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Abstract. The main purpose of this paper is to address a fundamental open problem
in linear �ltering and estimation, viz what is the steady-state or asymptotic behavior
of the Kalman �lter, or the Kalman gain, when the observed stationary stochastic pro-
cess is not generated by a �nite-dimensional stochastic system, or when it is generated
by a stochastic system having higher dimensional unmodelled dynamics. For example,
some time ago Kalman pointed out that the usual positivity conditions assumed in the
classical situation are not in fact necessary for the Kalman �lter to converge. Using a
\fast �ltering" algorithm, which incorporates the statistics of the observation process as
initial conditions for a dynamical system, this question is analyzed in terms of the phase
portrait of a \universal" nonlinear dynamical system. This point of view has additional
advantages as well, since it enables one to use the theory of dynamical systems to study
the sensitivity of the Kalman �lter to (small) changes in initial conditions; e.g. to changes
in the statistics of the underlying process. This is especially important since these sta-
tistics are often either approximated or estimated. In this paper, for a scalar observation
process we derive necessary and suÆcient condition for the Kalman �lter to converge,
using methods from stochastic systems and from nonlinear dynamics - especially the use
of stable, unstable and center manifolds. We also show that, in nonconvergent cases,
there exist periodic points of every period p, p � 3 which are arbitrarily close to initial
conditions having unbounded orbits, rigorously demonstrating that the Kalman �lter can
also be \sensitive to initial conditions".
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dynamical systems, power method, Lagrange-Grassmannian manifolds
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1. Introduction

Given a scalar stationary stochastic process fy0; y1; y2; : : : g which is the output of a linear,
�nite dimensional stochastic system driven by white noise, it is well-known that the mini-
mum variance estimate x̂t of the current state xt of the system is generated by the Kalman
�lter. Indeed, the Kalman �lter is a model of the unforced stochastic system driven by a
term consisting of the current output estimation error ampli�ed by the so-called \Kalman
gain" kt, which itself can be determined \o�-line" by solving a matrix Riccati equation.
In this case, the steady-state behavior of both the Riccati equation and the Kalman �lter
is well understood. The purpose of this paper is to address a fundamental open problem
concerning �ltering and estimation, viz what is the steady-state or asymptotic behavior of
the Kalman �lter, or the Kalman gain, when the stochastic process fytg is not generated
by a stochastic system, or when it is generated by a stochastic system having higher dimen-
sional, unmodelled dynamics? This question has been raised, for example, by Kalman who
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pointed out that the positivity constraints associated with the existence of a stochastic sys-
tem realizing fytg might not be necessary for the Kalman �lter to converge, a fact rigorously
established for �rst-order systems in [5] and for two dimensional systems in [6]. Indeed, in
[5] a complete phase portrait of the Kalman gain and the Kalman �lter, as a dynamical
system, was derived for �rst-order systems.

The basis for this analysis of the Kalman �ltering as a dynamical system was the formula-
tion [25] of \fast �ltering" algorithms two decades ago. Instead of determining the n-vector
kt by �rst solving a matrix Riccati equation for a symmetric matrix Pt, involving n(n+1)=2
variables, the fast �ltering algorithm involves solving only a system of 2n equations, which
consist of a dynamical system propagating kt and an \adjoint" vector k�t . Moreover, as
�rst shown in [27] and crucial for our dynamical systems analysis of the Kalman �lter, this
dynamical system can be reformulated so that the statistics of the process fytg enter into
the fast �ltering algorithm only as initial conditions. Thus, one can analyze the asymptotic
behavior of the Kalman �lter for di�erent statistics in terms of the phase portrait of the
fast �ltering algorithm. This is in sharp contrast to analysis of the Riccati equation as a
dynamical system, since di�erent statistics lead to di�erent Riccati equations and, in fact,
not to di�erent initial conditions.

This point of view has additional advantages as well, since it enables one to study the
sensitivity of the Kalman �lter to (small) changes in initial conditions; e.g. to changes in
the underlying system fytg or its statistics. This is especially important since the statistics
of the underlying process are often either approximated or estimated. In this direction, for
the �rst-order case necessary and suÆcient condition for asymptotic convergence of kt were
discovered [5], verifying the expectation that the Kalman �lter would indeed converge for a
much larger set of initial conditions or \initial statistics" than the classical theory predicts.
In the complement of this set of (convergent) initial conditions, it was shown that there
existed in�nitely many periodic points of each period p, p � 3. Moreover, arbitrarily close
to each of these periodic initial conditions are initial conditions for trajectories which are
unbounded. For this reason, in the complement of the set of convergent initial conditions
the Kalman �lter is sensitive to initial conditions.

In this paper, for n:th order �ltering problems we derive a systems theoretic necessary
and suÆcient condition on the process fytg for the sequence of Kalman gains, kt, to converge
to a classical limit. En route to this result, we need to develop a good understanding of
the phase portrait of the fast �ltering algorithm as a nonlinear dynamical system, including
the determination (via spectral factorization) of a complete set of analytic invariant inte-
grals. This, in turn, requires the extension of the several classical and more recent results
concerning positive real transfer functions, positive semide�nite Toeplitz forms, and spec-
tral factorization to situations where the relevant positivity conditions are not necessarily
satis�ed. Indeed, one of the main themes of this paper is that several important results
classically conceived in terms of certain positivity conditions actually hold in a more uni-
versal context. While our main interest in this phenomenon lies in characterizing when the
Kalman �lter converges to a classical limit, this theme is of course quite old. For example,
Hurwitz's derivation [20] of the Routh-Hurwitz criterion, actually computed the di�erence
between left-half plane and right-half plane zeros (or poles) as the signature of a Hankel ma-
trix, while the Routh-Hurwitz conditions are simply the inequalities re
ecting the positivity
of this Hankel matrix. A more recent, and more relevant, example is the relaxation of the
positive real conditions in circuit synthesis in the development of modern realization theory,
based on rationality of transfer functions, or on rank conditions on Hankel matrices.

The paper is organized as follows. In Section 2, we set notation and recall some pre-
liminary results needed throughout the paper. We begin Section 3 by reviewing some of
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the important relationship between shaping �lters and Toeplitz forms, both for positive real
transfer functions and in general. This relationship then enables us to extend an elegant
parameterization, discovered by Kimura [22] and by Georgiou [16], of positive real trans-
fer functions in terms of Szeg�o polynomials to a parameterization of all rational transfer
functions. Just as the Kimura-Georgiou parameterization plays an important role in the
covariance extension problem, this generalized parameterization plays an essential role in
analyzing the global asymptotic behavior of the Kalman �lter. This generalized Kimura-
Georgiou parameterization is in fact a bona �de (birational) change of coordinates, as we
show in Section 4. We then express the fast �ltering algorithm and (what turns out to be
a complete set of) its analytic invariant integrals in this new coordinate system. We begin
Section 5 with a brief introduction to stable, unstable and center manifold theory and its
application to local stability analysis. After calculating the dimensions of these invariant
manifolds at an equilibrium of the fast �ltering algorithm, we show that the level sets of the
invariant integrals de�ned above locally de�ne smooth submanifolds near the equilibria and
we identify the invariant manifolds in terms of these invariants.

In Sections 6 - 7 we turn to the problem of global convergence of the fast �ltering algo-
rithm. In terms of the basic invariant integrals it is easy to determine a system theoretic
necessary condition for an initial condition to generate a trajectory of the fast �ltering
algorithm, which converges to a classical limit. This condition, derived from a spectral fac-
torization argument, is simply that a certain pseudo-polynomial be sign-de�nite on the unit
circle. Moreover, the local stability analysis carried out in Section 5 shows that, for initial
conditions suÆciently near an equilibrium, this necessary condition is also suÆcient locally.
Our main result, Theorem 7.1, asserts that this is also true in the large: except for a thin set
of points which escape in �nite time (and which can be explicitly characterized) a necessary
and suÆcient condition for global convergence of the Kalman gain kt to a limit k1 is sign
de�niteness of the corresponding pseudo-polynomial. The proof is based on a well-known
interpretation of fast �ltering algorithms and an equivalent Riccati equation as a dynamical
system evolving on a Lagrangian Grassmannian. We conclude the paper in Section 8, with
a series of examples and simulations for �rst and second order systems.

2. Preliminaries

Let v(z) be a proper rational function of degree n with a minimal realization

v(z) =
1

2
+ h0(zI � F )�1g (2.1)

(where F 2 Rn�n ; g; h 2 Rn and prime denotes transpose) and consider the corresponding
matrix Riccati equation

Pt+1 = FPtF
0 + (g � FPth)(1� h0Pth)

�1(g � FPth)
0 (2.2)

having an orbit of symmetric matrices fP1; P2; P3; : : : g for each symmetric P0 2 Rn�n ,
If v(z) is positive real, i.e.

(i) v(z) analytic on jzj � 1 (2.3a)

(ii) v(z) + v(1=z) > 0 on jzj = 1; (2.3b)

then

�(ei!) = v(ei!) + v(e�i!) (2.4)
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is the spectral density of a stationary stochastic process fyt; t 2 Zgwhich can be represented
(in uncountably many ways) by a minimal stochastic realization(

xt+1 = Fxt + vt

yt = h0xt + wt
(2.5)

of y, i.e. a stochastic system with Efxt+1ytg = g obtained by passing white noise fvt; wtg
through a shaping �lter, the transfer function of which

w(z) = h0(zI � F )�1B + d0 (2.6)

(where B is a matrix and d a vector of appropriate dimensions) is a minimal stable spectral
factor of �, i. e. w(z)w(1=z)0 = �(z). In generalw(z) is a row vector valued rational function.
If, in particular, w(z) is a scalar and both its numerator and denominator polynomials stable
(all zeros in the open unit disc) we say that w(z) is a minimum phase spectral factor. All
such realization (2.6) have the same Kalman �lter

x̂t+1 = F x̂t + kt(yt � h0x̂t); x̂0 = 0 (2.7)

(where x̂t is the linear minimum-variance estimate of xt given fy0; y1; : : : ; yt�1g) and the
gain

kt = (1� h0Pth)
�1(g � FPth) (2.8)

is determined by solving the corresponding matrix Riccati equation (2.2) with initial condi-
tion

P0 = 0 (2.9)

It is well-known that, under these conditions, Pt tends monotonically to the stable equilib-
rium of (2.2) [13, 26]. The question addressed in this paper is what happens to the solution
(2.2) when the parameters have been chosen such that v(z) is no longer positive real.

Without loss of generality, we shall henceforth take (F; g; h) in the observer canonical
form

F =

2
666664

�a1 1 0 � � � 0
�a2 0 1 � � � 0
...

...
...

. . .
...

�an�1 0 0 � � � 1
�an 0 0 � � � 0

3
777775 ; g =

2
6664
g1
g2
...
gn

3
7775 ; h =

2
6664
1
0
...
0

3
7775 (2.10)

in terms of which we may write

F = J � ah0

where a is the column vector (a1; a2; : : : ; an)
0 and J is the obvious shift matrix. Conse-

quently, the Riccati equation is determined by the 2n parameters (a; g) and there are also
the coeÆcients of the rational function v(z), i.e.

v(z) =
1

2
+
g1z

n�1 + g2z
n�2 + � � �+ gn

zn + a1zn�1 + � � �+ an
: (2.11)

For simplicity we shall write this

v(z) =
1

2
+
g(z)

a(z)
=

1

2

b(z)

a(z)
(2.12)
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where b(z) := a(z) + 2g(z) is a monic polynomial of degree n. It is easy to see that, if v(z)
is positive real, then

(i) D(z; z�1) =
1

2
[a(z)b(1=z) + a(1=z)b(z)] > 0 on jzj = 1 (2.13)

(ii) a(z) has all its zeros in jzj < 1 (2.14)

(iii) b(z) has all its zeros in jzj < 1 (2.15)

Conversely, if (i) plus either (ii) or (iii) hold, then v(z) is positive real.
To determine the Kalman �lter we can, instead of the Riccati equation (2.2), use the

algorithm

a(t+ 1) =
1

1� g1(t)
[a(t) + (I � J)g(t)]; a(0) = a (2.16a)

g(t+ 1) =
1

1� g1(t)2
[�g1(t)a(t) + (J � g1(t)I)g(t)]; g(0) = g (2.16b)

consisting of 2n nonlinear �rst-order di�erence equations in terms of which

kt = a(t) + g(t)� a (2.17)

This algorithm is a version, appearing in [27], of the fast Kalman �ltering algorithm
introduced in [25]. (Also see [5] where these matters are reviewed; in the notations of this

paper a(t) = qt � q�t .) Suppose rt :=
Qt�1
k=0 [1 � g1(k)

2] and the monic polynomials at(z)
and bt(z) := at(z) + 2gt(z) are formed from a(t) and b(t) := a(t) + 2g(t) as above, then it is
shown in [27] that the equality

rt[at(z)bt(1=z) + at(1=z)bt(z)] = 2D(z; z�1) (2.18)

is preserved along the trajectory of (2.16). It is also shown in [27] that at(z) and bt(z) have
all their zeros in the unit disc jzj < 1. Consequently, if v(z) is positive real, then so is

vt(z) =
1

2

bt(z)

at(z)
=

1

2
+
gt(z)

at(z)
(2.19)

for each t = 1; 2; 3; : : : , so that each (a(t); g(t)) is an admissible pair of parameters for the
Kalman �ltering problem, corresponding to stochastic systems.

3. Systems Theoretic Enhancements of Some Classical Positivity Results

One of the main results of this paper is to establish and analyze the fact that �ltering algo-
rithms do converge for parameter values which do not correspond to a bona �de stochastic
system and, hence, which do not satisfy the relevant positivity conditions. These positivity
conditions can be expressed in terms of a transfer function being positive real or a Toeplitz
matrix being positive de�nite, as well as a number of other conditions involving familiar ob-
jects from classical analysis and systems theory. Our main result is just one manifestation of
the fact that several classical and more recent results containing positivity and positive real
functions have, of course, natural enhancements to statements concerning broader classes of
nonsingular matrices and systems. In this section we develop this theme in the context of
several particular results which we shall �nd to be very useful in the remaining sections.

