{f(reiθ)} a.e., whereas “spectral lines” correspond to poles of f(z) on the boundary
|z| = 1.

In this context, traditional spectral estimation techniques amount to estimating the real part
of f(z) from estimates of its value at ∞ and on the values of finitely many of its derivatives
at ∞. By way of contrast, our approach is based on the observation that the values of f(z) at
points other than ∞ can be estimated directly from the data (2.1). The computation of such
a positive real f(z), and hence an estimate for Φ(eiθ), is the subject of the theory discussed in
Section 3.

We first describe how to estimate the value of f(z) at any desired point in |z| > 1 from the
data (2.1).

2.1. Evaluation of f at a point. Consider a first-order stable linear filter with transfer
function G(z) = z

z−p
, where |p| < 1, and let u be the stationary process obtained as the output

of the filter when driven by y. Then

u(t) = pu(t− 1) + y(t), (2.6)

and hence we have

E{u(t)2} = E{(y(t) + py(t− 1) + p2y(t− 2) + . . . )2}
= c0(1 + p2 + p4 + . . . )

+2c1p(1 + p2 + p4 + . . . )

+2c2p
2(1 + p2 + p4 + . . . ) + . . .

=
2

1 − p2
f(p−1), (2.7)

and consequently

f(p−1) = 1
2(1 − p2)E{u(t)2}. (2.8)
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This is an interpolation condition for f . It should be noted that, if p is a complex number, then
u is a complex stochastic process. In this case, E{u(t)2} is not the traditional covariance. The
actual covariance is

E{u(t)ū(t)} =
f(p−1) + f(p̄−1)

1 − |p|2 ,

where bar denotes complex conjugation, but, since we want to preserve “phase information”, we
prefer to use (2.8). We should also mention that, in the complex case, the system with transfer
function G(z) is equivalent to a second-order real system, which is easy to derive.

2.2. Bank of filters. Next, given any choice of distinct real or complex numbers p0, p1, . . . , pn

in the open unit disc and the corresponding transfer functions

Gk(z) =
z

z − pk
k = 0, 1, . . . , n, (2.9)

consider the bank of filters depicted in Figure 1. In this parallel connection, each filter is
first-order if complex arithmetic is used, and always when p is real. Otherwise, each complex
pair (p, p̄) corresponds to a second-order filter, as explained above. Then the values of the

G0(z)

G1(z)

Gn(z)

✲

✲

✲

✲

✲

✲







u0

u1

un

y

Figure 1: Bank of filters.

positive real function f(z) at the points {p−1
0 , p−1

1 , . . . , p−1
n } can be expressed in terms of the

covariances of the outputs u0, u1, . . . , un of the filter bank as in (2.8). The idea is now to estimate
these covariances from finite output data generated by the filter bank, thereby obtaining n + 1
interpolation conditions.

2.3. The Pick matrix. A central object in analytic interpolation theory is the so-called Pick
matrix. This matrix arises naturally in the context of our filter bank as the covariance of the
vector process u defined with the output processes u0, u1, . . . , un as components. In fact,

Pn := E{u(t)ū(t)′} =




w0+w̄0
1−p0p̄0

w0+w̄1
1−p0p̄1

. . . w0+w̄n

1−p0p̄n

w1+w̄0
1−p1p̄0

w0+w̄1
1−p1p̄1

. . . w0+w̄n

1−p1p̄n

...
...

. . .
...

wn+w̄0
1−pnp̄0

wn+w̄1
1−pnp̄1

. . . wn+w̄n

1−pnp̄n


 , (2.10)

where

wk = f(p−1
k ) k = 0, 1, . . . n.

Thus, an alternative way to estimate f(p−1
k ) is through estimates of the Pick matrix Pn as a

sample covariance of u(t).
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In this paper we only consider distinct points p0, p1, . . . , pn. The general case will be presented
elsewhere [11]. For example, the usual Toeplitz matrix

Tn =



c0 c1 . . . cn

c1 c0 . . . cn−1

...
...

. . .
...

cn cn−1 . . . c0


 , (2.11)

formed from the partial covariance sequence (2.2) is the Pick matrix for the case in which
p0 = p1 = · · · = pn = 0, in which case the filters in the bank are chosen as Gk(z) = z−k for
k = 0, 1, . . . , n. This is the case considered in usual AR modeling from covariance data.

2.4. Statistical considerations. This brings us to the statistical reasons for our new ap-
proach. In fact, for AR modeling from covariance estimates we need to estimate the Toeplitz
matrix (2.11) from the data record (2.1). If this is done via

T̂n =
1

N − n

N∑
t=n




yt

yt−1

...
yt−n




[
yt yt−1 . . . yt−n

]
,

where ˆ denotes “the sample estimate of”, then a significant portion of the data has not been
fully utilized in estimating lower order covariances due to the large time-lag of some of the filters.
Moreover, T̂n is not in general a Toeplitz matrix. If, instead, we use the covariance estimate

ĉk =
1

N − k

N∑
t=k

ytyt−k,

the corresponding Toeplitz matrix may not be positive definite, something that may be rectified
by dividing by N + 1 rather than N − k, by windowing or, by using Burg’s algorithm. In any
case, any of these methods suffers from the drawback that reliability of the estimate ĉk of the
covariance lag ck decreases considerably as k grows, especially for relatively short time series
[24].

By way of contrast, our method requires only estimating the zeroth covariance lag, or possibly
the first covariance lag in the complex case. It is known that the sample variance of the covariance
estimate

ĉ0 :=
1

N + 1

N∑
t=0

y2
t

is given by

var(ĉ0) =
2

N + 1

∞∑
k=−∞

c2
k.

(See [24, Section 48.1, Equation (48.6)].) But, using Parseval’s theorem, this can be expressed
in terms of the spectral density Φ(eiθ) as follows:

var(ĉ0) =
1

π(N + 1)

∫ π

−π

|Φ(eiθ)|2dθ.
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Therefore, ignoring any transient effects and assuming that the output process u of a filter
G(z) driven by y is stationary, the sample variance of the estimate

ĉ0(u) :=
1

N + 1

N∑
t=0

u2
t (2.12)

becomes

var(ĉ0(u)) =
1

π(N + 1)

∫ π

−π

|G(eiθ)|4|Φ(eiθ)|2dθ. (2.13)

This quantifies the effect of the frequency response of G(z) = z
z−p

, for real p, on the variance of
statistical estimators for f(p−1) when estimated by (2.12). In the simple case where Φ(eiθ) ≡ 1,

var(ĉ0(u)) =
2

N + 1
1 + p2

(1 − p2)3
.

In general, the shape of |G(eiθ)| and its relation to |Φ(eiθ)| has a direct effect on var(ĉ0(u)).
The analysis for complex p is similar. The general observation is that choosing the filter poles
too close to the unit circle may produce larger errors. Such a strategy will also produce more
accentuated transients and is therefore not without cost. We expect that detailed statistical
analysis will point to suitable rules for dealing with the relevant trade-offs.

3. Interpolation theory for spectral estimation

In the following we assume that the filter-bank poles p0, p1, . . . , pn are distinct with p0 = 0 and
complex poles occurring in complex pairs. The condition p0 = 0 implies that G0 ≡ 1 so that the
process y is itself one of the filter-bank outputs. Now, estimating the spectral density Φ from
finite observation records of the outputs of the filter bank amounts to determining a positive
real function f such that

f(p−1
k ) = wk, k = 0, 1, . . . , n, (3.1)

where

wk :=
1
2
(1 − p2

k)ĉ0(uk), k = 0, 1, . . . , n (3.2)

with ĉ0(u0), ĉ0(u1), . . . , ĉ0(un) estimated as in (2.12). (Alternatively, if real arithmetic is required,
statistical estimates consistent with the analysis in Section 2.3 could be used.) Then (2.4)
provides us with an estimate of the spectral density of y. Since we want this estimate to be
rational of minimal complexity, we also require that

deg f ≤ n, (3.3)

i.e., that f is a rational function of degree at most n.