It is well-known that a function v(z) with the Laurent expansion

v(z) =
1

2
+ c1z

�1 + c2z
�2 + c3z

�3 + � � � (3.1)
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around z =1 is positive real if and only if the Toeplitz matrices

Tt =

2
6664
1 c1 � � � ct
c1 1 � � � ct�1
...

...
. . .

...
ct ct�1 � � � 1

3
7775 (3.2)

are positive de�nite for all t = 1; 2; 3; : : : .
A simpler test of positive realness due to Schur [32] can be described in terms of the Szeg�o

polynomials f'0(z); '1(z); '2(z); : : : g, a sequence of monic polynomials

't(z) = zt + 't1z
t�1 + � � �+ 'tt (3.3)

which are orthogonal on the unit circle. Similarly, we de�ne the reversed polynomial '�t (z)
as

'�t (z) = 'ttz
t + 't;t�1z

t�1 + � � �+ 1 (3.4)

The Szeg�o polynomials are then determined from the sequence fc1; c2; c3; : : : g through the
polynomial recursions (

't+1(z) = z't(z)� 
t'
�
t (z) ; '0(z) = 1

'�t+1(z) = '�t (z)� 
tz't(z) ; '�0(z) = 1
(3.5)

where f
0; 
1; 
2; : : : g are the Schur parameters


t =
1

rt

tX
k=0

't;t�kck+1 (3.6)

and fr0; r1; r2; : : : g are given by the recursion

rt+1 = (1� 
2t )rt ; r0 = 1 (3.7)

the algorithm terminating if j
tj becomes one. Indeed, it has been shown by Schur that

Tt > 0, j
kj < 1 for k = 0; 1; 2; : : : ; t� 1: (3.8)

It is also classical that the function (3.1) has an in�nite Schur parameter sequence f
0, 
1,

2, : : : g if and only if j
tj never becomes one { otherwise, the Schur parameter sequence
is �nite ending with a term of modulus one { and that for each t = 1; 2; 3; : : : ; there is a
one-to-one correspondence between the set of all subsequences fc1; c2; : : : ; ctg such that Tk
is nonsingular for k = 1; 2; : : : ; t and the set of all subsequences f
0; 
1; : : : ; 
t�1g such that
j
kj 6= 1 for k = 0; 1; 2; : : : ; t� 2.

That these claims also hold for nonpositive data follows from the following well-known
enhancement of the positive result (3.8).

Proposition 3.1. detTt =
Qt
k=0 rk.

As a second illustration of this theme, Kimura [22] and Georgiou [16] have independently
shown that to any positive real function (3.1) with the �rst n c-coeÆcients prescribed, or
alternatively with 
 := (
0; 
1; : : : ; 
n�1)

0 �xed, there is a unique vector � = (�1; �2; : : : ; �n)
0

of real numbers such that

v(z) =
1

2

 n(z) + �1 n�1(z) + � � �+ �n 0(z)

'n(z) + �1'n�1(z) + � � �+ �n'0(z)
(3.9)

where f 0;  1;  2; : : : g are the Szeg�o polynomials obtained by exchanging the Schur param-
eters f
tg by f�
tg. This is a useful parameterization for the rational covariance extension
problem [21], but, as we shall now demonstrate, (3.9) is actually a general interpolation
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formula which holds regardless of whether v(z) is positive real, provided that the algorithm
does not terminate for t < n. In fact, it follows that there is a one-to-one correspondence
between the open dense set in R2n of 2n parameters (�; 
) for which none of the elements of
the vector 
 = (
0; 
1; : : : ; 
n�1)

0 2 Rn has modulus one, and the corresponding open dense
set of (a; g) 2 R2n .
Theorem 3.2. Let 
 = (
0; 
1; : : : ; 
n�1)

0 be an arbitrary vector in Rn such that 
2k 6= 1 for
k = 0; 1; : : : ; n � 2, let f'k(z);  k(z); k = 0; 1; : : : ; n � 1g be the corresponding polynomials
generated by (3.5), and set c1 := 
0 and

ck+1 := rk
k �
k�1X
j=0

'k;k�j cj+1 (3.10)

for k = 1; 2; : : : ; n�1, where r1; r2; : : : ; rn are de�ned by (3.7). Let a(z) and b(z) be arbitrary
monic polynomials of degree n such that

b(z)

2a(z)
=

1

2
+ c1z

�1 + c2z
�2 + � � �+ cnz

�n + � � � : (3.11)

Then there is a unique � = (�1; �2; : : : ; �n)
0 2 Rn such that

a(z) = 'n(z) + �1'n�1(z) + � � �+ �n (3.12a)

b(z) =  n(z) + �1 n�1(z) + � � �+ �n (3.12b)

The proof of Theorem 3.2 is based on the following lemma.

Lemma 3.3. Let the polynomials f'k(z);  k(z); k = 0; 1; : : : ; n� 1g and the sequence fc1,
c2, : : : , cng be as de�ned in Theorem 3.2. Then

	n+1 = Cn+1�n+1 (3.13)

where �;	 and C are the nonsingular (n+ 1)� (n+ 1)-matrices

�n+1 =

2
666664

1
'n1 1
'n2 'n�1;1 1
...

...
...

. . .

'nn 'n�1;n�1 'n�2;n�2 � � � 1

3
777775 (3.14a)

	n+1 =

2
666664

1
 n1 1
 n2  n�1;1 1
...

...
...

. . .

 nn  n�1;n�1  n�2;n�2 � � � 1

3
777775 (3.14b)

Cn+1 =

2
666664

1
2c1 1
2c2 2c1 1
...

...
...

. . .

2cn 2cn�1 2cn�2 � � � 1

3
777775 (3.14c)

Proof. We want to prove that

 tk = 2ck + 2ck�1't1 + 2ck�2't2 + � � �+ 2c1't;k�1 + 'tk

for all t � k, or equivalently

�tk = ck + ck�1't1 + ck�2't2 + � � �+ c1't;k�1 (3.15)
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for all t = k; k + 1; : : : ; n, where f�tkg are the coeÆcients of the polynomials

�t(z) =
1

2
[ t(z)� 't(z)] (3.16)

Then, the recursions in 't and  t imply that

�t+1(z) = z�t(z) + 
t�
�
t (z); (3.17)

where ��t (z) is the reversed polynomial of

�t(z) =
1

2
[ t(z) + 't(z)]: (3.18)

i. e. ��t (z) := zn�t(1=z). We also recall from the literature [24], [1], [17] that the coeÆcients
of f'tg satisfy the normal equations2

666664

1 c1 � � � ct�1
c1 1 � � � ct�2
...

...
. . .

...
ct�2 ct�3 � � � c1
ct�1 ct�2 � � � 1

3
777775

2
666664

'tt
't;t�1

...
't1

1

3
777775 =

2
666664

0
0
...
0
rt

3
777775 (3.19)

having the Toeplitz matrix Tt as its coeÆcient matrix. As we have pointed out above, Tt
is nonsingular if our basic assumption that j
kj 6= 1 for all k = 0; 1; 2; : : : ; t � 1 holds [1].
It follows from (3.5) that 'tt = �
t�1, and consequently  tt = 
t�1, and thus �tt = 'tt.
Therefore, we see from the �rst equation (3.19) that (3.17) holds for t = k. We now proceed
by induction. Suppose (3.15) holds for t = s, where k � s � n� 1. We want to prove that
it holds for t = s+ 1. To this end, note that for t = s one of the normal equations reads

ck + ck�1's1 + ck�2's2 + � � �+ c1's;k�1 + 'sk + c1's;k+1 + � � �+ cs�k'ss = 0:

But, in view of the induction hypothesis, this can be written

�sk + 'sk + c1's;k+1 + � � �+ cs�k'ss = 0

and therefore, since �sk = �sk + 'sk ;

�sk = �c1's;k+1 � � � � � cs�k'ss (3.20)

Now identifying coeÆcients in the polynomial recursion (3.18) we obtain

�s+1;k = �sk + 
s�s;s+1�k

which, after inserting (3.20) and applying the induction hypothesis, takes the form

�s+1;k = ck + ck�1('s1 � 
s'ss) + � � �+ c1('s;k�1 � 
s's;s+2�k):

But it follows from (3.5) that 's+1;k = 'sk � 
s's;s+1�k , and therefore (3.15) holds for
t = s+ 1 as required. Hence the lemma follows by induction.

Proof of Theorem 3.2. Since f'tg and f tg are families of monic polynomials of increasing
degree t, there are �; � 2 Rn such that

a(z) = 'n(z) + �1'n�1(z) + � � �+ �n;

b(z) =  n(z) + �1 n�1(z) + � � �+ �n:

Then (3.11) yields

 n(z) + �1 n�1(z) + � � �+ �n

=['n(z) + �1'n�1(z) + � � �+ �n][1 + 2c1z
�1 + 2c2z

�2 + � � � ]
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Therefore, identifying coeÆcients of nonnegative powers of z, we have

	n+1

�
1
�

�
= Cn+1�n+1

�
1
�

�

which, by Lemma 3.3, implies that � = �.

Corollary 3.4. Consider the maps 
 := (
0; 
1; : : : ; 
n�1) ! �n+1(
) and 
 ! 	n+1(
)
de�ned through (3.5), the corresponding recursion for f tg, (3.14a) and (3.14b). Then
	n+1(
) = �n+1(�
) and �n+1(0) = 	n+1(0) = In+1. Moreover,�

1
a

�
= �n+1(
)

�
1
�

� �
1
b

�
= 	n+1(
)

�
1
�

�
(3.21)

4. The Fast Filtering Algorithm and Its Invariant Integrals

One of the principal goals of this section is to express the fast �ltering algorithm (2.16)
in a more convenient way in terms of the parameters (�; 
) entering in the generalization,
Theorem 3.2, of the Kimura-Georgiou parameterization of positive real systems. As a pre-
liminary step, we shall �rst show that this parameterization constitutes in fact a bona �de
change of coordinates. In the language of classical algebraic geometry, the map de�ned by
(3.12) is a birational isomorphism [33]. More explicitly, consider the set

U
 = f(�; 
) 2 R2n j 
2i 6= 1; i = 0; 1; : : : ; n� 2g
Also, by virtue of (3.11), the generalized \correlation" coeÆcients c1; c2; : : : ; cn are functions
of (a; b) so that we may de�ne the open, dense set

Vc = f(a; b) 2 R2n j detTt 6= 0; i = 1; 2; : : : ; n� 1g
We shall show that that the polynomial map F is a bijection of U
 with Vc, having a rational
inverse; so that F is indeed a birational isomorphism.

Proposition 4.1. The map F, de�ned by (3.12), sending (�; 
) 2 R2n to (a; b) 2 R2n is a
polynomial map given by (

a = 'n(
) + �n(
)�

b =  n(
) + 	n(
)�
(4.1)

where 'n := ('n1; 'n2; : : : ; 'nn)
0 and  n := ( n1;  n2; : : : ;  nn)

0, and �n(
) and 	n(
) are
given by (3.14). Moreover, F : U
 ! V is a bijection with a rational inverse F�.

Proof. On Vc the map F has an inverse F�1 de�ned in the following way: (a; b) de�nes
through (3.11) a sequence fc1; c2; : : : ; cng which, by (3.6), corresponds to a vector 
 =
(
0; 
1; : : : ; 
n�1)

0, from which in turn the polynomials f'k(z); k = 0; 1; 2; : : : ; n � 1g can
be de�ned. Then � 2 Rn is uniquely determined by (3.12a). Finally, (4.1) follows from
(3.21)

Recall from [27] or from [5] that if f
0; 
1; 
2; : : : g is the (in�nite or �nite) Schur parameter
sequence of (2.1), as de�ned in Section 3, then


t = g1(t) t = 0; 1; 2; : : : (4.2)

where g1 is generated by the fast �ltering algorithm (2.16). A key observation now is that
(2.16) is a time-invariant dynamical system in parameter space. In particular, let us stress
the following simple but important observation.
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Lemma 4.2. Let v(z) be de�ned as in Section 2 and let f
0; 
1; 
2; : : : g be its (in�nite
of �nite) Schur parameter sequence. Then, for each t = 0; 1; 2; : : : , as long as the algo-
rithm (2.16) does not escape, vt(z) de�ned by (2.19) has the Schur parameter sequence
f
t; 
t+1; 
t+2; : : : g.
Proof. The fast �ltering algorithm (2.16) is a time-invariant dynamical system, and unless
it has escaped it will therefore trivially generate via (4.2) the sequence f
t; 
t+1; 
t+2; : : : g
if initialized at (a(t); g(t)) corresponding to vt(z).

Corollary 3.4 allows us to change coordinates in the fast algorithm, expressing it instead
in terms of (�; 
), where

� =

2
6664
�1
�2
...
�n

3
7775 
 =

2
6664

0

1
...


n�1

3
7775 (4.3)

as long as (�; 
) 2 U
 , i. e. as long as f
0; 
1; : : : ; 
n�1g is the initial subsequence of a Schur
parameter sequence.

Theorem 4.3. Let the rational function v(z) de�ned by (2.1) have a Schur parameter se-
quence such that 
2k 6= 1 for k = 0; 1; : : : ; n � 1. Then the fast �ltering algorithm takes the
form

�(t+ 1) = A(
(t))�(t); �(0) = � (4.4a)


(t+ 1) = G(�(t + 1))
(t); 
(0) = 
 (4.4b)

in the coordinates of the generalized Kimura-Georgiou parameterization, where the maps
A;G : Rn ! Rn�n are de�ned as

A(
) =

2
66664

1
1�
2

n�1


n�1
n�2
(1�
2

n�1
)(1�
2

n�2
)

� � � 
n�1
0
(1�
2

n�1
)���(1�
2

0
)

0 1
1�
2

n�2

� � � 
n�2
0
(1�
2

n�2
)���(1�
2

0
)

...
...

. . .
...

0 0 � � � 1
1�
2

0

3
77775 (4.5)

and

G(�) =

2
666664

0 1 0 � � � 0
0 0 1 � � � 0
...

...
...

. . .
...