3.1. Classical interpolation theory. For the moment, let us ignore the degree constraint
(3.3). Then, given interpolation points p0, p1, . . . , pn inside the unit circle and values w0, w1, . . . , wn

in the right half plane, the problem to determine all positive real functions f satisfying (3.1)
is a classical analytic interpolation problem, the Nevanlinna-Pick interpolation, which has its
roots in classical mathematics going back to the end of the 19th century, on approximate in-
tegration, quadrature formulae and the moment problem. The foundations of Nevanlinna-Pick
interpolation were laid out by C. Carathéodory, I. Schur, R. Nevanlinna, G. Pick, G. Szegö in
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the beginning of the 20th century; see, e.g., [20, 31]. The subject evolved into a rich topic in
operator theory [28, 30, 15].

Nevanlinna-Pick theory states that a solution exists if and only if the so-called Pick matrix

Pn :=
[
wk + w̄�

1 − pkp̄�

]n

k,�=0

(3.4)

is non-negative definite. In the case that Pn is positive semi-definite but singular, the solution
is unique. In the case Pn > 0, the complete set of solutions is given by a linear fractional
transformation, which is constructed from the interpolation data, acting on a “free” parameter
which is only required to have certain analytic properties, e.g., to be a positive-real function. A
detailed exposition can be found in [31].

A generalization of the problem known as the Carathéodory-Fejér problem, allows for the
possibility that f(z) is specified both in terms of values and derivatives up to some order at points
outside the disc. Again, the solvability condition is expressed in terms of a suitable (generalized)
Pick matrix and all solutions are parameterized by a linear fractional transformation. We refer
the reader to the standard mathematics literature [31, 20, 28, 30] for details.

3.2. Interpolation with a degree constraint. This classical theory is very elegant, but the
parameterization of all solutions to the interpolation problem includes functions which may
have very high degree, or even be nonrational, and provides no means of characterizing those
solutions which satisfy the degree constraint (3.3). One particular such solution, the so-called
central solution to be described below, is obtained by a trivial choice of the free parameter, but
a complete parameterization of all solutions satisfying (3.3) requires a new paradigm. In fact,
the requirement that the degree of the interpolant f be at most n imposes (a highly nontrivial)
nonlinear constraint on the class of solutions. The study of this constraint solution set has led to
a rich theory, [2]–[10] and [16]–[19], which has lead to the following complete parameterization
of all such solutions in terms of spectral zeros. We recall that a polynomial is called stable if all
its root are located in the open unit disc {z | |z| < 1}.

Theorem 3.1. Let p0, p1, . . . , pn be a self-conjugate set of distinct points inside the unit circle
and w0, w1, . . . , wn a corresponding self-conjugate set of values in the right half plane with the
property that the Pick matrix (3.4) is positive definite. Then, to any real stable polynomial

ρ(z) = zn + r1z
n−1 + · · · + rn−1z + rn

there corresponds a unique pair of real stable polynomials

α(z) = a0z
n + a1z

n−1 + · · · + an and β(z) = b0z
n + b1z

n−1 + · · · + bn,

of degree n such that

α(z)β(z−1) + β(z)α(z−1) = ρ(z)ρ(z−1) (3.5)

and the rational function

f(z) :=
α(z)
β(z)

(3.6)

is positive real and satisfies the interpolation condition

f(p−1
k ) = wk k = 0, 1, . . . , n. (3.7)
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This theorem, here presented in a special form adapted to self-conjugate interpolation data,
also holds in the more general case where the interpolation data are of the Carathéodory-
Féjer type, i.e., include constraints on the derivative of f(z), and was first formulated in the
special (Carathèodory) case with a single multiple interpolation point at z = ∞, the so-called
rational covariance extension problem. Existence was first proven in this context in [16, 18] and
uniqueness, as well as well-posedness, in [5]; see [7, 8] for alternative proofs. Existence for the
distinct point Pick-Nevaninna problem was proven in [17] and uniqueness in [19]. Theorem 3.1
is available in a somewhat more general form, allowing ρ to have roots on the circle [19].

However, all these proofs are nonconstructive and thus they do not provide a method of
solution. A constructive proof based on convex optimization was presented in [9] for the
Carathèodory case and in [10] for the Nevanlinna-Pick problem. This result, as well as an
algorithm based on it, will be presented in Section 5.

The theorem extends to interpolation of matrix-valued functions (see [16] where existence of
solutions were shown in the context of Carathèodory interpolation). An approach generalizing
this result to the context of the commutant-lifting theory is the subject of [11].

Dividing (3.5) by α(z)α(z−1) yields

f(z) + f(z−1) = g(z)g(z−1), (3.8)

where

g(z) =
ρ(z)
α(z)

, (3.9)

i.e, (3.9) is the minimum-phase spectral factor of the spectral density (3.8). For this reason, we
shall refer to the roots of ρ as the spectral zeros of f . In this notation, Theorem 3.1 states that
to each self-conjugate set of n points σ1, σ2, . . . , σn inside the unit circle there is a unique stable
polynomial

α(z) = a0z
n + a1z

n−1 + · · · + an−1z + an (3.10)

so that the positive-real part f of

ρ(z)ρ(z−1)
α(z)α(z−1)

with ρ(z) =
n∏

k=1

(z − σk)

satisfies the interpolation conditions (3.1). Moreover, σ1, σ2, . . . , σn are the spectral zeros of the
interpolant f . Once both ρ and α are known, the stable polynomial

β(z) = b0z
n + b1z

n−1 + · · · + bn−1z + bn (3.11)

is uniquely determined by (3.5). In fact, identifying coefficients of like powers in z, the coefficients
of β are seen to satisfy the system of linear equations






a0 . . . an−2 an−1 an

a1 . . . an−1 an

a2 . . . an
... . . .

an




+




a0 a1 a2 . . . an

a0 a1 . . . an−1

a0 . . . an−2

. . .
...
a0










b0

b1

b2
...
bn




=




1 + r2
1 + r2

2 + · · · + r2
n

r1 + r1r2 + rn−1rn

r2 + r1r3 + rn−2rn
...
rn



,

(3.12)

which has a unique solution for any stable polynomial α(z).
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3.3. Application to the problem of spectral estimation. As suggested earlier, passing
data (2.1) through a bank of filters with a pole setting p0, p1, . . . , pn and estimating the covari-
ance of the output variables, gives a set of parameters w1, w2, . . . , wn via (3.2). In the ergodic
limit, the corresponding Pick matrix Pn, defined by (3.4), will be given by (2.10) and hence
must be positive definite as required, e.g. in Theorem 3.1. The THREE method relies on the
preceding interpolation theory and identifies transfer functions g, as in (3.9), such that |g(eiθ)|2
are approximations of the power spectrum Φ(eiθ) of y. Thus, a process {ŷ(t)}t∈Z , obtained by
passing (normalized) white noise {ν(t)}t∈Z through the modeling filter

white noise ν−→ g(z) ŷ−→

and letting it come to a statistical steady state, will generate a statistical approximant of y. The
relevant ARMA model is given by the difference equation

a0ŷ(t) + a1ŷ(t− 1) + · · · + anŷ(t− n) = ν(t) + r1ν(t− 1) + · · · + rnν(t− n). (3.13)

Consequently, we shall refer to r1, r2, . . . , rn as the MA parameters and to a0, a1, . . . , an as the
AR parameters of the THREE filter (3.13). The complete set of MA and AR parameters
will be called the THREE filter parameters. In this context, Theorem 3.1 states that to any
choice of MA parameters (such that ρ(z) is a stable polynomial) there corresponds a unique
choice of AR parameters (with α(z) likewise stable) so that the positive-real part of the spectral
density satisfies the interpolation conditions (3.1). Hence the MA parameters can be chosen
arbitrarily. It is interesting to note that the analogous statement for the AR parameters is false.
In other words, an arbitrary choice of AR parameters may not have a matching selection of MA
parameters so that together they meet the required constraints.

Theorem 3.1, is an existence result. The computational problem at hand amounts to the
following: given a choice of MA parameters (with ρ(z) stable as usual), find the corresponding
set of AR parameters and hence the unique pair (α, β) of stable polynomials satisfying (3.5),
(3.6) and (3.7). In conclusion, there are two sets of design parameters:

(i) the filter-bank parameters p1, p2, . . . , pn, p0 = 0 being fixed, which we represent as the
roots of a polynomial

τ(z) :=
n∏

k=1

(z − pk) = zn + τ1z
n−1 + · · · + τn−1z + τn, (3.14)

and
(ii) the MA parameters r1, r2, . . . , rn, or, alternatively, the spectral zeros σ1, σ2, . . . , σn, which

are the roots of

ρ(z) :=
n∏

k=1

(z − σk) = zn + r1z
n−1 + · · · + rn−1z + rn. (3.15)

The power of THREE filtering stems from the flexibility in the above choices. In particular,
if reliable approximation of Φ(eiθ) is required over some specified part of the spectrum θ ∈
S ⊂ [−π, π], this can be accomplished by placing the filter-bank poles p0, p1, . . . , pn near the
corresponding arc {eiθ | θ ∈ S}. However, it should be noted that the filter-bank poles must not
be selected too close to the circle, because then, statistical estimates of the output covariances
become less reliable as explained in Section 2. We should also mention another related caveat:
if the observation record is too short, the Pick matrix may fail to be positive. In this case we
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must either collect more data, select a different set of filter-bank poles (e.g., select a new set
closer to the origin, or simply a subset of the existing one), or add a small positive bias to the
estimated values w0, w1, . . . , wn (e.g., add to each a constant λ larger than the absolute value of
the minimal negative eigenvalue of PnE

−1
n , where En = [2/(1 − pj p̄k)]

n

j,k=0
).

There is a special default setting of the spectral zeros, namely σk = pk for k = 1, 2, . . . , n, i.e.,
setting

ρ(z) ≡ τ(z), (3.16)

for which the problem of computing α(z) requires solving only linear equations. This relates
to the so-called central solution, in classical interpolation theory and is discussed in Section 4.
The general case, which is capable of higher resolution, requires a proper choice of spectral zeros
and then the solution of a convex optimization problem. This will be discussed in Section 5.
It is interesting to remark that, even if AR-modeling is required, which fixes ρ(z) = zn, the
solution claimed by Theorem 3.1 and the THREE method cannot be obtained with the Levinson
algorithm – the Levinson algorithm is only applicable when the covariance lags c0, c1, . . . , cn of
y are available.

4. The central solver for the default filter

In this section we consider the special case that the MA parameters are set to the default values,
rk = τk for k = 1, 2, . . . , n, i.e., ρ = τ . Determining the AR parameters is then considerably
simplified, since this choice corresponds to the central solution, mentioned above. As it turns
out, the central solution is precisely the positive real function maximizing the entropy gain

1
2π

∫ π

−π

log(f(eiθ) + f(e−iθ))dθ, (4.1)

subject to the constraints (3.1). In Section 5 we shall see that this optimization problem can be
generalized to yield interpolants for any other choice of MA parameters.

4.1. The algorithm. Next, we explain the steps of the algorithm for the central solution,
deferring technical details to Appendix A.

Consider the subset of interpolation conditions (3.1) for k = 1, 2, . . . , n, excluding f(p−1
0 ) =

w0. Any positive-real function satisfying these n conditions is given by a linear fraction trans-
formation

f(z) =
M1(z)ϕ(z) + M2(z)
M3(z)ϕ(z) + M4(z)

, (4.2)

where ϕ is a positive real function, and

M(z) =

[
M1(z) M2(z)
M3(z) M4(z)

]
(4.3)

is the (J-unitary) rational matrix function (4.13) which depends on the interpolation data. The
proof is deferred to Appendix A, while the construction of the M(z) is described in this section.
The particular choice

f(z) =
M1(z)µ + M2(z)
M3(z)µ + M4(z)

(4.4)
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with ϕ(z) constant and equal to

µ =
w0M4(∞) −M2(∞)
M1(∞) − w0M3(∞)

, (4.5)

turns out to satisfy the omitted interpolation condition f(p−1
0 ) = w0. In fact, this choice turns

out to be the solution to our original problem, i.e. f(z) has the required degree and the default
values of the MA parameters. Moreover, this is the unique solution which maximizes the entropy
gain (4.1). The proof of this last fact is given in Appendix A.

It is well-known that solutions to interpolation problems can be represented by linear fractional
transformations. Hence, one may wonder why we decompose our problem into two steps – first
omitting one condition, and then trying to satisfy it by a suitable choice of the free parameter
ϕ. The reason is that a formula (4.2) for the complete set of interpolation conditions (including
the condition at k = 0) requires finding an appropriate free parameter ϕ of degree one in order
to satisfy the degree constraint (3.3), which is slightly more complicated.

We now explain how to construct the matrix function M(z) in (4.3). Consider the set of ana-
lytic functions F , mapping the right half-plane into the unit disc, which satisfy the interpolation
conditions

F (sk) = vk k = 1, 2, . . . , n, (4.6)

where

sk =
1 − pk
1 + pk

and vk =
1 − wk

1 + wk

k = 1, 2, . . . , n. (4.7)

It is well-known and easy to prove that the all-pass filter (i.e., Blaschke product)

B(s) =
n∏

k=1

s− sk
s + sk

has a state-space representation

B(s) = c(sI −A)−1P−1c′ + 1,

where the symmetric positive definite matrix P is the solution of the Lyapunov equation

A′P + PA = c′c. (4.8)

Here the matrix A is unstable, in the sense that it has all its eigenvalues in the right half-plane.
In fact, its characteristic polynomial is

τ̂(s) :=
n∏

k=1

(s− sk) = sn + τ̂1s
n−1 + · · · + τ̂n−1s + τ̂n,

and hence we may choose A and c in the observer canonical form

A =




−τ̂1 −τ̂2 . . . −τ̂n−1 −τ̂n

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0



,

c =
[
0 0 . . . 0 1

]
(4.9)
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Note that τ̂(s) is the polynomial obtained from τ(z), defined by (3.14), under the linear fractional
transformation s = z−1

z+1
.

Next, we determine the coefficients π1, π2, . . . , πn so that the rational function

V (s) =
π1s

n−1 + π2s
n−2 + · · · + πn

τ̂(s)

satisfies the interpolation (4.6). This is done by solving the Vandermonde system


sn−1
1 . . . s1 1
sn−1
2 . . . s2 1
...

...
...

...
sn−1
n . . . sn 1







π1

π2

...
πn


 =




τ̂(s1)v1

τ̂(s2)v2

...
τ̂(sn)vn


 .

Clearly, V (s) has a realization

V (s) = c(sI −A)−1b,

where A and c are given by (4.9) and b can be determined from π1, π2, . . . , πn by standard
methods.

It turns out that all interpolants F satisfying (4.6) are given by

F (s) =
L1(s)Y (s) + L2(s)
L3(s)Y (s) + L4(s)

, (4.10)

for some function Y which is analytic and bounded by one in the right half-plane, where

L(s) :=

[
L1(s) L2(s)
L3(s) L4(s)

]
=

[
c

−b′P

]
(sI −A)−1

[
P−1Nc′ −N ′b

]
+ I. (4.11)

Here N = (I − PQ)−1, where Q is the symmetric positive definite solution of the Lyapunov
equation

(A− P−1c′c)Q + Q(A− P−1c′c) = bb′. (4.12)

The matrix I − PQ is invertible precisely when solutions do exist.
Returning to our original interpolation problem, the matrix function (4.3) needed in the

representation (4.4) is given by

M(z) =
1√
2

[
−1 1
1 1

]
L(

z − 1
z + 1

). (4.13)

Since τ̂ corresponds to τ under the transformation s = z−1
z+1

, τ(z)M(z) is a matrix polynomial,
and consequently the central interpolant (4.4) is given by

f(z) =
β̂(z)
α̂(z)

,

where α̂(z) and β̂(z) are the polynomials

α̂(z) := α̂0z
n + α̂1z

n−1 + · · · + α̂n = τ(z)[M3(z)µ + M4(z)],

β̂(z) := β̂0z
n + β̂1z

n−1 + · · · + β̂n = τ(z)[M1(z)µ + M2(z)].
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However, to obtain the α(z) which matches the MA parameters r = τ , and hence the THREE-
filter parameters, α̂(z) needs to be normalized by setting

α(z) =
1 + τ 2

1 + · · · + τ 2
n

2(α̂0β̂0 + α̂1β̂1 + α̂nβ̂n)
α̂(z).