0 0 0 � � � 1
��n ��n�1 ��n�2 � � � ��1

3
777775 (4.6)

More precisely, if (�; 
) are the parameters of v(z) in the representation (3.9), then (�(t); 
(t))
are the parameters of vt(z), as de�ned in (2.19), for each point in the �nite or in�nite orbit
of (�; 
). Moreover, if f
0; 
1; 
2; : : : g is the sequence of Schur parameters of v(z), then the
sequence f
t; 
t+1; 
t+2; : : : g obtained by deleting the �rst t elements is the Schur parameters
sequence of vt(z). In fact,


k(t) = 
t+k (4.7)

and therefore the Schur parameters are updated according to the recursion


t+n = ��1(t+ 1)
t+n�1 � �2(t+ 1)
t+n�2 � � � � � �n(t+ 1)
t (4.8)
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Finally, the gain sequence fk0; k1; k2; : : : ; g of the Kalman �lter is given by

kt = �n(
(t))�(t) + �n(
(t))��n(
)�� 'n(
) (4.9)

where 'n(
) and  n(
) are n-vectors of coeÆcients of '(z) and  (z), and

�n(
) =
1

2
[�n(
) + 	n(
)];

�n(
) =
1

2
['n(
) +  n(
)]:

For a proof, we refer the reader to the Appendix.
In Section 5 we shall show that the dynamical system (4.4) evolves on an invariant

manifold XD de�ned by the preserved pseudo-polynomial (2.18), which we write in the form

D(z; z�1) = d(z) + d(1=z) (4.10a)

where

d(z) =
1

2
d0 + d1z + d2z

2 + � � �+ dnz
n: (4.10b)

The symmetric pseudo-polynomial D is determined by the initial condition (�; 
) in a man-
ner described by the following lemma, the proof of which is given in the Appendix.

Lemma 4.4. Let D(z; z�1) be the pseudo-polynomial (4.10) corresponding to the initial
condition (�; 
). Then

d0 = �2n + r1�
2
n�1 + � � �+ rn; (4.11)

where r1; r2; : : : ; rn are de�ned by (3.7), and di := d
(n)
i (�; 
) for i = 1; 2; : : : ; n, where d

(n)
i

is determined recursively by

d
(1)
1 (�1; 
0) = �1;

d
(k)
i (�1; : : : ; �k; 
0; : : : ; 
k�1) = (1� 
20)d

(k�1)
i (�1; : : : ; �k�1; 
1; : : : ; 
k�1)

+ �k

kX
j=1

�k�j�j;j�i; for i = 1; 2; : : : ; k � 1;

d
(k)
k (�1; : : : ; �k; 
0; : : : ; 
k�1) = �k;

where f�jlg are the coeÆcients of the polynomials

�j(z) = zj + �j1z
j�1 + � � �+ �jj

generated by the polynomial recursion(
�t+1(z) = (1 + z)�t(z) + (
t
t�1 � 1)z�t�1(z);

�0 = 1; �1(z) = z
(4.12)

and �ji = 0 for i > j. Moreover, if 
2k 6= 1 for k = 0; 1; : : : ; n � 1, then at least one of the
coeÆcients d0; d1; : : : ; dn of the pseudo-polynomial D(z; z�1) is nonzero.

Comparing coeÆcients of (zi + z�i) in (2.18) we see that

rtdi(�(t); 
(t)) = di(�(0); 
(0)) i = 0; 1; 2; : : : ; n (4.13)

for all t 2 Z along the trajectory of the dynamical system (4.4). Hence the n+ 1 functions
di(�; 
), i = 0; 1; : : : ; n� 1 de�ned in Lemma 4.4, are invariant under the evolution of (4.4)
up to a (common) scaling factor; i.e. these (n + 1) functions are projectively invariant.
We can obtain n invariant quantities, either by viewing the pseudo-polynomial, in terms of
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homogeneous coordinates, as a point in Pn (see [33]), or equivalently by dividing each of
the (n + 1) equations in (4.13) by any one of the (n + 1) functions which is nonzero (by
Lemma 4.4, there is always one), obtaining rational functions having values independent of
rt and hence depending only on (�; 
). That is, we can view the pseudo-polynomial D either
as determining (n+1) projectively invariant functions T1; : : : Tn+1 or as determining a map
T to Pn:

R2n
T! Rn+1 � f0g

T & # �
Pn

where T = (T1; : : : ; Tn+1) and T = � Æ T where

�(x1; : : : ; xn+1) = [x1; : : : ; xn+1]:

In this way one might expect (2.18) to de�ne an n-fold XD in R2n . Indeed, this analytic
set will be a smooth n-manifold at a point (�; 
) provided Jac T

��
(�;
)

has an n-dimensional

kernel. We shall return to this question in Section 5 and Section 6 after having introduced
some additional analytic tools.

>From Theorem 4.3 and Lemma 4.4 it is clear that the fast �ltering algorithm has a quasi-
nested structure in the sense that whenever �n = �n�1 = � � � = �k+1 = 0 but �k 6= 0, the
dynamical system (4.4) and the invariant set XD reduce to the k-dimensional case with the
Schur parameter sequence shifted n�k steps. (This is related to the occurrence of invariant
directions [3] in the corresponding matrix Riccati equation (2.2) as pointed out in [27] and
further elaborated on [31].) As explained in [25, 27, 26, 5] the fast algorithm is intimately
connected to the Szeg�o orthogonal polynomial recursion (3.5), which in fact was the basic
tool in the original derivation [25]. In view of this and the analysis above one would expect
that it would also be connected to the Schur algorithm. Indeed, this has been shown in a
recent paper [8].

5. Invariant Manifolds and Local Convergence for the Fast Filtering Algorithms

We now turn to a stability analysis of the equilibria of the fast �ltering algorithms, expressed
in the form (4.4), i.e. �

�



�
t+1

= f

�
�t

t

�
(5.1a)

where

f

�
�



�
=

�
A(
)�

G(A(
)�)


�
(5.1b)

For the stability analysis of the fast �ltering algorithms, we shall need the geometric
concepts of stable, unstable and center manifolds, which play a role for nonlinear systems
similar to the role played by generalized eigenspaces for the stability analysis of linear sys-
tems. Because this role is so important in determining stability, especially in the critical
case, we precede our analysis of the local stability of the fast �ltering algorithms with an in-
troductory discussion of local invariant manifolds for nonlinear systems. As supplementary
references we recommend, among other texts, Guckenheimer and Holmes [18], and Marsden
and McCracken [28].

At an equilibrium (�1; 
1) of (5.1)�
�� �1

 � 
1

�
t+1

= C

�
�� �1

 � 
1

�
t

+O(k�� �1k2 + k
 � 
1k2)
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determines to �rst order a linear system�
��
�


�
t+1

= C

�
��
�


�
t

;

where �� = � � �1, �
 = 
 � 
1. Denote by s the number of eigenvalues of the matrix
C having modulus less than one, counting roots of the characteristic polynomial with their
algebraic multiplicities. Similarly, denote by u the number of eigenvalues having modulus
greater than one and by c the number of eigenvalues having modulus one. It is well known
that if u � 1 then (5.1) is unstable, so we shall suppose for the moment that u = 0. In this
case, if c = 0, then (�1; 
1) is an asymptotically stable equilibrium for the system (5.1),
with all solutions converging geometrically to the equilibrium. The critical case, c 6= 0, is
more subtle, even for linear systems where Lyapunov stability is determined by the geometric
multiplicities of the eigenvalues lying on the unit circle.

Remarkably, the linear case can in fact be analyzed geometrically in a manner which can
be adapted to the critical nonlinear case, mutatis mutandis. Denote by V s the sum of the
generalized eigenspaces corresponding to eigenvalues inside the unit disk, by V u the sum of
the generalized eigenspaces corresponding to eigenvalues outside the unit disk, and by V c

the sum of the generalized eigenspaces corresponding to eigenvalues lying on the unit circle.
Then, we have

dim V s = s; dim V u = u; and dim V c = c:

In particular, there is a direct sum decomposition of the state space consisting of three
invariant subspaces

R2n = V s � V u � V c

Moreover, the evolution of the entire linear system is a superposition of the three motions on
the constituent invariant subspaces: the asymptotically stable motion on V s, the asymptoti-
cally expanding motion on V u, and the motion on V c which is determined by the dimension
of the Jordan blocks corresponding to the eigenvalues of unit modulus. For example, if
u = 0 as assumed above, it can be easily veri�ed that any trajectory of the full linear system
converges geometrically to a trajectory lying on V c. Therefore, if u = 0 the (asymptotic)
stability or instability of the full linear system is determined by the (asymptotic) stability
or instability of the reduced dynamics on V c.

In the nonlinear case, the geometric situation is similar. It is now classical that the
nonlinear analogue of V s can be locally de�ned as the set W s of initial conditions which
converge to the equilibrium at a geometric rate. The set W s, referred to as the stable
manifold, is known to be locally invariant and to be locally a smooth submanifold of the state
space, having dimension s. A similar characterization of the set of geometrically expanding
points can be given, leading to the unstable manifold W u, which is locally de�ned as an
invariant, smooth submanifold of dimension u. In this context, it is easy to see that if u = 0
and if c = 0 then W s is a neighborhood of the equilibrium and therefore the equilibrium is
locally asymptotically stable. An analysis of the critical case, u = 0 but c 6= 0 is facilitated
by the existence of a center manifold, W c, which plays a role analogous to the role played
for linear systems by V c. The existence of a center manifold has been established only
relatively recently in part due to the absence of an explicit characterization of W c as a set,
a fact which also partially explains the fact that center manifolds need not be unique. This
existence result is only part of the fundamental \center manifold theorem", which we now
describe in more detail.

Center Manifold Theorem ([18, 28])

(i) Existence. Suppose (5.1) is a Ck+1 system with an equilibrium (�1; 
1) for which
dimV c = c. Then, in a suÆciently small neighborhood of the equilibrium there exists
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a Ck-submanifold W c of dimension c, which is locally invariant and for which the
tangent space to W c at (�1; 
1) is V c.

(ii) Principle of Asymptotic Phase. Suppose further that u = 0 for the equilibrium
(�1; 
1). Then, for each initial condition suÆciently close to the equilibrium there is
an initial condition on W c for which the error between the corresponding trajectories
asymptotically decreases geometrically.

We shall use this theorem for convergence analysis of the fast �ltering algorithm (5.1).

Lemma 5.1. The point (�; 
) is an equilibrium of the fast �ltering algorithm (5.1) if and
only if 
 = 0. The Jacobian of f at the equilibrium (�; 0) is given by

Jac f

����
(�;0)

=

�
I 0
0 G(�)

�

where G(�) is de�ned as in (4.6).

Proof. Since A(0) = I , (�; 0) is clearly an equilibrium for each � 2 Rn . It remains to show
that each equilibrium is of this form. To this end, let (�; 
) satisfy

� = A(
)� (5.2a)


 = G(�)
 (5.2b)

The last of equations (5.2a) reads

�n =
�n

1� 
20
which requires that either �n or 
0 is zero, i. e. �n
0 = 0. In view of this, the second last
equation becomes

�n�1 =
�n�1
1� 
21

which implies that �n�1
1 = 0. Proceeding in this manner we see that

�n�i
i = 0; i = 0; 1; 2; : : : ; n� 1

and therefore the last of equations (5.2b) yields 
n�1 = 0. Then solving (5.2b) successively
from the bottom yields 
 = 0 as required. Since A(0) = I and @A

@
 (0) = 0, the Jacobian of

f is as stated in the lemma.

In particular, this lemma shows that whenever � corresponds to a Schur polynomial,

�(z) = zn + �1z
n�1 + � � �+ �n; (5.3)

the stable manifold of the fast �ltering algorithm at (�; 0) is n-dimensional. The next result
signi�cantly re�nes this observation. In particular, we will characterize the stable manifold
explicitly. As a preliminary, we denote by V� the generalized (complex) eigenspace of G(�)
corresponding to an eigenvalue � of G(�); i.e. a root of (5.3), and we de�ne

s(�) = dim
C

X
j�j<1

V�

u(�) = dim
C

X
j�j>1

V�

c(�) = dim
C

X
j�j=1

V�

In particular, (�; 0) is hyperbolic if, and only if, s(�) + u(�) = n or, equivalently, c(�) = 0.
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Theorem 5.2. The dimensions of the stable manifold and unstable manifold at (�1; 0) are
s(�1) and u(�1), respectively. The dimension of a center manifold is always n + c(�1).
In fact, any center manifold contains an open neighborhood of (�1; 0) in the n-dimensional
equilibrium manifold

E = f(�; 0) : � 2 Rng
Moreover, if c(�1) = 0 then the center manifold is unique and locally coincides with E. In
this case, the equilibrium (�1; 0) is Lyapunov stable if, and only if, u(�1) = 0, in which
case the stable manifold is n-dimensional.

Proof. Since any center manifold M must contain all local attractors in some neighborhood
U of (�1; 0), M \U � E \U . If c(�1) = 0 then by a dimension argumentM \U = E \U
and hence M \ U is unique. In this case, by the center manifold theorem, the overall
system will be Lyapunov stable when u(�1) = 0 and trajectories initialized at points (�; 
)
suÆciently close to E \ A, where A = f(�; 0) : (5.3) is a Schur polynomialg, will approach
(�1; 0) determined by (4.13) with a convergence rate

j�tj < C � �t





�
�




�




where � = maxj�j<1 j�j, � an eigenvalue of G(�1).

Finally, suppose (�1; 0) is an equilibrium corresponding to a Schur polynomial (5.3) so
that (�1; 0) has an n{dimensional stable manifold, W s(�1; 0). Let (�; 
) be an initial
condition lying on W s(�1; 0). We have noted that the equality (2.18) will hold on the orbit
f(�t; 
t); t = 0; 1; : : : g and hence must hold for (�1; 0). From this observation we can obtain
the n-invariants (4.13) in a simple form, by computing the right-hand side of (2.18) in the
limit as a solution of a spectral factorization problem, namely,

2r1�1(z)�1(1=z) = 2D(z; z�1) (5.4)

where r1 is the limit of rt as t!1.

Corollary 5.3. [5] A necessary condition for an initial condition (�; 
) to generate a con-
vergent trajectory is that the pseudo-polynomial D(z; z�1) in (2.18) be sign de�nite.

If the invariant set XD introduced in Section 4 contains an equilibrium point, then d0 6= 0
in Lemma 4.4, and we may describe XD in terms of the functions R2n ! Rn

hi(�; 
) = 2
di(�; 
)

d0(�; 
)
i = 1; 2; : : : ; n (5.5)

where di(�; 
), i = 0; 1; 2; : : : ; n, are as de�ned in Lemma 4.4.