4.2. Simulation studies. In this section we demonstrate the performance of THREE filters
in the default setting of the central solution, and compare with traditional spectral estimation
techniques.

Example 1. We begin by estimating spectral lines in colored noise – a problem which is re-
garded as challenging [27, pages 285–286]. Consider the following signal y comprised of two
superimposed sinusoids in colored noise:

y(t) = 0.5 sin(ω1t + φ1) + 0.5 sin(ω2t + φ2) + z(t) t = 0, 1, 2, . . . ,

z(t) = 0.8z(t− 1) + 0.5ν(t) + 0.25ν(t− 1)

with φ1, φ2 and ν(t) independent normal random variables with zero mean and unit variance.
The objective is to estimate the power spectrum in the vicinity of the spectral lines. In particular,
it is desirable to be able to resolve the two distinct spectral peaks. Two cases are investigated,
which differ in the separation of the spectral lines. In Case A we take the spectral lines at
frequencies ω1 = 0.42 and ω2 = 0.53, and in Case B at frequencies ω1 = 0.45 and ω2 = 0.47.

The model is used to generate five sets of 300 data points in separate runs. This is done in or-
der to investigate the statistical variability of the estimates and the robustness of the estimation
methods. Three different spectral estimation methods are compared: (i) periodograms, com-
puted with state-of-the-art windowing technology, as implemented in the Identification Matlab
Toolbox command etfe, with smoothing parameter M set to 60; (ii) Levinson/AR filtering of
order 12, based on covariance lags; and (iii) THREE filter design of order 12 with the filter-bank
poles chosen at

(0, .85,−.85, ρe.42i, ρe.44i, ρe.46i, ρe.48i, ρe.50i),

where ρ = 0.9 in Case A and ρ = 0.93 in Case B, and the MA parameters set at the default
setting corresponding to the central solution in both cases. The choice of ρ was dictated by an
ad hoc rule of thumb that the time constant of the system is of the order 1/10 of the length
of the data record, whereas the phases of some of the poles were selected in the part of the
spectrum where high resolution is desired. In Case B, the separation of the sinusoids is smaller
than the theoretically possible distance that can be resolved by the periodogram using a 300
point record under ideal noise conditions, not satisfied here [29, page 33]. In fact, with white
noise and large S/N ratio, this minimum separation between the lines is 2π

300
∼ .021. To achieve

a better resolution (at the expense of some increased variability) the complex filter-bank poles
were chosen slightly closer to the circle in Case B.

The results are depicted in Figure 2. The subplots in the first column correspond to Case A
and those in the second column to Case B. From top to bottom, we display the results using
methods (i) through (iii). In Case A, the estimated spectra from five separate data sets are
superimposed, shown together with a smooth curve representing the true power spectrum of the
colored noise and two vertical lines at the position of the spectral lines. For clarity, in Case B
we only show the outcome of one run.
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The periodogram does reasonably well in Case A but fails in Case B. In both cases, the
Levinson/AR method fails to identify the peaks. It is apparent that only the THREE filter
is capable of resolving the two sinusoids in both cases, clearly delineating their position by
the presence of two peaks. In comparing (i) and (iii), it should be further noted that (i) is
nonparametric, and hence the estimates are not as easily coded for transmission to a remote
receiver as the case is for (iii).
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Figure 2: Spectral estimates of two sinosoids in colored noise.

Example 2. We consider the effectiveness of THREE-based filtering in a case where the power
spectrum has sharp transitions. More specifically, we consider data generated by passing white
noise through a filter with the transfer function

Tθ(z) =
(z − .9eiπ/3.2)(z − .9e−iπ/3.2)

(z − .9eiθ)(z − .9e−iθ)(z − .3eiπ/3.5)(z − .3e−iπ/3.5)
. (4.14)

We consider three cases, where θ takes values π/2.9, π/3 and π/3.1. In each case, the spectrum
of the output has sharp transitions due to the fact that poles and zeros are close to each other.

In Figure 3 we show the results of numerical simulation, where we compare (a) periodogram-
based spectral estimates (etfe(y,50) in Matlab), with (b) Levinson/AR modeling of order four,
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and (c) THREE-based modeling of order four with default setting corresponding to the central
solution and a fixed selection of filter-bank poles set at 0, .8e±.8i, .8e±1.3i. In order to avoid the
effects of variability in the estimates we choose a long record of 2000 data samples. Although,
with such long data record, higher order models would be possible and hence more appropriate,
the issue here is to compare performance for fixed order models.

The first column in Figure 3 corresponds to the choice θ = π/2.9, the second to θ = π/3,
and the third to θ = π/3.1, whereas each row corresponds to a different methods: The first
row corresponds to (a), the second row to (b), the third row to (c) as explained above. In
each of these figures, for easy comparison, the true power spectrum of the process has been
superimposed, drawn by a dashed curve.
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Figure 3: Estimates of sharp spectral transitions.

We see that the THREE filter does considerably better than the other two methods. However,
its performance can be improved further by allowing a choice of spectral zeros away from the
default setting. This requires the theory developed in the next section. Hence, Example 2 is
considered again in Section 5 (Figure 4) with appropriate zero settings.

5. Generalized entropy and convex optimization

In this section we describe how an arbitrary solution of the Nevanlinna-Pick interpolation prob-
lem with degree constraints, as described in Theorem 3.1, can be obtained from a convex opti-
mization problem, and we summarize the steps of a numerical algorithm based on this optimiza-
tion problem. The basic theory has been developed in [10], while Appendix B in the present
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paper complements and extends certain of the key constructions in [10].

5.1. Entropy functionals and convex optimization. Given the polynomial τ(z), defined
by (3.14), let K be the (n + 1)-dimensional vector space of all proper, real, rational functions

q(z) =
π(z)
τ(z)

(5.1)

with denominator τ(z), where

π(z) = π0z
n + π1z

n−1 + · · · + πn

for some real numbers π0, π1, . . . , πn, and let S+ be the convex set of rational functions with the
properties

Q(z) := q(z) + q(z−1) for some q ∈ K, (5.2)

Q(eiθ) > 0 for θ ∈ [−π, π]. (5.3)

Moreover, for each real function f , we define f∗ by f∗(z) := f(z−1).
It turns out to be useful to represent the positive-real function f to be estimated, as a quotient

between two functions in K, rather than a quotient between two polynomials, as before. In fact,
the polynomials α(z) and β(z) in Theorem 3.1 can be replaced by

a(z) =
α(z)
τ(z)

and b(z) =
β(z)
τ(z)

. (5.4)

Then (3.5) becomes

a(z)b(z−1) + b(z)a(z−1) = Ψ(z), (5.5)

where

Ψ(z) =
ρ(z)ρ(z−1)
τ(z)τ(z−1)

(5.6)

belongs to S+. In the central solution, Ψ(z) ≡ 1.
Now, for any Ψ ∈ S+, define the functional

IΨ(f) =
1
2π

∫ π

−π

log[f(eiθ) + f(e−iθ)]Ψ(eiθ)dθ, (5.7)

on the space of positive real functions f . This functional is a generalization of the entropy gain
(4.1). In fact, (4.1) is precisely I1(f).

The generalized entropy gain plays a key role in our theory. In fact, in [10, Theorem 4.1] we
have the following result.

Theorem 5.1. Given any Ψ ∈ S+ there exists a unique solution to the constrained optimization
problem

max{IΨ(f) | f is positive real, f(p−1
k ) = wk for k = 0, 1, . . . , n}. (5.8)

This solution is of the form

f(z) =
b(z)
a(z)

, a, b ∈ K, (5.9)

where

a(z)b∗(z) + b(z)a∗(z) = Ψ(z). (5.10)
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Conversely, if f is a positive-real function which satisfies the interpolation conditions as well as
(5.9) and (5.10), then it is the unique solution to (5.8).

Note that (5.9) is equivalent to requiring that f is of degree at most n. The choice Ψ = 1
yields the central solution of the Nevanlinna-Pick theory which is also known as the “maximum
entropy” solution. All other interpolants of degree ≤ n can be obtained by choosing the corre-
sponding Ψ and solving the generalized entropy maximization problem given above. However,
this optimization problem is infinite-dimensional and therefore not easy to solve. As it turns
out, it has a dual with finitely many variables, and next we shall turn to this problem.

To this end, let w(z) be any real function which is analytic on and outside the unit circle and
satisfies the interpolation conditions

w(pk) = wk, k = 0, 1, . . . , n.

Then, define for each function Q ∈ S+ the functional

JΨ(Q) :=
1
2π

∫ π

−π

{Q(eiθ)[w(eiθ) + w(e−iθ)] − logQ(eiθ)Ψ(eiθ)}θ. (5.11)

It will be shown in Appendix B that this functional does not depend on the particular choice
of w(z) but only on its values in the interpolation points. In fact, it is a quadratic form whose
coefficients are the entries of the Pick matrix (3.4). We could choose the unique such function
in K, which is easily determined by solving a linear system of equations (Appendix B). Note
that w is not positive real in general, and therefore cannot be used as an interpolant.

Using duality theory, the maximization problem of Theorem 5.1 can be seen to be equivalent
to the following convex optimization problem; see [10, Theorem 4.5].

Theorem 5.2. For each Ψ ∈ S+, the convex optimization problem

min{JΨ(Q) | Q ∈ S+} (5.12)

has a unique solution. Moreover, to this minimizing Q, there corresponds a unique positive real
function f satisfying the interpolation conditions

f(p−1
k ) = wk, k = 0, 1, . . . , n (5.13)

where p−1
0 := ∞, and

Ψ(z)
Q(z)

= f(z) + f∗(z). (5.14)

The function f(z) is precisely the maximizing function (5.9) in Theorem 5.1, where a(z) is the
minimum-phase spectral factor of

a(z)a∗(z) = Q(z), (5.15)

and b(z) the unique solution of (5.10), given Ψ and a. Conversely, any positive real function
satisfying (5.13), (5.9) and (5.10) is obtained in this way.

The proofs of Theorem 5.1 and Theorem 5.2, which are very nontrivial, are given in [10]. Since
JΨ is a strictly convex function on a convex set S+, the minimization problem of Theorem 5.2
is a convex optimization problem. Therefore, if there is a minimum in the open set S+, this
minimum is unique and occurs at a stationary point, i.e., at a point where the gradient is zero.
It is proved in [10] that this is indeed the case. It is then quite straight-forward to show that
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the optimal Q defines a unique interpolant f with the required properties. Since this is quite
instructive, we give an alternative proof of this, tailored to our present exposure in Appendix B.
Elements from this derivation will also be needed to derive the gradient and Hessian of JΨ needed
in solving the convex optimization problem.

An advantage of the proof of Theorem 5.2 is that it is constructive and therefore yields an
algorithm for computing an arbitrary interpolant of degree at most n. Since Q is determined
by n + 1 variables via (5.2), it is a finite-dimensional optimization problem. What these n + 1
variables should be depends on what basis we choose forK. Any function q ∈ K has a state-space
representation

q(z) = c(zI −A)−1b + d, (5.16)

where

[
A b

c d

]
=




−τ1 −τ2 . . . −τn−1 −τn

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

hn

hn−1

hn−2

...
h1

0 0 . . . 0 1 h0




(5.17)

with τ1, τ2, . . . , τn given by(3.14). The coordinates

[
b

d

]
:= h =



hn

...
h1

h0


 (5.18)

of this representation are the n + 1 first Markov parameters in the series expansion

q(z) = h0 + h1z
−1 + h2z

−2 + . . . ,

and therefore they will be referred to as the Markov coordinates ofK. We shall write q(z) ∼ (b, d)
to denote this correspondence.

Thus, to formulate an algorithm, we express the functional (5.11) via (5.16) in terms of its
Markov coordinates to obtain

J(h) = JΨ(q + q∗), (5.19)

which is a function Rn+1 → R. To each q ∈ K satisfying (5.2) and (5.3), there corresponds a
positive real function f , obtained from Q := q+ q∗ via (5.14). The idea is now to minimize J(h)
over the region where

q(eiθ) + q(e−iθ) > 0, for −π ≤ θ ≤ π. (5.20)

This is done recursively by Newton’s method, upholding condition (5.5), or, equivalently, condi-
tion(3.5), while successively trying to satisfy the interpolation condition (5.13) by reducing the
interpolation errors

ek = wk − f(p−1
k ), k = 0, 1, . . . , n. (5.21)
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In order to obtain an expression for the gradient, define the n× n Vandermonde matrix

V =



zn−1
1 zn−2

1 . . . 1
zn−1
2 zn−2

2 . . . 1
...

...
. . .

...
zn−1
n zn−2

n . . . 1


 , (5.22)

where zk := p−1
k for k = 1, 2, . . . , n. Since the points z0, z1, . . . , zn are distinct, this matrix is

nonsingular.

Proposition 5.3. Let (5.18) be a point in Rn+1 such that (5.16) satisfies (5.20), let e0, e1, . . . , en

be the corresponding interpolation errors (5.21), and set

Lm =




1
1 τ1

. . . . . .
...

1 τ1 . . . τm


 and v =




(e1 − e0)τ(p−1
1 )

(e2 − e0)τ(p−1
2 )

...
(en − e0)τ(p−1

n )


 . (5.23)

Then the gradient of (5.19) at h is given by

∇J(h) = 2

[
PL−1

n−1V
−1v

2e0

]
, (5.24)

where P is the solution to the Lyapunov equation

P = A′PA + c′c, (5.25)

where A and c are given by (5.17).

The proof of this proposition is given in Appendix B. Note that, since A is a stable matrix
and (c, A) is an observable pair, P is positive definite. Hence the gradient is zero if and only if
the interpolation errors e0, e1, . . . , en are all zero, in harmony with Theorem 5.2.

To apply Newton’s method we also need the Hessian. To this end, we need some notation.
Given an arbitrary real polynomial

γ(z) = g0z
m + g1z

m−1 + · · · + gm, (5.26)

define first the (n + 1) × (m + 1) matrix

M(γ) :=



g0 g1 . . . gn gn+1 . . . gm

g0 g1 . . . gn gn+1 . . . gm
. . . . . . . . . . . . . . .

g0 g1 . . . gn gn+1 . . . gm


 . (5.27)

Secondly, for any (5.26), determine λ0, λ1, . . . , λm such that

γ(z)(λ0z
m + λ1z

m−1 + · · · + λm) = z2m + π(z),
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where π(z) is a polynomial of at most degree m − 1. This yields m + 1 linear equation for the
m + 1 unknowns λ0, λ1, . . . , λm, in terms of which we define the (m + 1) × (m + 1) matrix

N(γ) =




λm . . . λ1 λ0

λm−1 . . . λ0

... . . .

λ0


 . (5.28)

Finally, for an arbitrary stable polynomial (5.26), let A(γ) be the companion matrix with char-
acteristic polynomial γ, formed analogously to A in (5.17) replacing τ(z) by γ(z), and let P (γ)
be the unique m×m-matrix solution of the Lyapunov equation

P (γ) = A(γ)′P (γ)A(γ) + c(γ)′c(γ),

where c(γ) is the m row vector (0, 0, . . . , 0, 1).
Then, we have the following proposition for the (n + 1) × (n + 1) Hessian matrix

H =
[

∂2ϕ

∂hk∂h�

]n

k,�=0

. (5.29)

The proof will be given in Appendix B.