Theorem 5.4. Suppose that (�; 
) generates a convergent trajectory for the dynamical sys-
tem (4.4), and let D(z; z�1) be the corresponding pseudo-polynomial (4.10). Then, at each
point of the trajectory,

hi(�(t); 
(t)) = �i i = 1; 2; : : : ; n (5.6)

where �1; �2; : : : ; �n are constants which can be determined from the initial condition (�; 
).
In fact, if �n 6= 0, then �n 6= 0 and

d(z) = �n[z
n +

�n�1
�n

zn�1 + � � �+ 1

�n
]; (5.7)

and, if �n = � � � = �k+1 = 0 but �k 6= 0, then �n = � � � = �k+1 = 0, �k 6= 0 and

d(z) = rn�k�k[z
k +

�k�1
�k

zk�1 + � � �+ 1

�k
]: (5.8)
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Conversely, any point (�; 
) such that

hi(�; 
) = �i i = 1; 2; : : : ; n (5.9)

has a (�nite or in�nite) orbit satisfying (5.6) and the same pseudo-polynomial (4.10) modulo
multiplication by a nonzero constant.

Proof. According to Lemma 5.1, the equilibrium has the form (�1; 0), and, since there is
no �nite escape, rt 6= 0 for all t 2 Z. Consequently, in view of (A-16) and (4.11),

d0(�(t); 
(t)) =
r1
rt
d0(�1; 0) (5.10)

where, by (4.11),
d0(�; 0) = �2n + �2n�1 + � � �+ �21 + 1

is nonzero. Moreover, r1 6= 0. In fact, if r1 = 0, (5.4) implies that D(z; z�1) � 0 which
contradicts Lemma 4.4. Hence (5.10) is nonzero and the rational functions (5.5) are �nite
on the whole trajectory. Moreover, for all t 2 Z,

hi(�(t); 
(t)) = hi(�(0); 
(0)) i = 0; 1; 2; : : : ; n:

Setting �i := hi(�(0); 
(0)), i = 1; 2; : : : ; n, we obtain (5.6). Next, note that di =
1
2d0�i and

dn = �n. Therefore, if �n 6= 0, then �n 6= 0 and 1
2d0 =

�n
�n

, and consequently (5.7) follows.
If �n = � � � = �k+1 = 0 but �k 6= 0, then, by Lemma 4.4, di = 0 for i = k + 1; : : : ; n and
dk = rn�k�k 6= 0. Hence, �n = � � � = �k+1 = 0, �k 6= 0 and 1

2d0 =
rn�k�k
�k

, and therefore

(5.8) follows. Consequently, any (�; 
) 2 R2n satisfying (5.9) has a pseudo-polynomial
which di�ers from D(z; z�1) by at most the nonzero constant, �n or rn�k�k, whichever case
applies, and therefore the points on its orbit satisfy (5.6).

In view of Theorem 5.4 it is reasonable to let the invariant set (5.9) be denoted XD, with
D interpreted as a point in projective space Pn, as explained at the end of Section 4. We
would like to determine at what points (�; 
) the invariant set XD is an n-fold, i.e. for which
(�; 
) the tangent space T(�;
)XD, or, which is the same, the kernel of the Jacobian of f at
(�; 
), has dimension n.

To investigate this point, let us return to the pseudo-polynomial relation (2.18) de�ning
the integrals (5.6). To this end, let

S(a)v = a(z)v(1=z) + a(1=z)v(z) (5.11)

de�ne an operator S(a) : Vn ! Dn from the vector space Vn of polynomials having degree
less than or equal to n into the vector space Dn of symmetric pseudo-polynomials of degree
at most n. Such an operator can be de�ned for each polynomial a(z) of degree n. Relation
(2.13) de�ning D(z; z�1) in terms of a(z) and b(z) can then be written

S(a)b = 2D (5.12)

and we may ask under what conditions this linear system may be solved for b in terms of
D and a. It is well-known that the answer to this question depends on the location of the
zeros of a(z). We shall say that (�; 1=�) is a pair of reciprocal roots (of multiplicity �) of
a pseudo-polynomial D(z; z�1) provided that both � and 1=� are roots (of multiplicity �).
According to this de�nition each root (of multiplicity �) at � = 1 or � = �1 determines a
pair, (1; 1) or (�1;�1), of reciprocal roots (of multiplicity �).
Lemma 5.5. Let � be the number of reciprocal roots of a(z) counted with multiplicity. Then

dimkerS(a) = �: (5.13)

Proof. This follows easily from the unit circle version of Orlando's formula [14]. Also see
[10], noting that the Jury matrix of a(z) is a matrix representation of S(a).
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We may now write the invariance relation (2.18) in the form

rtS(at)bt = 2D: (5.14)

The next lemma establishes notation for the subsequent analysis. Denote by Hn the hyper-
plane in Vn of monic polynomials. We note that for � 2 Hn the tangent space T�Hn to Hn

at � is canonically isomorphic with Vn�1.

Lemma 5.6. Let (�; 
) be a point in the invariant algebraic set XD, de�ned by (5.9) in
Theorem 5.4, with the property that 
2k 6= 1 for k = 0; 1; : : : ; n � 1, and let (a; b) be given
by (3.12). Then the tangent space T(�;
)XD of XD at (�; 
) has the same dimension as the
tangent space of

�(a; b; r) = 2D (5.15)

at (a; b; 1), where � : Hn �Hn � R ! Dn is de�ned by

�(a; b; r) = rS(a)b: (5.16)

Proof. The lemma follows immediately from the fact that (5.9) is obtained from (5.15) by
merely eliminating the variable r, which is nonzero since all 
2k 6= 1, and changing coordinates
under the bijection F of Corollary 3.4.

It is not hard to characterize those tangent vectors which are annihilated by Jacobian of
� at (a; b; 1) and hence span the tangent space of (5.15) at (a; b; 1).

Lemma 5.7. At any point (a; b; 1), the kernel of the Jacobian of � consists of those tangent
vectors (u; v; q0) 2 Vn�1 � Vn�1 � R satisfying

S(a)q + S(b)p = 0 (5.17)

where

p(z) := u(z); q(z) := q0b(z) + v(z) (5.18)

In other words, the kernel of the Jacobian of � can be identi�ed with pairs (p; q) 2 Vn�1�Vn,
i.e.those polynomials of the form(

p(z) = p1z
n�1 + � � �+ pn

q(z) = q0z
n + q1z

n�1 + � � �+ qn
(5.19)

which satisfy the \variational equation"

a(z)q(1=z) + a(1=z)q(z) + b(z)p(1=z) + b(1=z)p(z) = 0 (5.170)

Proof. Consider the tangent vector (a + "u; b + "v; 1 + "q0) at the point (a; b; 1) where
u 2 Vn�1; v 2 Vn�1 and q0 2 R. We compute the directional derivative of � in the direction
(u; v; q0) as the limit of a Newton quotient

1

"
[�(a+ "u; b+ "v; 1 + "q0)� �(a; b)] (5.20)

as "! 0, yielding (5.170).

Lemma 5.8. Suppose �1 corresponds to a polynomial �(z), via (5.3), which has no pair of
reciprocal roots. Then the invariant algebraic set XD is a smooth submanifold of dimension
n at the equilibrium (�1; 0).
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Proof. When 
 = 0 we have a(z) = b(z) = �(z), so that the variational equation reduces to

S(a)[p+ q] = 0: (5.21)

Since a(z) has no pair of reciprocal roots, by Lemma 5.5, kerS(a) = 0 and therefore we
must have

p(z) = �q(z): (5.22)

Note, in particular, that q0 = 0, i. e. the tangent vectors belong to the 2n-dimensional space
with coordinates (a; b) or (�; 
) as in Corollary 3.4. Since (5.22) de�nes a subspace of tangent
vectors having dimension n, by Lemma 5.6, (5.9) locally de�nes a smooth submanifold in a
neighborhood of (�1; 0) by the implicit function theorem.

Theorem 5.9. Let (�1; 0) be an equilibrium. If c(�1) = u(�1) = 0, then the stable man-
ifold through (�1; 0) coincides with an open subset of the invariant n-fold XD determined
from (5.9). Moreover, any point (�; 
) on XD corresponding to a positive real function

v(z) := 1
2
b(z)
a(z) will lie on this stable manifold and the minimum phase spectral factor of the

spectral density v(z) + v(1=z) will be

w(z) = r1=21

�1(z)

a(z)
: (5.23)

Proof. Since �1(z) is a Schur polynomial, (5.9) locally de�nes a smooth submanifold at
(�1; 0) by Lemma 5.8, with tangent space given by (5.22). We claim that (5.22) also
characterizes, in the (a; b)-coordinates, those tangent vectors (p; q) which are vertical in the
(�; 
)-coordinates at point (�1; 0). In fact, the map F of Corollary 3.4 sends the \vertical
vector" (0; 
) to

(a; b) = ('n(
);  n(
)) (5.24)

where here 'n and  n are the n-vectors of coeÆcients in the Szeg�o polynomials 'n(z) and
 n(z) as functions of 
. The vertical vectors (0; 
) at the point (�1; 0) corresponds to the

tangent vectors (p; q) of (5.24), i.e. the vectors of the form (@'n@
i
(0); @ n@
i

(0)), i = 1; 2; :::; n.

But, according to Corollary 3.4, 'n(
) =  n(�
) so that @'n
@
i

(0) = �@ n
@
i

(0), and hence

p = �q as claimed.
Now recall that the vertical vectors at (�1; 0) are precisely the vectors lying in the

sum of the generalized eigenspaces for the Jacobian, corresponding to asymptotically stable
eigenvalues, i.e. in the tangent space to the stable manifold at (�1; 0). In summary, the
invariant set XD is an n-dimensional smooth submanifold near the equilibrium (�1; 0)
which it contains, provided (�1; 0) is an asymptotically stable equilibrium. In this case, the
tangent space to this submanifold at the equilibrium coincides with the tangent space to the
stable manifold W s(�1; 0). In particular, an initial condition lying on XD corresponding
to positive real functions (2.1) will converge geometrically to (�1; 0), in harmony with
classically known convergence properties of the Kalman �lter. By uniqueness of W s(�1; 0)
we see that it coincides, in a neighborhood of (�1; 0), with the invariant set de�ned by
(5.9). Finally, from (2.13) and (5.4), we see that the minimum phase spectral factor w(z)
corresponding to v(z) is given by (5.23).

Remark 5.10. As a consequence of Theorem 5.9, we can see that the set of rational integral
invariants fh1; h2; : : : ; hng, de�ned in (5.5), is complete. That is, there is no analytic (or
meromorphic) invariant function h for which the di�erential dh is linearly independent of
the di�erentials dhi, i = 1; 2; : : : ; n, at some point (�; 
). Indeed, if for some point (��; �
)

dh(��; �
) 62 span fdhi(��; �
)gni=1
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then for all (�; 
) in some open dense set U we must have

dh(�; 
) 62 span fdhi(�; 
)gni=1 (5.25)

by a standard analyticity argument. Now consider the region Pn of all (�; 
) 2 R2n satisfying
the positive real conditions (2.13)-(2.15) with a(z) and b(z) given by (4.1). For any initial
condition (�(0); 
(0)) 2 Pn, we must have

h(�(t); 
(t)) = h(�1; 0)

so that, on Pn, h is determined by its restriction �h to the equilibrium set

Es = f(�1; 0) 2 R2n j�1(z) a Schur polynomialg
On the other hand, �1 can be computed from (�(0); 
(0)) as a rational function of the hi.
More explicitly, hi(�(0); 
(0)) determine, up to a scalar multiple, the pseudo-polynomial
D(z; z�1) via (5.4) and (A-16). From D(z; z�1), which is positive on the unit circle, we
determine (independently of the scalar multiple) the stable polynomial �1(z), and hence
�1, via (5.4). Therefore, on all of Pn we have

h(�(0); 
(0)) = �h(�1; 0) = �h(F (h1(�(0); 
(0)); : : : ; hn(�(0); 
(0)); 0)
(5.26)

where F is the rational function de�ned by (5.4), (4.10), and (5.4). In particular, on Pn we
must have

dh 2 span fdhig
contrary to the assertion that U \ Pn be open and dense in Pn.

So far, we have recovered (cf. Corollary 5.3) a necessary condition for an initial condition
(�; 
) to generate an asymptotically convergent trajectory under the dynamics of the fast
�ltering algorithm; viz. the pseudo-polynomial D(z; z�1) determined by (�; 
) must be
sign-de�nite. In the case n = 1, it has been demonstrated in [5] using somewhat specialized,
detailed analysis that, apart from initial data which can escape in �nite time, this condition
is also suÆcient for global convergence. In the case n = 2, this has also been shown [6],
although for n � 2 it is possible to have asymptotic convergence to equilibria which have
a lower dimensional stable manifold (see Theorem 5.2) as well as to the unique Lyapunov
stable equilibrium, corresponding to a stable factor of the pseudo-polynomial D(z; z�1), as
occurs in classical �ltering. The �nal result in this section enables to determine at what
points (�; 
) the invariant n-fold XD de�ned by (5.9) is a smooth manifold. As it turns out,
the singular points correspond to certain systems having a lower dimensional realization,
which also are initial data converging to unstable equilibria.

Theorem 5.11. Consider the n-fold XD de�ned by (5.9) with a corresponding pseudo-
polynomial D(z; z�1). A point (�; 
) is a singular point of XD if, and only if, a(z) and b(z),
de�ned in terms of (�; 
) by (3.12), have a common pair of reciprocal roots.

To prove this result, we derive a general formula for the dimension of the tangent space
T(�;
)XD from which our assertion will follow by the implicit function theorem.

Lemma 5.12. dim T(�;
)XD = n+�, where � is the number of common pairs of reciprocal
roots of the polynomials a(z) and b(z) given by (3.12).