Proposition 5.4. Given Ψ(z), where the polynomials ρ(z) and τ(z) are given by (3.15) and
(3.14), respectively, let (5.18) be a point in Rn+1 such that (5.16) satisfies (5.20), and let α(z)
be the unique stable polynomial satisfying

α(z)α(z−1)
τ(z)τ(z−1)

= q(z) + q∗(z). (5.30)

Then the Hessian (5.29) of (5.19) at h is given by

H = 2H1 + H2 + H ′
2, (5.31)

where

H1 = LnM(ρ)N(α2)

[
P (α2) 0

0 1

]
N(α2)M(ρ)′Ln (5.32)

H2 = LnM(τ∗ρ)N(α2τ)

[
P (α2τ) 0

0 1

]
N(α2τ)M(τρ)′L̃n. (5.33)

Here Ln is given by (5.23), L̃n is the corresponding matrix obtained by reversing the order of
the rows in (5.23), and τ∗(z) := znτ(z−1).

5.2. The algorithm for the tunable filter. We now outline the steps of the algorithm
provided by Theorem 5.2 using Newton’s method in Markov coordinates.

0. Given an initial a, compute q ∈ K, satisfying aa∗ = q + q∗.

1. Compute b ∈ K such that a∗b + b∗a = Ψ, and form f = b/a.
2. Check the interpolation error. Stop if it is sufficiently small.
3. Determine the search direction d = H−1∇J .
4. Update q, and compute a minimum-phase a ∈ K such that aa∗ = q + q∗.

Then return to Step 1.
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To initiate the algorithm, one needs to choose an initial value for a(z), or, equivalently, for
α(z), to be recursively updated. The tuning is done by selecting the polynomials τ(z) and ρ(z),
given by (3.14) and (3.15), respectively.

Given the initial α(z), solve (5.30) for q(z). This can be done in several ways. One is to solve

τ(z)σ(z−1) + σ(z)τ(z−1) = α(z)α(z−1) (5.34)

for σ(z) to obtain

q(z) =
σ(z)
τ(z)

. (5.35)

Identifying coefficients of like powers in z this amounts to solving a regular linear system of
n + 1 equations in n + 1 variables, of the same type as (3.12). Then determining the initial
point in Markov coordinates (5.18) is standard and can be done by premultiplying the vector of
coefficients of σ(z) by Ln, given by (5.23).

The algorithm now proceeds in four steps:

Step 1. In this step we compute f . Given the current α-polynomial (3.10), solve (3.5) for the
β-polynomial (3.11). This is equivalent to solving the linear system (3.12). Next, form the
corresponding positive real function f , defined by (3.6), and compute the interpolation errors
e0, e1, . . . , en, defined by (5.21).

Step 2. In this step we test whether our iterate is sufficiently close to be a minimizing solution.
The algorithm is terminated if the errors e0, e1, . . . , en are sufficiently small, e.g., when

∑n

0 (ek)2

is less than a prespecified tolerance. Otherwise, continue.

Step 3. In this step the search direction of the optimization algorithm is determined. Given the
interpolation errors e0, e1, . . . , en, determine the gradient ∇J from Proposition 5.3, and, given
the current α(z), compute the Hessian H as in Proposition 5.4. Then, the search direction,
corresponding to one Newton step, is given by

d = H−1∇J. (5.36)

Let dprevious denote the search direction d obtained in the previous iteration. If this is the first
iteration, initialize by setting dprevious = 0.

Step 4. In this step the solution is being updated, to yield a new

q(z) = c(zI −A)−1g + h0, g =



hn

...
h1


 ,

with Markov parameters

hnew = h− λd, (5.37)

where λ should be chosen so that the new q(z) satisfies the positivity condition (5.20). We may
also use a variant of Wolfe’s test [26] for accelerating the line search. If, for some constant κ,
‖d‖ < κ‖dprevious‖, increase the value of a parameter λ. Otherwise, retain the previous value of
λ.
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Then, a ∈ K is obtained by spectral factorization. More precisely, given q(z) we solve

a(z)a(z−1) = q(z) + q(z−1)

for the minimum-phase solution a(z), in terms of which α(z) = τ(z)a(z). This is standard and
is done by solving the algebraic Riccati equation

P −APA′ − (g −APc′)(2h0 − cPc′)−1(g −APc′)′ = 0,

for the stabilizing solution. This yields

a(z) = c(zI −A)−1(g −APc′)/
√

2h0 − cPc′ +
√

2h0 − cPc′.

This factorization can be performed if and only if q(z) satisfies condition (5.20). If this condition
fails, this is determined in the factorization procedure, In this case, the value of λ is scaled down,
and (5.37) is used to compute a new value for hnew and then of q(z) successively until condition
(5.20) is met.

Alternatively, an updated value for a can be obtained by determining the polynomial (3.10)
with all roots less than one in absolute value, satisfying (5.34) with σ(z) being the updated
numerator polynomial of q(z) , as shown in (5.35). This is a standard polynomial factorization
problem.

Finally, set h := hnew and return to Step 1.

Example 2 (continued). To illustrate the advantages of the tunable THREE filter, we now
reprocess the data in Example 2 using nontrivial spectral zeros. In general, the spectral zeros can
be selected in the vicinity of the unit circle at approximately the frequencies where the spectrum
has less energy. This selection can be guided by an initial estimate using periodogram.

In the present example, we select spectral zeros at 0,−.8, .8e±iπ/3.3 while keeping the same
filter-bank poles as before. We use the same setting when processing each data set, i.e., the ones
corresponding the parameter θ = 2.9, 3.0 and 3.1. Comparing with the results in Figure 3, it is
evident that the performance is much improved and fairly robust with respect to changes in θ.
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Figure 4: THREE spectral estimates with nondefault spectral-zero setting.

6. Conclusions

In this paper we have introduced a new approach to spectral estimation, which is based on the
use of filter banks as a means of obtaining spectral interpolation data, and which produces an
ARMA model with arbitrary MA-part. An essential property of this Tunable High REsolution
Estimator (THREE) is that its performance can be enhanced for specific applications by tuning
two sets of tunable parameters, the filter-bank poles and the spectral zeros. In particular,
improved resolution can be achieved in designated parts of the spectrum. More specifically, we
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have demonstrated that selection of the filter-bank poles in the vicinity of any arc of the unit
circle results in improved reproduction of the power spectrum in the corresponding frequency
band, as compared to, e.g., traditional AR filtering. Placing them too close to the unit circle
will, however, increase the statistical variability, so there is a trade-off between resolution and
variability of the estimates. The other set of tunable parameters, the spectral zeros, may be
placed anywhere in the unit circle. Choosing them in the default setting, namely equal to the
filter-bank poles, leads to a simpler solution, namely the classical central solution, for which we
give an efficient algorithm. However we demonstrate that even higher resolution can be achieved
by choosing the spectral zeros appropriately, away from the filter-bank poles, close to the unit
circle for frequencies where notches in the spectrum are expected. Practical rules for selection of
such parameters, in absence of prior information about the process, need to be worked out. In
cases where spectral zeros of the nominal power spectrum are known a priori or can be estimated
from longer data records, these same zeros can be enforced to coincide with the spectral zeros of
the estimates of the power spectrum, without unduly increasing the complexity of the filters. For
arbitrary tuning we need to solve a convex optimization problem, which amounts to maximizing
a generalized entropy gain. A Newton-type algorithm for this problem has been presented.

Appendix A. An algorithm for the central interpolant

The parameterization of all solutions to the classical Nevanlinna-Pick problem (without degree
constraints) takes the form of a linear fractional transformation (LFT) on a free parameter
function which is typically normalized to be contractive [31]. The computation of the LFT
elements amounts to solving linear equations, which can be done either recursively, e.g., by the
Schur algorithm [31], or by reducing them to a pair of Lyapunov equations [14].

In [14] an LFT is derived for the Nehari problem, and the corresponding formula can be easily
modified to the following Nevanlinna-Pick problem: Given a set

{(sk, vk) | k = 1, 2, . . . , n, with Re(sk) > 0 and |vk| < 1},

determine all functions F which satisfy the interpolation conditions (4.6) and are analytic with
modulus less than one in Re(s) > 0. In fact, the interpolation formulas (4.10) and (4.11) follow
directly from analogous formulas for the Nehari problem given in [14, page 125] by the following
steps, using the notation of Section 4:

(a) Show that the symbol B(−s)V (s) appearing in the Nehari problem is given by

B(−s)V (s) = c(sI −A0)−1b

where A0 := A− P−1c′c, and
(b) multiply the numerator coefficients of the LFT for the Nehari problem, given in [14, page

125], by B(−s) to obtain the coefficients of the LFT for the Nevanlinna-Pick problem.

In this context, it is important to note that L(s) is J-unitary in the sense that

L(−s)′
[
−1 0
0 1

]
L(s) =

[
−1 0
0 1

]
. (A.1)

Applying the transformations s = z−1
z+1

and v = 1−w
1+w

to the domain and range, respectively,
the interpolation formulas (4.10) and (4.11) are transformed into (4.2) and (4.13), respectively.
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Also condition (A.1) transforms into the condition that M(z) is J-unitary in the sense that

M(z−1)′
[
0 1
1 0

]
M(z) =

[
0 1
1 0

]
. (A.2)

However, the functions defined by (4.2) satisfy the interpolation conditions (3.1) only for
k = 1, 2, . . . , n. In order to include k = 0, we must have f(∞) = w0, and hence we must impose
the extra condition that

w0 =
M1(∞)ϕ(∞) + M2(∞)
M3(∞)ϕ(∞) + M4(∞)

,

or, equivalently, that

ϕ(∞) = µ, (A.3)

where µ is given by (4.5) and is less than one in modulus. Thus, all interpolants satisfying
the complete set of interpolation conditions (3.1) are still given by (4.2) with the additional
constraint that ϕ is contractive and satisfies (A.3).

It remains to prove that the choice ϕ(z) ≡ µ is in fact the one which maximizes the entropy
gain I1(f) := 〈log(f + f∗), 1〉. To this end, let[

b(z)
a(z)

]
= M(z)

[
ϕ(z)

1

]
(A.4)

where ϕ(z) is contractive and satisfies (A.3). Clearly, f(z) = b(z)/a(z) is a solution to the
interpolation problem for the complete set of data, and all solutions are generated this way.
Then,

I1(f) = 〈log(a∗b + b∗a), 1〉 − 〈log(a∗a), 1〉
= 〈log(1 − ϕ∗ϕ), 1〉 − 〈log (a∗a) , 1〉 (A.5)

where the last equality follows from (A.4) and (A.2). Since a(z) is outer, i.e., analytic and
invertible outside the unit disc, we have that

1
2π

∫ 2π

0

log
∣∣a(eiθ)∣∣ dθ = log |a(∞)| , (A.6)

by Szegö’s theorem [22, pp. 19 and 125]. On the other hand, all contractive ϕ which satisfy
(A.3) with |µ| < 1 are parameterized by

ϕ(z) =
µ + z−1ψ(z)
1 + µz−1ψ(z)

with ψ an arbitrary function which is contractive outside the disc. Hence,

1 − ϕ(z)∗ϕ(z) =
(1 − µ2)(1 − ψ(z)∗ψ(z))

|1 + µz−1ψ(z)|2
. (A.7)

Again, 1 + γz−1ψ(z) is outer, and hence Szegö’s theorem applies to give that

〈log
∣∣1 + γz−1ψ

∣∣ , 1〉 = 0. (A.8)

Then, inserting (A.7) into (A.5) and using (A.8) and (A.6), we obtain

I1(f) = 〈log(1 − ψ∗ψ), 1〉 + 〈log(1 − µ2), 1〉 − 2 log |M3(∞)µ + M4(∞)| ,
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where, in the last term we have also used the fact, derived from (A.4), that a(∞) = M3(∞)µ+
M4(∞). Clearly, this expression attains it maximum value

I1(fc) = log
1 − µ2

|M3(∞)µ + M4(∞)|2

precisely for ψ(z) ≡ 0, i.e., for ϕ ≡ µ, as claimed, and hence the central solution is given by
(4.4).

Appendix B. Properties of the functional JΨ

Denote by L2 the space of functions which are square-integrable on the unit circle. This is a
Hilbert space with inner product

〈f, g〉 =
1
2π

∫ π

−π

f(eiθ)g∗(eiθ)dθ,

where g∗(z) := ḡ(z−1). Next, let H2 be the Hardy space of all functions which are analytic
outside the unit circle and have square-integrable limits on the boundary

lim
r→+1

1
2π

∫ π

−π

|f(reiθ)|2dθ < ∞.

As usual, H2 is identified with the subspace of L2 with vanishing positive Fourier coefficients.
Given the real polynomial (3.14), consider the all-pass function

B(z) := z−1 1 + τ1z + · · · + τn−1z
n−1 + τnz

n

zn + τ1zn−1 + · · · + τn−1z + τn
= zn−1 τ

∗(z)
τ(z)

. (B.1)

Such an all-pass function is called a (finite) Blaschke product. Next, introduce the coinvariant
subspace

H(B) := H2 �BH2,

i.e., the orthogonal complement of the invariant subspace BH2 ⊂ H2 in H2. The subspace H(B)
consists of precisely all rational functions (5.1) where π(z) is allowed to have complex coefficients,
and therefore K, introduced in Section 5, is the subspace of all real rational functions in H(B).

The filter-bank transfer functions

Gk(z) =
z

z − pk
, k = 0, 1, . . . , n, (B.2)

are Cauchy kernels in the sense that, for any function f ∈ H2,

〈Gk, f〉 = f̄(p−1
k ) (B.3)

〈Gk, f
∗〉 = f(∞). (B.4)

In particular, if f is real, f̄(p−1
k ) = f(p−1

k ). It is easy to see that (B.2) form a basis for H(B).
Hence, if a ∈ H(B), then

a(z) =
n∑

k=0

γkGk(z) (B.5)

for some complex γ0, γ1, . . . , γn. If a ∈ K, γ� = γ̄k whenever p� = p̄k.
In this notation, the functional (5.11) of Theorem 5.2 can now be written

JΨ(Q) = 〈Q,w + w∗〉 − 〈logQ,Ψ〉, (B.6)
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where, in view of (5.15), the first term may be written

〈a, (w + w∗)a〉 = 〈a,wa〉 + 〈a,wa〉.

But, using the representation (B.5) for a and (B.3), we have

〈a,wa〉 =
n∑

k=0

n∑
k=0

γ̄kγjwkḠj(pk).

Therefore, the first term in (B.6) becomes

〈Q,w + w∗〉 = γ∗Pnγ, γ := (γ0, γ1, . . . , γn)′, (B.7)

where Pn is the Pick matrix (3.4). Clearly this quadratic form depends only on w via its values
at the interpolation points, precisely as claimed in Section 5.

To any Q ∈ S+ there is a unique positive real function f satisfying (5.14). In fact, the left
member of (5.14) is positive on the unit circle, and hence it can be split into a sum of an analytic
function f(z) and its conjugate f∗(z). Clearly f is positive real.

Next, we prove that, if Q ∈ S+ is optimal for the problem to minimize JΨ, then the function
f defined by (5.14) is an interpolant. For this, and for later analysis, we need the directional
derivative

δJΨ(Q; δQ) = lim
ε→0

JΨ(Q + εδQ) − JΨ(Q)
ε

,

where δQ is a symmetric pseudo-polynomial such that Q+ εδQ ∈ S+ for sufficiently small ε > 0.
Performing the differentiation, we have

δJΨ(Q; δQ) = 〈δQ,w + w∗ − Ψ
Q
〉, (B.8)

which, in view of (5.14), yields

δJΨ(Q; δQ) = 〈δQ,w + w∗〉 − 〈δQ, f + f∗〉. (B.9)

Now, suppose Q is the unique minimizing function. Then, δJΨ(Q; δQ) = 0 for all directions
δQ := δq + δq∗ for which δq ∈ K. Concequently,

δJΨ(Q; δQ) = 2〈δq, w − f〉 + 2〈δq∗, w − f〉 = 2〈δq + δq(∞), w − f〉 = 0

for all δq ∈ K, and therefore w − f ⊥ K, i.e., f = w + Bg for all H2, which, in turn, yields the
interpolation conditions (5.13).