Proof of Theorem 5.11. According to Lemma 5.6 and Lemma 5.7, the tangent space, T(�;
)XD,
to XD at (�; 
) has the same dimension as the vector space W of all solutions (p; q) to the
variational equation (5.17), i.e. W is the subspace

W = f(p; q) j S(a)q + S(b)p = 0g (5.27)
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of Vn�1 � Vn, where a(z) and b(z) are given by (3.12). Now consider the map proj 1 :W !
Vn�1 de�ned via

proj 1(p; q) = p: (5.28)

In particular,

dimW = dimker(proj 1) + dim range (proj 1) (5.29)

where

ker(proj 1) = f(0; q) j S(a)q = 0g ' kerS(a) (5.30)

and

range (proj 1) = fp 2 Vn�1jS(b)p 2 range S(a)g (5.31)

Now recall from Lemma 5.5 that

dimkerS(a) = �1; dimkerS(b) = �2 (5.32)

where �1 and �2 are the number of pairs of reciprocal roots (�; 1=�) of a(z) and b(z) respec-
tively, counted with multiplicity. Matters being so, we can also characterize the range of
S(a) [and that of S(b)] in the vector space of symmetric pseudo-polynomials Dn.

Explicitly, if (�1; 1=�1); : : : ; (��1 ; 1=��1) are the �1 pairs of reciprocal roots (counted with
multiplicity) of a(z), then the range of S(a) is the codimension �1 subspace of symmetric
pseudo-polynomials which vanish at f�1; : : : ; ��1 ; 1=�1; : : : ; 1=��1g. With these notations

dimker(proj 1) = �1 (5.33)

�xing the �rst term of (5.29). To determine the second, observe that the map S(b) sends
any p 2 range proj 1 into the subspace

U := range S(a) \ range S(b) (5.34)

which consists of all pseudo-polynomials in Dn with �1 + �2 � � pairs of reciprocal zeros
�xed, where � is the number of common such pairs of a(z) and b(z). The space U has
codimension �1 + �2 � � in Vn, i.e.

dimU = n+ 1� �1 � �2 + �: (5.35)

Therefore, since dimkerS(b) = �2, the dimensions of the subspace

Z := fp 2 VnjS(b)p 2 range S(a)g (5.36)

is n+ 1� �1 + �, and consequently

dim range proj 1 = n� �1 + �; (5.37)

i.e. one less than dimZ, provided that there is a p 2 Z which does not belong to Vn�1. But
this is the case because

S(b)a = S(a)b 2 Dn (5.38)

i.e. a(z) 2 Z. Combining (5.29), (5.33) and (5.37) we then see that dimW = n+ �.
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6. Fast Filtering Algorithm, Riccati Equations and Lagrangian Grassmannians

Our goal is to prove a global convergence theorem for the fast �ltering algorithm (4.4), or,
equivalently, (2.16). As is to be expected, the convergence of (4.4) is intimately connected
to the convergence of the matrix Riccati equation (2.2). It is no restriction to assume that
�n 6= 0. In fact, as noted above, if �n = 0 we can reduce the dimension of the dynamical
system (4.4), replacing n by k < n, so that �k 6= 0.

Lemma 6.1. Let �n 6= 0. Then, the fast �ltering algorithm (4.4) tends to a limit (�1; 0)
if and only if the Riccati equation (2.2) with initial condition P0 = 0 converges to some
equilibrium P1. Here P1 satis�es the algebraic Riccati equation

�(P ) := FPF 0 � P + (g � FPh)(1� h0Ph)�1(g � FPh)0 = 0: (6.1)

where the parameters (F; g) are those corresponding to the initial condition (�; 
) of (4.4),
and

�1 = (1� h0P1h)
�1(g � FP1h) + a: (6.2)

Proof. The Riccati equation (2.2) can be written as

Pt+1 � Pt = �(Pt): (6.3)

As shown in [25] and pointed out in [5], the structure of the fast �ltering algorithm is
re
ected in the fact that initial condition P0 = 0 renders �(P0) = gg0 nonnegative de�nite
and rank one, a property which is preserved along the trajectory so that

�(Pt) = rtg(t)g(t)
0 (6.4)

where

rt = 1� h0Pth (6.5)

If the fast �ltering algorithm (4.4) converges, then by Lemma 5.1, (�(t); 
(t))! (�1; 0) for
some �1 2 Rn , and, rt tends to a limit r1, as t ! 1. Hence, according to Corollary 3.4,
a(t)! �1 and b(t)! �1 and consequently g(t) := 1

2 [b(t)�a(t)]! 0. In view of (6.3) and
(6.4), this implies that Pt tends to a limit P1 as t!1. Conversely, suppose that Pt ! P1
as t!1. Then �(Pt)! 0, and, by (6.5), rt ! r1. The condition �n = an+gn 6= 0 implies
that r1 6= 0. In fact, if r1 = 0, i.e. h0P1h = 1, convergence would require that g = FP1h
and consequently that gn = �anh0P1h = �an (see (2.10)), contradicting the assumption
that �n 6= 0. Therefore, by (6.4), g(t)g(t)0 and hence g(t) tends to zero, which, in turn,
implies that 
t = g1(t) ! 0, i.e. 
(t) ! 0. Then it follows from (4.4a) that �(t) tends to
a limit �1 as t ! 1. Finally, we see from (2.17) and (4.1) that the Kalman gain tends to
k1 := �1�a as t!1. On the other hand, it follows from (2.8) that k1 = r�11 (g�FP1h)
and hence (6.2) holds.

Lemma 6.2. The statement of Lemma 6.1 remains true if F := J � ah0 de�ned by (2.10),
is replaced by F := J � bh0. If �n 6= 0, then at least one of the matrices (J � ah0) and
(J � bh0) is nonsingular.

Proof. Exchanging the roles of a and b amounts to changing the initial condition (�; 
) of
the dynamical system (4.4) for (�;�
). If (�; 
) has the orbit f(�(t); 
(t))g, then a simple
inspection of (4.4) shows that (�;�
) has the orbit f(�(t);�
(t))g so that (�; 
) converges
if and only if (�;�
) does, both tending to the same limit (�1; 0). This proves the �rst
part of the lemma. To prove the second part, suppose that both (J � ah0) and (J � bh0) are
singular, i.e. an = bn = 0. Then �n = 1

2 (an + bn) = 0 contradicting the assumption that
�n 6= 0.
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Lemma 6.3. Suppose F is nonsingular. Then h0F�1g = 1 if and only if �n = 0.

Proof. Let v(z) be as in (2.1). Then

v(0) =
1

2
� h0F�1g

On the other hand, since 
t = �'t+1(0) =  t+1(0) for t = 0; 1; 2; : : : and '0 =  0 = 1, (3.9)
yields

v(0) = �1

2


n�1 + �1
n�2 + � � �+ �n�1
0 � �n

n�1 + �1
n�2 + � � �+ �n�1
0 + �n

which equals � 1
2 if and only if �n = 0.

In considering the algebraic Riccati equation (6.1) it is important to remember that the
situation here is more general than that usually considered in Kalman �ltering (where v(z)
is positive real) since F may be unstable and r1 := 1� h0P1h may be negative. Here the
symmetric matrix P1 may have both negative and zero eigenvalues.

Recall now that there is an extensive literature, see e.g. [2, 29, 30, 35], on the solution of
a matrix Riccati equation as a power iteration on the Lagrangian Grassmannian manifold,
LG(n; 2n) consisting of n-dimensional subspaces U � R2n which are Lagrangian in the
sense that x0[ 0 I

�I 0 ]y = 0 for all x; y 2 U. In regard to (2.2) this amounts to noting �rst
the well-known fact that the dynamics of the matrix Riccati equation can be described
via a linear fractional transformation. Note that, in view of Lemma 6.2 and Lemma 6.3,
it is no restriction to assume that F is nonsingular and that the parameter �, de�ned in
Proposition 6.4, is nonzero in analyzing the convergence of (4.4).

Proposition 6.4. The matrix Riccati recursion (2.2) may be reformulated as

Pt+1 = (S21 + S22Pt)(S11 + S12Pt)
�1 (6.6)

where the 2n� 2n matrix �
S11 S12
S21 S22

�
(6.7)

is the symplectic matrix

S =

�
F�1 + F�1gh0F�1��1 F�1gg0��1

�hh0F�1��1 F 0 � hg0��1

�0
(6.8a)

with

� = 1� h0F�1g: (6.8b)

Proof. A straightforward calculation shows that �(P ), de�ned by (6.1), may be written

�(P ) := APA0 � P +APh(1� h0Ph)�1h0PA0 + gg0 (6.9)

where A := F � gh0. Since F is invertible, so is A. In fact,

A�1 = F�1 + F�1gh0F�1��1 (6.10)

Consequently, (6.3) and the fact that

(I � hh0P )�1 = I + (1� h0Ph)�1hh0P (6.11)

implies that

Pt+1 = gg0 +APt(I � hh0Pt)
�1A0

= [gg0(A0)�1(I � hh0Pt) +APt](I � hh0Pt)
�1A0
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which yields (6.6) with S11 = (A0)�1, S12 = �(A0)�1hh0, S21 = gg0(A0)�1 and S22 =
A + (1 � ��1)gh0. Inserting (6.10) then yields (6.8). A simple calculation shows that S is
symplectic, i.e. that

S0ĴS = Ĵ (6.12a)

where

Ĵ =

�
0 I
�I 0

�
(6.12b)

Corollary 6.5. The algebraic Riccati equation (6.1) may be written in the alternative form

P = APA0 +APh(1� h0Ph)�1h0PA0 + gg0 (6.13)

where A := F �gh0 is invertible, and, in terms of A, the symplectic matrix S takes the form

S =

�
(A0)�1 �(A0)�1hh0

gg0(A0)�1 A+ (1� ��1)gh0

�
(6.14)

Next, setting

Pt = YtX
�1
t (6.15)

and applying Proposition 6.4, we see that the matrix Riccati equation may be viewed as a
linear symplectic system

Zt+1 = SZt (6.16)

where Zt =
�
Xt

Yt

�
and Z0 =

�
I
P0

�
. In particular, Lemma 6.1 states that the dynamics of the

fast �ltering algorithm corresponds to the initial condition P0 = 0, i.e.

Z0 = [ I0 ]: (6.17)

Studying the linear system (6.16) on the manifold LG(n; 2n) of Lagrangian subspaces in R2n

instead of (2.2) or (4.4) amounts to a compacti�cation of the phase space in the sense that
Pt is also allowed to take in�nite values, corresponding to Xt being singular. In particular,
this compacti�cation provides a model in which we can analyze high-gain limits, as well as
�nite escape, of the sequence of Kalman gains. The fact that Pt is symmetric insures that
the subspace spanned by the columns of [Xt

Yt
] is Lagrangian.

In view of this, the dynamical behavior of the Riccati equation (2.2) as well as the fast
algorithm (2.16), or (4.4), depends on the eigenvalue structure of S, which is connected to
the zero structure of the pseudo-polynomial D(z; z�1) through the following proposition.

Proposition 6.6. Let �n 6= 0. Then the eigenvalues of S are identical to the zeros of the
pseudo-polynomial D(z; z�1).

Proof. Since �n 6= 0, we have �n 6= 0. By a straightforward computation, we see that the
characteristic polynomial of S is

�S(z) = z2n +
�n�1
�n

z2n�1 +
�n�2
�n

z2n�2 + � � �+ �1
�n
zn+1 +

2

�n
zn

+
�1
�n
zn�1 + � � �+ �n�2

�n
z2 +

�n�1
�n

z + 1

where �1; �2; : : : ; �n are integral constants de�ned in Theorem 5.4. Comparing this with
(4.10) and (5.7) we see that

D(z; z�1) = �nz
�n�S(z): (6.18)

from which the proposition follows.
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This proposition allows us to analyze the dynamics of (2.2) and (4.4) not only for param-
eters (or, in the case of (4.4), initial conditions) that satisfy the positive real condition but
for general choices of parameters (initial conditions). If �n = 0, Proposition 6.6 should be
applied to the dimension-reduced problem mentioned above. Hence, in this case the Riccati
equation (2.2) can be replaced by one of smaller dimension, which is actually due to the
occurrence of invariant directions [3], as was pointed out in [27] and further developed in
[31].

The basic question now is to determine under what conditions (6.16) converges, i.e. under
what conditions StZ0 tends to a limit as t ! 1, where Z0 is the subspace spanned by the
columns of Z0, i.e. Z0 = Im [ I0 ]. Let us �rst study the set of equilibria of the power iteration
StZ0, which must clearly consist of those n-dimensional subspaces

U = Im [XY ]; X;Y n� n (6.19)

which are S-invariant. In order that U should correspond to a (�nite) solution of algebraic
Riccati equation (6.1), as required by Lemma 6.1, U must be such that X is nonsingular so
that

P = Y X�1 (6.20)

can be formed, and, for P to be the limit of the sequence fPtg, U must be Lagrangian so
that P is symmetric. The following is consequence of (h; F ) being observable.

Lemma 6.7. Let �n 6= 0 and let U, de�ned by (6.19), be Lagrangian. Then X is nonsin-
gular.

For the proof, we shall need a result which is a discrete-time version of a result due the
Ku�cera [23]; see [34, p. 379]. Since it is surprisingly more complicated than the continuous-
time result, and we shall need it again below, we state it as a lemma, the proof of which is
deferred to the Appendix.

Lemma 6.8. Let �n 6= 0 and let U be an n-dimensional S-invariant Lagrangian subspace.
Then, the subspace W := U \ Im [ I0 ] satis�es the invariance condition

(i) SW �W
and, which is equivalent, the reversed invariance condition
(ii) S�1W �W

The same statements holds for ~W := U \ Im [ 0I ].

Now the proof of Lemma 6.7 follows along the lines of the proof of Shayman's Proposition 1
in [34].

Proof of Lemma 6.7. Suppose ~W, de�ned in Lemma 6.8, has dimension k, and that X is
singular so that k > 0. Then

~W = Im

�
0
V

�

for some n�k matrix V . Since S ~W � ~W (Lemma 6.8) and S is nonsingular (Proposition 6.6),
there is a nonsingular k � k matrix T such that

S

�
0
V

�
=

�
0
V

�
T

i.e., �(A0)�1hh0V = 0 and AV + (1� ��1)gh0V = V T . The �rst of these equations yields

h0V = 0 (6.21a)
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whereupon the second becomes

AV = V T (6.21b)

However, since (h; F ) is observable, so is (h;A), for A = F � gh0. Therefore (6.21) implies
that V = 0, contradicting the assumption that X is singular.

A partial answer to the question whether the power iteration StZ0 converges can now
be given by the following lemma, which generalizes some results due to Parlett and Poole
[30]. This requires a few de�nitions. For any linear operator A : Rm ! Rm , an A-invariant
subspace U is dominant (codominant) if the eigenvalues of the restriction AjU have moduli
greater than or equal to (smaller than or equal to) those of all other eigenvalues of A.

Lemma 6.9. Let A : Rm ! Rm be a linear operator. If there is a unique p-dimensional
dominant A-invariant subspace U� and a unique (m�p)-dimensional codominant A-invariant
subspace U+, then AtX ! U� as t ! 1 for each p-dimensional subspace X such that
X \ U+ = 0.

Proof. If the eigenvalues of A (counted with multiplicity) satisfy

j�1j � j�2j � � � � � j�pj > j�p+1j � � � � � j�mj;
then the statement of the lemma follows directly from Theorem 4 in [30]. On the other
hand, if

j�1j � � � � � j�p�q j > j�p�q+1j = � � � = j�p+r j > j�p+r+1j � � � � � j�mj;
[or there is no eigenvalue larger (smaller) in modulus than �p, in which case we set q = p

(r = m� p)], we de�ne Û� and Û+ to be the subspaces spanned by the generalized eigen-
vectors corresponding to f�1; : : : ; �p�qg and f�p�q+1; : : : ; �mg respectively. Moreover, let
~U� and ~U+ be the subspaces spanned by the generalized eigenvectors in U� respectively U+

corresponding to eigenvalues of modulus j�pj. Then ~U� and ~U+ are A-invariant subspaces

of U� and U+ of dimensions q and r respectively. In fact, dim(~U� \ ~U+) = min(q; r). Now,
since X \ U+ = 0, dimX = p and dimU+ = m � p, Rm = X � U+, where � denotes di-

rect sum. Therefore, since U+ � Û+, there is a subspace ~X � X of dimension q such that

Û+ = ~X � U+. Let X̂ be any (p � q)-dimensional subspace of X such that Rm = X̂ � Û+.
Now, since Û� is the unique dominant (p� q)-dimensional A-invariant subspace, and Û+ is

an invariant complement which, by construction satis�es X̂\ Û+ = 0, AtX̂! Û� as t!1
by Theorem 4 in [30]. Moreover, X \ U+ = 0 implies that ~X \ ~U+ = 0. Then following

the argument in the proof of Theorem 7 of [30], we see that At ~X becomes disjoint from the
subspace corresponding to the eigenvalues f�p+r+1; : : : ; �mg as t!1 as these are smaller

in modulus than j�pj. Therefore, since ~X � Û+, the question of convergence of At ~X is re-

duced to that of Theorem 6 in [30] dealing with the equimodular case. Hence, because ~U�

[~U+] is the unique q-dimensional [r-dimensional] dominant A-invariant subspace of Û+ and
~X \ ~U+ = 0, At ~X ! ~U� as t ! 1. Consequently, since X̂ � ~X = X and Û� � ~U� = U�,
AtX! U� as t!1, as claimed.

The following lemma shows that the basic assumptions of Lemma 6.9 are ful�lled for
the power iteration StZ0, provided D(z; z�1) is sign de�nite, i.e. has no zeros of odd
multiplicity on the unit circle (Proposition 6.6). First, let us introduce some notations.
Following Parlett and Poole [30] let us order the 2n generalized eigenvectors of S �rst by
modulus of the associated eigenvalue with the largest �rst. Generalized eigenvectors whose
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eigenvalues have the same modulus are ordered by exponent, where the exponent e(v) of a
generalized eigenvector v is de�ned as

e(v) = m� 2g + 1 (6.22)

where m is the multiplicity of v, i.e. the dimension of the smallest invariant subspace
containing it, and g is the grade of v, i.e. the dimension of the largest cyclic subspace
containing v. Thus let

v1; v2; : : : ; v2n (6.23)

be the generalized eigenvectors ordered in this way, and let

�1; �2 : : : ; �2n (6.24)

the corresponding eigenvalues (which may be repeated). Then, for each k = 1; 2; : : : ; 2n,
span fv1, v2, : : : , vkg is a dominant S-invariant subspace.

Lemma 6.10. If S has no eigenvalues of odd multiplicity on the unit circle, there is a unique
dominant n-dimensional S-invariant subspace U�D and a unique codominant n-dimensional

subspace U+D. Both are Lagrangian. In particular, U�D is spanned by fv1, v2, : : : , vng in
(6.23).

Proof. With the generalized eigenvectors of S and its corresponding eigenvalues ordered as
in (6.23) - (6.24), U�D := span f; ; : : : ; ng is the unique dominant S-invariant n-subspace if
either

(i) j�nj > j�n+1j
or

(ii) j�nj = j�n+1j but e(vn) > e(vn+1)

see [30, p. 404]. Now, recall that S is symplectic so that if � is an eigenvalue then so is 1=�.
Therefore, if S has no eigenvalues on the unit circle, then case (i) holds, so there is a unique
dominant S-invariant n-subspace. If there are eigenvalues on the unit circle, there must be
an even number, say 2q where q � n, so that fv1; v2; : : : ; vng contains n � q generalized
eigenvectors whose eigenvalues have moduli greater than 1 and q whose eigenvalues lie on
the unit circle. If we can show that e(vn) > e(vn+1), case (ii) holds and there is a unique
dominant S-invariant n-space, namely fv1; v2; : : : ; vng. To this end, let �1; �2; : : : ; �k be
the eigenvalues of S on the unit circle (now not repeated), and let m1;m2; : : : ;mk be their

multiplicities. Then,
Pk
i=1mi = 2q. For each i = 1; : : : ; k let v

(j)
i , j = 1; 2; : : : ;mi, be the

(generalized) eigenvectors corresponding to �i. The exponent of v
(j)
i is

e(v
(j)
i ) = mi � 2j + 1:

Since, by assumption there are no eigenvalues of odd multiplicity on the unit circle, i.e.

mi is even, e(v
(j
i ) 6= 0. Therefore, e(v

(j)
i ) is positive for j = 1; 2; : : : ;mi=2 and neg-

ative for j = mi=2 + 1; : : : ;mi, and hence U�D is unique. In the same way, it is seen

that U+D := span fvn�q+1; : : : ; vn; vn+q+1; : : : ; v2ng is the unique codominant S-invariant n-

subspace. The proof that U�D and U+D are Lagrangian can be found in the appendix of [7]
(Lemma 3.1x).

Returning to the fast �ltering algorithm (4.4), the following lemma establishes the proper
interpretation of the convergence of StZ0 to the dominant S-invariant subspace.

Lemma 6.11. Let f�1; �2; : : : ; �ng be the eigenvalues (counted with multiplicity) corre-
sponding to the dominant S-invariant subspace U�D of Lemma 6.10, and let Z0 be the n-

dimensional subspace spanned by the columns of (6.17). Then, if StZ0 ! U
�
D, either the
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trajectory of (4.4) escapes to in�nity in �nite time or (�(t); 
(t))! (�1; 0) where the zeros
of the corresponding polynomial

�1(z) = zn + �11z
n�1 + � � �+ �1n

all lie in the closed unit disc. More precisely,

�1(z) = (z � 1

� 1
)(z � 1

� 2
) � � � (z � 1

�n
): (6.25)

Proof. To say that StZ0 ! U
�
D is equivalent to say that

[Xt

Yt
]! [XY ] = (v1; v2; : : : ; vn)T (6.26)

for some nonsingular n�nmatrix T , where, as above, [Xt

Yt
] = St[ I0 ]. Since U

�
D is Lagrangian,

X is nonsingular (Lemma 6.7). Therefore, if Xt is nonsingular for all t 2 Z, the solution
Pt = YtX

�1
t of the matrix Riccati equation (2.2) with initial condition P0 = 0 tends to the

limit P = Y X�1, which is thus a real symmetric solution of the algebraic Riccati equation
(6.1). Then, by Lemma 6.1, (�(t); 
(t)) ! (�1; 0) where

�1 = (1� h0Ph)�1(a+ g � JPh) (6.27)

If, on the other hand, Xt becomes singular in �nite time � , the Riccati trajectory Pt = YtX
�1
t

escapes to in�nity at time � . To analyze the convergent case, �rst note that T cancels out
in forming Pt = YtX

�1
t and P = Y X�1 and therefore we may without restriction assume

that T = I . Hence �
S11 S12
S21 S22

� �
X
Y

�
=

�
X
Y

�
� (6.28)

where � is the block diagonal matrix formed by the Jordan blocks corresponding to f�1, �2,
: : : , �ng. From this it follows that

S11 + S12P = X�X�1 (6.29)

Now, substituting S11 and S12 in (6.29) for their values as de�ned in (6.8), we have

(S011 + PS012)
�1 = F [F + ��1(g � FPh)h0]�1F; (6.30)

to which we apply the well-known \matrix inversion lemma"

(A+BD�1C)�1 = A�1 �A�1B(D + CA�1B)�1CA�1 (6.31)

to obtain

(S011 + PS012)
�1 = F � (1� h0Ph)�1(g � FPh)h0 = J � �1h

0 (6.32)

Therefore, setting � := J � �1h
0, (6.29) and (6.32) yield

(�0)�1X = X� (6.33)

i.e. (�0)�1 has eigenvalues f�1; �2; : : : ; �ng. Then, �1(z) being the characteristic polynomial
of � must have the form (6.25), as claimed. Since j�ij � 1 for i = 1; 2; : : : ; n, the zeros of
�1(z) are all in the closed unit disc.

Finally, to establish a global convergence theorem for the fast �ltering algorithm (4.4)
based on Lemma 6.9, it therefore remains to interpret the condition U+D \Z0 = 0, where Z0
is the initial space corresponding to Z0 = [ I0 ], in terms of the parameters (i.e. the initial
conditions) of the algorithm.

Lemma 6.12. Let �n 6= 0 and let U be an n-dimensional Lagrangian S-invariant subspace,
and set Z0 := Im [ I0 ]. Then, if a(z) and b(z) are coprime, U \ Z0 = 0.
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Proof. As above, set W := U \ Z0 and let U be a full-rank matrix such that W = Im [ U0 ].
Then, since W is S-invariant (Lemma 6.8), there is a square matrix T such that S [ U0 ] =
[ U0 ]T . Therefore, in view of (6.14), (A0)�1U = UT and gg0(A0)�1U = 0, from which we see
that

U 0A�n[g;Ag; : : : ; An�1g] = 0 (6.34)

Consequently U = 0, i.e. W = 0, if and only if (A; g) is reachable. Since A = F � gh0, this
is equivalent to (F; g) being reachable. However, since

1

2

b(z)

a(z)
= h0(zI � F )�1g +

1

2

and (h; F ) is observable, (F; g) is reachable if and only if a(z) and b(z) are coprime.

7. Global Convergence of the Fast Filtering Algorithm

We are now in a position to formulate the global convergence theorem. To this end, let D
be the subset of all (�; 
) 2 R2n such that D(z; z�1) is sign de�nite on the unit circle, i.e.
either nonnegative or nonpositive there. Finally, denote by 
e the subset of initial conditions
(�; 
) 2 R2n which generate trajectories which escape in �nite time.

Theorem 7.1. For initial conditions (�; 
) 2 R2n � 
e there is convergence to an equi-
librium under the dynamics of the fast �ltering algorithm if and only if the corresponding
pseudo-polynomial D(z; z�1) is sign de�nite. More precisely, the following statements hold:

(i) 
e and D \ 
e have Lebesgue measure zero.
(ii) (�; 
) 2 D � D \ 
e is a necessary and suÆcient condition for convergence to an

equilibrium.
(iii) If (�; 
) 2 D�D\
e, then (�t; 
t)! (�1; 0) and the corresponding limit polynomial

�1(z) = zn + �11z
n�1 + � � �+ �1n

satis�es
�1(z) = ~�1(z)�(z)

where ~�1(z) has all its zeros in the closed unit disc and where

�(z) = (a; b);

i.e. �(z) is the greatest common divisor of a(z) and b(z).

Moreover, ~�1(z) is determined up to a nonzero, scalar multiplicative factor r1 by the
spectral factorization problem

~a(z)~b(1=z) + ~a(1=z)~b(z) = r1 ~�1(z)~�1(1=z): (7.1a)

where

a(z) = ~a(z)�(z); b(z) = ~b(z)�(z): (7.1b)

Theorem 7.1 not only characterizes those initial conditions which generate a convergent
trajectory, but also provides for an explicit determination of the equilibrium to which the
corresponding trajectory will converge. Conversely, from this explicit recipe we can also
determine which initial conditions will generate a trajectory which converges to a given
equilibrium.

Corollary 7.2. In the notation of Theorem 7.1, suppose �1(z) = ~�1(z)�(z) where ~�1(z)
is a Schur polynomial and �(z) has all of its zeros in jzj > 1. Then, the global stable
\manifold" W s(�1; 0) is given by

W s(�1; 0) = f(�; 
) =2 
e : (7.1) hold with (a; b) given by (4.1) and (~a;~b) = 1g:
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Similarly, the global unstable \manifold" can be parameterized as all coprime pairs (�a;�b)
satisfying

a(z) = �a(z)~�1(z); b(z) = �b(z)~�1(z);

and
�a(z)�b(1=z) + �a(1=z)�b(z) = �r1�(z)�(1=z):

Finally, a global center manifold W c(�1; 0) is given by the equilibrium set E.

Remark 7.3. The existence of stable and unstable manifolds as locally invariant immersed
manifolds is of course a local result. In harmony with this, Lemma 5.8 gives a result
characterizing W s(�1; 0) as a submanifold near (�1; 0). In contrast, the description of
W s(�1; 0) in the large as given in Corollary 7.2 does allow for singular points. These
singular points are characterized in Theorem 5.11.

Proof of Theorem 7.1. We �rst assume that �n 6= 0 so that the pseudo-polynomialD(z; z�1)
has degree n and the symplectic matrix S is well-de�ned and nonsingular.