Next, to derive an expression for the gradient of JΨ, we shall need the following lemma.

Lemma B.1. Let g1 and g2 be stable, real, rational functions with realizations[
A b1

c d1

]
and

[
A b2

c d2

]
.

Then

〈g1, g2〉 = b′1Pb2 + d1d2 (B.10)

〈g1, g
∗
2〉 = d1d2, (B.11)

where P is the unique solution of the Lyapunov equation

P = A′PA + c′c,

i.e., the observability gramian.
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Proof. First note that 〈zk, z�〉 = 0 for k �= >. Therefore, since

g(z) := c(zI −A)−1b + d = d + cbz−1 + cAbz−2 + . . . for z ≥ 1,

and g∗(z) = g(z−1), (B.11) follows directly by orthogonality. For the same reason,

〈g1, g2〉 = 〈g1 − d1, g2 − d2〉 + d1d2.

But

〈g1 − d1, g2 − d2〉 =
1
2π

∫ π

−π

b′1(e
−iθI −A′)−1c′c(eiθI −A)−1b2dθ = b′1Pb2,

and hence (B.10) follows.

We are now in the position to verify the expressions (5.24) and (5.29) for the gradient and
Hessian of JΨ, respectively.

Proof of Proposition 5.3. The interpolation errors (5.21) can be written

ek = ϕ(zk) := wk − f(zk), k = 0, 1, . . . , n,

where zk := p−1
k and ϕ is defined as

ϕ(z) = w(z) − f(z).

Now, let ϕ̂ be the orthogonal projection of ϕ onto K. Since ϕ̂(z) = ϕ(z) + B(z)g(z) for some
g ∈ H2, we have

ϕ̂(zk) = ϕ(zk) k = 0, 1, . . . , n.

Therefore the column vector y of coefficients of the numerator polynomial

ϕ̂(z) := e0 +
y(z)
τ(z)

, where y(z) = y1z
n−1 + y2z

n−2 + · · · + yn

is the unique solution of the Vandermonde system V y = v, where V and v are given by (5.22)
and (5.23), respectively. Then, it is easy to check that ϕ̂ has the realization[

A x

c e0

]
, x = L−1

n−1V
−1v,

where Ln−1 is given by (5.23).
Let δq(z) ∈ K, and consider the directional derivative at Q ∈ S+ in the direction δQ :=

δq + δq∗. From (B.9) we see that

δJΨ(Q; δQ) = 〈δq + δq∗, ϕ + ϕ∗〉 = 2〈δq, ϕ〉 + 2〈δq, ϕ∗〉 = 2〈δq, ϕ̂〉 + 2e0〈δq, 1〉.

Consequently, it follows directly from Lemma B.1 that

δJΨ(Q; δQ) = 2

[
Px

2e0

]′ [
bδ

dδ

]
,

where (bδ, dδ) are the Markov parameters of δq, and P is the solution of the Lyapunov equation
(5.25). But, by definition,

δJΨ(Q; δQ) = ∇J(h)′
[
bδ

dδ

]
,

which establishes the expression (5.24) for the gradient ∇J , as claimed.
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Proof of Proposition 5.3. To compute the Hessian, we determine

δ2JΨ(Q; δQ) := lim
ε→0

δJΨ(Q + εδQ) − δJΨ(Q)
ε

= 〈δQ2,
Ψ
Q2

〉.

Then, the Hessian is the symmetric (n + 1) × (n + 1) matrix H such that

h′Hh = 〈δQ2,
Ψ
Q2

〉,

where h :=

[
bδ

dδ

]
is the (reversed) vector of Markov parameters of δq. Now, replacing δQ by

δq + δq∗, we obtain

〈δQ2,
Ψ
Q2

〉 = 2〈δqδq∗, Ψ
Q2

〉 + 2〈δq2,
Ψ
Q2

〉

= 2〈πρ
α2

,
πρ

α2
〉 + 2〈πτ∗ρ

α2τ
,
π∗τρ

α2τ
〉, (B.12)

where
π(z) = π0z

n + π1z
n−1 + · · · + πn := τ(z)δq(z)

is the numerator polynomial of δq, which can be determined via the system of linear equations

π :=



π0

π1

...
πn


 = L(τ)h, where L(τ) :=




1
1 τ1

. . . . . .
...

1 τ1 . . . τn


,

and π∗, τ∗ denote the reverse polynomials πnz
n + · · · + π0 and τnz

n + · · · + 1, respectively. A
simple computation then yields

h = N(τ)π,

where N(τ) is given by (5.28). We shall use Lemma B.1 to compute these expressions. Note
that we have refrained from canceling the common factor τ in the first position of the second
term of (B.12). This is in order to obtain the same denominator in the two positions of the inner
product, leading to a Lyapunov equation instead of a somewhat smaller, but computationally
more demanding, Sylvester equation.

To determine the first term in (B.12), we need a state space representation

π(z)ρ(z)
α(z)2

= (ĉ(zI − Â)−1, 1)ĥ

on the canonical form (5.17), where Â is the companion matrix of α(z)2 and ĉ is the 2n-vector
(0, 0, . . . , 0, 1). The coefficient vector η of the numerator polynomial

π(z)ρ(z) = η0z
2n + η1z

2n−1 + · · · + η2n

can be computed as η = M(ρ)π, where M(ρ) is given by (5.27), and consequently

ĥ = L(α2)−1M(ρ)′L(τ)h.

Lemma B.1 then implies that

〈πρ
α2

,
πρ

α2
〉 = h′L(τ)M(ρ)N(α2)

[
P (α2) 0

0 1

]
N(α2)M(ρ)′L(τ)h, (B.13)

where P (α2) is defined as in the theorem.
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To determine the second term in (B.12), we need a state space realization[
π(z)τ∗(z)ρ(z)

α(z)2τ(z)

π∗(z)τ(z)ρ(z)

α(z)2τ(z)

]
=

[
c̃(zI − Ã)−1 1

] [
h̃ k̃

]
,

where Ã is the companion matrix of α(z)2τ(z) and c̃ is the 3n-vector (0, 0, . . . , 0, 1). In the same
way as above, we obtain,

h̃ = L(α2τ)−1M(τ∗ρ)′L(τ)h, k̃ = L(α2τ)−1M(τρ)′L̃(τ)h,

where the matrix L̃(τ) is obtained by reversing the order of the rows in L(τ)and where M(·) is
given by (5.27). Consequently, Lemma B.1 yields

〈πτ∗ρ
α2τ

,
π∗τρ

α2τ
〉 = h′L(τ)M(τ∗ρ)N(α2τ)

[
P (α2τ) 0

0 1

]
N(α2τ)M(τρ)′L̃(τ)h. (B.14)

From (B.12), (B.13) and (B.14) the Hessian is then obtained as (5.31), where we have adjusted
for the fact that H2 is not symmetric.
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1997, pp. 101–136.

9. C. I. Byrnes, S.V. Gusev, and A. Lindquist, A convex optimization approach to the rational covariance
extension problem, SIAM J. Control and Opt., to appear.

10. C.I. Byrnes, T.T. Georgiou, and A. Lindquist, A generalized entropy criterion for Nevanlinna-Pick
interpolation: A convex optimization approach to certain problems in systems and control, submitted
for publication, IEEE Trans. on Aut. Control.

11. C.I. Byrnes, T.T. Georgiou, and A. Lindquist, Generalized interpolation in H∞: Solutions of bounded
complexity, in preparation.

12. Ph. Delsarte, Y. Genin and Y. Kamp, On the role of the Nevanlinna-Pick problem in circuits and
system theory, Circuit Theory and Applications 9 (1981), 177–187.

13. Ph. Delsarte, Y. Genin, Y. Kamp and P. van Dooren, Speech modelling and the trigonometric moment
problem, Philips J. Res. 37 (1982), 277–292.

14. B. Francis, A Course in H∞ Control Theory, Springer-Verlag, 1987.



30 C. I. BYRNES, T. T. GEORGIOU, AND A. LINDQUIST

15. C. Foias and A. Frazho, The Commutant Lifting Approach to Interpolation Problems,
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