Finite escape occurs for precisely the initial conditions

Z0 = S�t ~Z t = 0; 1; 2; : : : (7.2)

for which ~X is singular. In (�; 
)-space, ~X being singular corresponds to (~�; ~
) belonging
to the two hyperplanes 
n�1 = �1. Forming the union of the countably many iterates via
(7.2) of these hyperplanes forms a set 
e which has measure zero. Here D \ 
e also has

measure zero. We shall defer the proof that D \ 
e is a set of measure zero.
Concerning the second part of the theorem, we already have established that it is necessary

that D(z; z�1) is sign de�nite for (4.4) to converge (Corollary 5.3). We prove the converse
statement by proving assertion (iii). Suppose that D(z; z�1) is sign de�nite, i.e. it has no
zeros of odd multiplicity on the unit circle. Then Proposition 6.6 implies that S has no
eigenvalues of odd multiplicity on the unit circle. But, this implies that there are unique
dominant and codominant S-invariant n-dimensional subspaces U�D and U+D respectively,
which are Lagrangian (Lemma 6.10), so that we can apply Lemma 6.9.

First, suppose that a(z) and b(z) are relatively prime. Then, if Z0 is the subspace spanned
by the columns of Z0 = [ I0 ], we have U+D \ Z0 = 0 (Lemma 6.12) so that StZ0 ! U

�
D as

t ! 1 (Lemma 6.9). But this implies that (�(t); 
(t)) ! (�1; 0) (Lemma 6.11) where
�1(z) has all its zeros in the closed unit disc, unless there is �nite escape.

Next, suppose that a(z) = ~a(z)�(z) and b(z) = ~b(z)�(z), where �(z) is a nontrivial monic

polynomial and ~a(z) and ~b(z) are relatively prime. Then the factor �(z) can be canceled

in v(z) = 1
2
a(z)
b(z) so we may consider the dimension-reduced problem with (a; b) exchanged

for (~a;~b). Since D(z; z�1) = ~D(z; z�1)j�(z)j2 is sign de�nite on the unit circle, then so is
~D(z; z�1), and consequently, unless there is �nite escape,

(~�(t); ~
(t))! (~�1; 0) (7.3)

as t ! 1, where ~�1(z) has all its zeros in the closed unit disc (Lemma 6.11). On the
other hand, it was shown in [27], and further elaborated upon in [5], that the fast algorithm
(2.16), which is equivalent to (4.4), can be written in the Szeg�o-like polynomial form(

Qt+1(z) = Qt(z)� 
tzQ
�
t (z)

Q�
t+1(z) = zQ�

t (z)� 
tQt(z)
(7.4)

(see Section 2 in [5]), which through the transformation(
at(z) = r�1t [Qt(z)�Q�

t (z)]

bt(z) = r�1t [Qt(z) +Q�
t (z)]

(7.5)
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and (3.7) provides us with a polynomial version in (a; b)-coordinates of the dynamical system
(4.4). From this we see that, if a0(z) := a(z) and b0(z) := b(z) have a nontrivial common
factor �(z), then (

at(z) = ~at(z)�(z)

bt(z) = ~bt(z)�(z)
(7.6)

for all t = 0; 1; 2; 3; : : : . Since ~a0(z) = ~a(z) and ~b0(z) = ~b(z), it follows readily from

(7.4) and (7.5), that f(~at;~bt)g is a trajectory in (a; b)-coordinates of the reduced system
obtained by cancellation of the factor �(z). In view of (7.3) and (A-1), ~at(z)! ~�1(z) and
~bt(z) ! ~�1(z) as t ! 1, where �1(z) has all its zeros in the closed unit disc. Therefore,
at(z)! ~�1(z)�(z) and bt(z)! ~�1(z)�(z) so that (�t; 
t)! (�1; 0) where

�1(z) = ~�1(z)�(z); (7.7)

the zeros of which are located in the closed unit disc if and only if �(z), the common factor
of a(z) and b(z), has all its zeros in the closed unit disc.

To complete the proof of (i), we shall now demonstrate that

D \
e � D \ 
e [ F1 [ F2
where F1 and F2 are sets of measure zero. Indeed, F1 is the algebraic set consisting of those
pairs (�; 
) for which the corresponding polynomials (a; b) have a nontrivial common factor
and F2 is the algebraic set consisting of those pairs for which the corresponding pseudo
polynomial D(z; z�1) has a double root. Suppose then that (�(n); 
(n)) is a sequence in
D \
e with limit

lim
n!1

(�(n); 
(n)) = (�; 
):

Of course, (�; 
) 2 D so our claim will follow if we show that (�; 
) 2 D�D \ 
e implies
(�; 
) 2 F1 [ F2. From (iii) of Theorem 7.1, we know that, if (�0; 
0) = (�; 
) then

lim
t!1

(�t; 
t) = (�1; 0)

where �1(z) = ~�1(z)�(z), where ~�1(z) has all of its roots in the closed unit disc and
� = (a; b). If deg � � 1 then (�; 
) 2 F1, so we suppose �(z) � 1. In this case, to say
�1(z) has roots on the unit circle is to say (�; 
) 2 F2 so we may assume �1(z) is a Schur
polynomial, an assumption which we shall show is contrary to fact. If �1(z) is a Schur
polynomial, then (�1; 0) belongs to the region Pn of all (�; 
) 2 R2n satisfying the positive
real conditions (2.13)-(2.15), and so (�T ; 
T ) 2 Pn for some �nite T > 0. Since Pn is open
and since the map on R2n

�T : (�0; 
0) 7! (�T ; 
T );

de�ned by iterating the dynamical system (4.4) T times, is rational with no pole at (�; 
),
there exists an " > 0 such that

�T (B"(�; 
)) � Pn:
But then, no (�0; 
0) 2 B"(�; 
) can escape in �nite time, contrary to the de�nition of (�; 
).

Finally, it is easy to modify the above argument to include the case �n = 0. Indeed,
if for some k < n, �n = � � � = �k+1 = 0 and �k 6= 0, then D(z; z�1) has degree k and
the dynamical system (4.4) is reduced to a system of order 2k in n � k steps. Therefore,
(�(t); 
(t)) ! (�1; 0) if and only if (�̂(t); 
̂(t)) ! (�̂1; 0), where the \hatted" quanti-
ties correspond to the reduced system. Then �1(z) = zn�k�̂1(z) so that all statements
concerning the reduced system also hold for the unreduced one.
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We remark that the initial conditions (�; 
) for which the pseudo polynomial D(z; z�1)
fails to be sign de�nite, and there consequently is no convergence, form an unbounded open
set in R2n . As we illustrate in the next section such points can be periodic or dense on some
unbounded submanifold, depending on certain number theoretic considerations and leading
to a remarkable sensitivity of the fast �ltering algorithm to initial conditions in this region.
We shall return to this topic in a subsequent paper.

8. Examples and Simulations

The purpose of this section is to illustrate our results for low order problems, particularly
the cases n = 1 and n = 2. Since these cases have been treated in [5] and [6], respectively,
we shall quote only those results which best illustrate our main theorem.

In the �rst-order case the dynamical system (4.4) takes the form

�t+1 =
�t

1� 
2t
(8.1a)


t+1 = � 
t�t
1� 
2t

(8.1b)

corresponding to the rational function

v(z) =
1

2

b(z)

a(z)
(8.2)

where

a(z) = z + �� 


b(z) = z + �+ 
 (8.3)

This case was studied in detail in [5], where it was shown that points (�; 
) in the interior of
the diamond I, with corners (�1; 0), (0;�1), depicted in Figure 8.1 correspond to positive
real v(z), whereas the points (�; 
) in the shaded regions are precisely those for which
D(z; z�1) is sign de�nite on the unit circle, v(1=z) being positive real in regions III and
negative real in regions II. The dotted lines are the lines 
 = �1 of �nite escape.

α

γ

I III

II

II

III

1

1−1

−1

Figure 8.1



32 CHRISTOPHER I. BYRNES, ANDERS LINDQUIST, AND YISHAO ZHOU

The invariant manifold XD, de�ned by (5.9), becomes

1 + �2t � 
2t =
2

�
�t (8.4)

valid for all � 6= 0 [including � =1, corresponding to d0(�; 
) = 0]; for � = 0, the dynamical
system (8.1) evolves along the axis � = 0, converging in one step to the origin.

Figure 8.2 depicts the invariant manifolds de�ned by (8.4) for certain values of �. For
�2 < 1 these manifolds are hyperbolas completely contained in the shaded, sign-de�nite
region, and for �2 = 1 they degenerate into a pair of intersecting lines, in the boundary of
the shaded region, intersecting in (1; 0) or (�1; 0). In fact, each point in the shaded region
lies on such an invariant manifold and converges to the intersection of this hyperbola with
the segment f(�; 0) j � 1 � � � 1g.

γ

κ=1/2

κ=2

α

Figure 8.2

Since a(z) and b(z), displayed in (8.3), can have a common pair of reciprocal roots only
in (1; 0) and (�1; 0), Theorem 5.27 states that these are the only singular points, � in
Lemma 5.12 being zero everywhere else, a fact that is illustrated by the above analysis.

It is easy to check (see [5] for details) that hyperbolas for which �2 < 1 correspond to those
symplectic matrices S which have two real eigenvalues, one inside the unit circle and the
other outside, whereas the case �2 = 1 yields a symplectic matrix S which has an eigenvalue
of multiplicity 2 either at 1 or at �1. Convergence in these cases is therefore in accordance
with Theorem 7.1, since S has no eigenvalue of odd multiplicity on the unit circle. On the
other hand, if �2 > 1, there is a complex pair of such eigenvalues, and the hyperbolas lie
in the white region of Figure 8.2 where the corresponding pseudo-polynomials D(z; z�1) is
sign inde�nite on the unit circle, implying nonconvergence by Theorem 5.34.

Those hyperbolas for which �2 < 1 intersect the �-axis in two points, one of which is
a point �1 so that the polynomial z + �1 is Schur; i.e. so that j�1j < 1. In [5] it has
been shown that, not only is the hyperbola (8.4) locally a stable manifold, for �2 < 1, but
rather it consists of a global stable manifold, excluding the unstable equilibrium and the
measure zero set of points which escape in �nite time. Also, E = f(�1; 0) : �1 2 Rg is a
global center manifold through (�1; 0). We note that the unstable equilibrium (�1; 0), with
j�1j > 1, has, by (5.2), a one-dimensional center manifold. In fact, these manifolds exist
globally with the hyperbola being a global unstable manifold for the unstable equilibrium,
on which trajectories either escape or evolve to the equilibrium, with the exception of the



ON THE NONLINEAR DYNAMICS OF FAST FILTERING ALGORITHMS 33

unstable equilibrium itself. E is again a global center manifold. The global convergence is
completely understood in this case and described in [5].

If �2 > 1 then the hyperbolas do not intersect the �-axis, see Figure 8.2, and indeed the
dynamics is far more complex. In fact, in [5] it is shown that there are two alternatives
which taken together prove that (8.1) is sensitive to initial conditions, in the technical sense
(as in [11]). Explicitly, one knows that either (A) or (B) holds:

(A) arctan
p
�2 � 1 2 Q� and hence

1

2
arctan

p
�2 � 1 =

q

p
� if � < �1

or
1

2
f� � arctan

p
�2 � 1g = q

p
� if � > 1,

where p and q are coprime natural numbers. If p is odd, 2(p�1) points on the hyperbola
escape in �nite time and if p is even there are (p� 2) such points. All other points are
periodic with period p and every period p, p � 3, is possible.

(B) arctan
p
�2 � 1 =2 Q� and a countably in�nite set of points on the hyperbola escape in

�nite time. All other points generate a dense orbit.

Finally, consider the points (�1; 0), correspondingly to �2 = 1. According to Theorem 5.2,
the center manifold is two-dimensional and consequently is global. In fact, hyperbolas of
all types, containing periodic orbits and dense orbits or consisting of stable and unstable
manifolds, intersect every neighborhood of either equilibrium (�1; 0) yielding a rather com-
plicated mix of dynamics. However, points lying on the degenerate hyperbola for � = �1
do converge to the equilibrium (�1; 0), except for a countable set of points which escape in
�nite time.

In n dimensions, the n-folds (5.9) are de�ned for every value of �1; : : : ; �n. Moreover,
setting �n = �n�1 = � � � = �2 = 0 we obtain an invariant subset of R2n on which the
n-dimensional algorithm restricts to the �rst-order algorithm on the hyperbola de�ned by
� = �1. Therefore, in addition to the equilibrium structure described in Section 5 and the
convergence analysis in Section 6 yielding a parameterization of the global stable manifolds
of these equilibria, we also know (see [5])

Proposition 8.1. For any p � 3, there exist in�nitely many periodic points of period p
for the fast �ltering algorithm. Arbitrarily close to any one of these initial conditions is an
initial condition which generates an unbounded orbit. In particular, in the sign inde�nite
region (in which trajectories cannot converge to equilibria) the fast �ltering algorithms can
exhibit sensitivity to initial conditions.

We refer the reader to [5] for further details of the various kinds of asymptotic behavior
in the case n = 1.

In the case n = 2, the fast �ltering algorithm (4.4) takes the form

�1(t+ 1) =
1

1� 
2t+1
�1(t) +


t+1
1� 
2t+1


t
1� 
2t

�2(t) (8.5a)

�2(t+ 1) =
�2(t)

1� 
2t
(8.5b)


t+1 = ��1(t)
t � �2(t)
t�1 (8.5c)

and the invariant manifold XD becomes(
2(r1�1 + �1�2 + 
0
1�2) = �1(�

2
2 + r1�

2
1 + r2)

2�2 = �2(�
2
2 + r1�

2
1 + r2)

(8.6)
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where r1 = 1� 
20 and r2 = (1� 
20)(1� 
21) are de�ned as in (3.7), as long as d0, given by
(4.11), is nonzero. The other cases are covered by dividing one or both of the equations in
(8.6) by �1 and �2 respectively and allowing these constants to take in�nite values.

In the second-order case the invariant manifold XD may have a singular point not only
if a(z) and b(z) have a root z = 1 or z = �1 in common, which may occur outside of the
equilibrium set, but also if

a(z) = b(z) = (z + �)(z + 1=�)

which can only occur in an equilibrium point, because 
0 = 
1 = 0 in this case. By
Lemma 5.1, equilibria are precisely the points of the form (�1; 0). Inserting (�1; 0) in (8.6)
yields the constants �1; �2 de�ning the invariant manifold containing this point. In fact,8>><

>>:
�1 =

2�11(1 + �12)

�212 + �211 + 1

�2 =
2�12

�212 + �211 + 1

(8.7)

Conversely, it follows from Theorem 5.9 and Theorem 7.1 that to each point (�1; �2) such
that D(z; z�1) is sign de�nite, there corresponds a unique �1, such that �1(z) is stable,
i.e., all its zeros lie inside the unit circle. These �1 are precisely the points in the closed
triangular stability region depicted in Figure 8.3

α

α

(−2,1) (2,1)

(0,−1)

∞ 1

∞ 2

Figure 8.3

Since the roots of

D(z; z�1) = r1�1(z)�1(1=z) (8.8)

are the eigenvalues of the symplectic matrix S (Proposition 6.6), each point in the closed
triangle depicted in Figure 8.3 corresponds to a particular eigenvalue con�guration for which
there is convergence. Excluding the segment �12 = 0 which corresponds to the case n =
1, the points in the interior of the triangle correspond to the situations when there are
no eigenvalues on the unit circle. Below the parabola �12 = �211=4, there are four real
eigenvalues, while above there are two complex pairs. On the boundary of the triangle
there are eigenvalues on the unit circle, but they are always of even multiplicity, as a simple
application of (8.8) shows. The rest of the plane, outside of the triangle, corresponds
to unstable solutions of the polynomial factorization problem (8.8) and hence to unstable
equilibria (�1; 0). To each point below the parabola in the interior of the triangle there
corresponds one strictly unstable and two saddle equilibria outside the triangle. For an
interior point above the parabola there is only one equilibrium outside the triangle and it is
strictly unstable.

For all points in the interior of the triangle the invariant manifold XD de�ned by (8.6)
is a smooth surface. As shown in Section 6, not only is the invariant manifold through
such a point locally a stable manifold, but actually it constitutes a global stable manifold,
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excluding the unstable equilibria, their stable manifolds, and the measure zero set of points
which escape in �nite time. Using the same argument as in the �rst-order case, E =
f(�1; 0) : �1 2 R2g is a global center manifold through (�1; 0) of dimension 2, for any �1
which does not lie on the lines through (�2; 1), (2; 1) and (0;�1), i.e. on the boundary of
the triangle.

The points on the boundary of the triangle are all singular. In fact, the invariant manifolds
corresponding to the points on the line segment between (�2; 1; 0; 0) and (2; 1; 0; 0) as well as
that of the point (0;�1; 0; 0) have dimensions less than two. The center manifolds containing
these points all have dimension four, while the center manifolds containing the points on
the open boundary segments extending from the corner (0;�1; 0; 0) have dimension three.

An initial condition (�; 
) 2 R4 for the fast �ltering algorithm which does not belong to
the plane (�1; 0) of equilibria may or may not converge to an equilibrium. Figure 8.4 shows
the plane � 7! (�; 
) where 
 is �xed so that, in this example, 
0 = 1=2 and 
1 = 1=3.

α 2

α 1

Figure 8.4

Each point in the bounded shaded region in Figure 8.4 corresponds to a positive real
function v(z), and hence to a bona �de stochastic system, and converges, by classical results,
to a stable equilibrium (�1; 0) in the triangle of Figure 8.3. This is precisely the solution
set of the rational covariance extension problem for which the covariance data fc1; c2g is
prescribed so that the Schur parameters are 
0 = 1=2 and 
1 = 1=3. Initial conditions in
the four unbounded shaded regions also correspond to orbits which converge to stable or
unstable equilibria (�1; 0) except for a zero measure set which escape in �nite time.

As an example we may now choose the point (0; 2; 1=2; 1=3), which lies in the topmost
shaded unbounded region. We see from the simulation below that, using this point as
an initial condition, the fast �ltering algorithm (8.5) converges after having violated the
positive real condition j
tj < 1 twice, showing that the corresponding v(z) is not positive
real. However, after six steps the iterate is inside the bounded positive real region and will
remain there.
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Figure 8.5: Plot of �1 (dotted line),�2 (dashed line),
 (solid line)

What happens if the initial condition (�; 
) lies in the white region of Figure 8.4? These
points correspond to sign inde�nite D(z; z�1) and according to Proposition 8.1 we have at
least three kinds of behavior.

(i) (�; 
) is a periodic point;
(ii) the orbit of (�; 
) is dense on some manifold;
(iii) there is �nite{time escape.

These nonconvergent initial conditions and the invariant manifolds on which they lie corre-
spond to the situations when S has eigenvalues of odd multiplicity on the unit circle. In the
literature there has been a tendency to exclude the case with eigenvalues on the unit circle,
as being a rather complicated nongeneric case, but, as our analysis shows, this situation
actually corresponds to an open unbounded set of initial conditions. Cases (i) and (iii),
however, occur only for a measure zero subset of the white region. We refer the reader to
[6] for simulations illustrating these types of dynamical behavior. Here we show only one
simulation which illustrates that in the white region the fast �ltering algorithm is extremely
sensitive to the initial conditions. Consider the periodic point of period 144 corresponding
to �1 = sec�=8 and �2 = sec�=9, where

2

�1
=
��1 +

p
�21 � 8�2 + 8�22
2�2

;

2

�2
=
��1 �

p
�21 � 8�2 + 8�22
2�2

If we round o� �0 to the �fteenth digit, we obtain an orbit which is dense on the invariant
manifold and part of whose 
-trajectory is depicted in Figure 8.6. This dynamical behavior
is apparently quite di�erent to that of the periodic point which the new initial condition
approximates.

If S has all its eigenvalues on the unit circle but at least two of them are real, then the
dynamics degenerates to the �rst-order case. The interesting fact here is that a(z) and b(z)
having a common pair of reciprocal roots which are not 1 corresponds to an equilibrium
lying on the line (�1;1; 1; 0; 0) where j�1;1j > 2, i.e. the part of the line which is not in the
boundary of the triangle of Figure 8.3. Moreover, this equilibrium is a saddle point.

A complete description of the positive real, sign de�nite and sign inde�nite regions is
available in the case n = 2, as reported in [19] where also many simulation results are given.
Earlier graphical simulations of the positive real region, in the case n = 2, are contained
in T. T. Georgiou's thesis [15]. Curiously, all graphical representations of the positive real
regionA+(n) for 
 �xed of which we are aware seem to be convex. Convexity of A+(n) would
in fact imply a Kharitonov-like property, viz. star-shapedness about the maximum-entropy
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�lter, conjectured and established for the case n = 1 by Kimura. In this direction it is
known that for reasons concerning the geometry of the spaces of real and of complex Schur
polynomials, the convexity A+(2) seems to be decidedly nontrivial. In general, although
examples show [4] that A+(n) can fail to be star-shaped for n � 3, A+(n) is in fact always
a Euclidian space [4].
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Appendix

In this section, we provide the proofs deferred from Sections 4 and 6.

Proof of Theorem 4.3. Under the map F�1 of Corollary 3.4 the initial conditions (a; g) are
transformed to (�; 
) where 
0; 
1; : : : ; 
n�1 are the �rst n Schur parameters of v(z) and
�1; �2; : : : ; �n are the parameters in the Kimura-Georgiou parameterization (3.9). Under
the same map, (a(t); g(t)) goes into (�(t); 
(t)) which, according to Corollary 3.4, satis�es

a(t) = 'n(
(t)) + �n(
(t))�(t); (A-1a)

b(t) =  n(
(t)) + 	n(
(t))�(t): (A-1b)

g(t) =
1

2
[b(t)� a(t)] (A-1c)

Now, by Lemma 4.2, f
t; 
t+1; 
t+2; : : : g is the Schur parameter sequence of vt(z), and
consequently (4.7) must hold. Therefore, if we can prove (4.8), then we have shown that
(4.4b) holds. To this end note that, in view of (4.7), the last of equations (A-1a) reads

an(t+ 1) = �
t+n�1 � 
t+n�2�1(t+ 1)� � � � � 
t+1�n�1(t+ 1) + �n(t+ 1)

so if we can prove that

an(t+ 1) = (1 + 
t)�n(t+ 1); (A-2)

then (4.8) follows. However, from (A-1) we see that

�n(t) = an(t) + gn(t) (A-3)

for all t = 0; 1; 2; : : : , and then (A-2) follows from the bottom equations in each of (2.16a)
and (2.16b). This establishes (4.4b).

To prove (4.4a) �rst note that since the dynamical system is time-invariant it is enough
to show that �(1) = A(
)�, i. e. that

� = A(
)�1�(1) (A-4)
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where

A(
)�1 =

2
666664

1� 
2n�1 �
n�1
n�2 �
n�1
n�3 � � � �
n�1
0
0 1� 
2n�2 �
n�2
n�3 � � � �
n�2
0
0 0 1� 
2n�3 � � � �
n�3
0
...

...
...

...
0 0 0 � � � 1� 
20

3
777775 (A-5)

In view of (4.8), proving (A-4) amounts to proving that

�j = 
n�j
n + 
n�j
n�1�1(1) + � � �+ 
n�j
n�(j�1)�j�1(1) + �j(1); (A-6)

for j = 1; 2; : : : ; n. Now, after the change of coordinates (A-1), the k-th equation of (2.16a)
reads

'
(1)
nk + '

(1)
n�1;k�1�1(1) + � � �+ '

(1)
n�k+1;1�k�1(1) + �k(1)

=
1

1� 
0
f�nk��n;k+1+(�n�1;k�1��n�1;k)�1+ � � �+(�n�(k�1);1��n�(k�1);2)�k�1g+�k

(A-7)

where '
(1)
tk := 'tk(
(1)), and �tk and �tk are the coeÆcients of polynomials (3.16) and

(3.18) respectively. Note that f'(1)tk g are the coeÆcients of the Szeg�o polynomials f'(1)t (z)g
corresponding to the shifted Schur parameter sequence f
1; 
2; 
3; : : : g which are related to
f't(z)g through the algebraic identity [16] (see also [12, 9])�

 t+1(z)
't+1(z)

�
=

1

2

�
(1 + 
0)(z + 1) (1� 
0)(z � 1)
(1 + 
0)(z � 1) (1� 
0)(z + 1)

� "
 
(1)
t (z)

'
(1)
t (z)

#
;

which can be inverted to yield"
 
(1)
t (z)

'
(1)
t (z)

#
=

1

2

1

z(1� 
20)

�
(1� 
0)(1 + z) (1� 
0)(1� z)
(1 + 
0)(1� z) (1 + 
0)(1 + z)

��
 t+1(z)
't+1(z)

�
:

Then

'
(1)
t (z) =

1

2(1� 
0)
[�t+1(z)� z�t+1(z)] (A-8)

Using recursion (3.5) it is easy to see that

't+1(z) = z't(z) + 
t
t�1z't�1(z) + 
t
t�2z't�2(z) + � � �+ 
t
0z � 
t:
(A-9)

Similarly, changing the signs of the Schur parameters in (A-9), we also have

 t+1(z) = z t(z) + 
t
t�1z t�1(z) + 
t
t�2z t�2(z) + � � �+ 
t
0z + 
t:
(A-10)

Combining (A-9) with (A-10) yields the recursions

�t+1(z) = zf�t(z) + 
t
t�1�t�1(z) + � � �+ 
t
1�1(z) + 
t
0g; (A-11)

and

�t+1(z) = z�t(z) + 
t
t�1z�t�1(z) + � � �+ 
t
1z�1(z) + 
t: (A-12)

Now, inserting (A-11) and (A-12) into (A-8), we obtain

'
(1)
t (z) =

1

1� 
0
f�t(z)� z�t(z) + 
t
t�1[�t�1(z)� z�t�1(z)]

+ 
t
t�2[�t�2(z)� z�t�2(z)] + � � �+ 
t
1[�1(z)� z�1(z)]g � 
t
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which, after identifying coeÆcients and observing that �j1 = 
0 for j = 1; 2; 3; : : : yields

'
(1)
tk =

1

1� 
0
[�tk � �t;k+1 + 
t
t�1(�t�1;k�1 � �t�1;k) + � � �

+ 
t
t�k+1(�t�k+1;1 � �t�k+1;2)] + 
t
t�k; k = 1; : : : ; n: (A-13)

We now prove (A-6) by induction. For j = 1, (A-7) reads

'
(1)
n1 + �1(1) =

1

1� 
0
[�n1 � �n2] + �1: (A-14)

On the other hand, (A-13) yields

'
(1)
n1 =

1

1� 
0
[�n1 � �n2] + 
n
n�1

and therefore

�1 = �1(1) + 
n
n�1;

which shows that (A-6) is true for j = 1. Next, suppose that (A-6) holds for j = 1; 2; : : : ; k�
1. We need to prove that (A-6) holds for j = k. To this end, use (A-6) for j = 1; 2; : : : ; k�1 to
eliminate �1; �2; : : : ; �k�1 from (A-7) and use (A-13) to eliminate '

(1)
nk ; '

(1)
n�1;k�1; : : : ; '

(1)
n�k+1;1.

This yields, after some simple calculations, (A-6) for j = k as required.
Finally, formula (4.9) is obtained from (2.17) by merely inserting a(t) and g(t) as exhibited

in (A-1).

Proof of Lemma 4.4. It follows from (3.5) that f�tg as de�ned by (3.18) satis�es the recur-
sion (

�t+1(z) = z�t(z) + 
t�
�
t (z) �0(z) = 1

��t+1(z) = ��t (z) + 
tz�t(z) ��0(z) = 0

where ��t (z) := zn�t(1=z), from which (4.12) is easily derived. Next, let D(z; z�1) be de�ned
by (2.13), and let d(z) be the corresponding polynomial in (4.10). In view of (3.12)

D(z; z�1) =

nX
i=0

nX
j=0

�i�j�ij(z; z
�1); (A-15)

where �0 = 1 and

�ij(z; z
�1) :=

1

2
['i(z) j(1=z) +  i(z)'j(1=z)]: (A-16)

Now, it is well-known and easy to check that

�ii(z; z
�1) = ri; (A-17a)

and hence by using (3.5) we see that

�i;i�1(z; z
�1) = ri�1z: (A-17b)

Then, for j = 1; : : : ; i, we obtain, by induction and repeated use of (3.5)

�i;i�j(z; z
�1) = ri�j(z

j + p1z
j�1 + � � �+ pj�1z); (A-17c)

where p1; p2; : : : ; pj�1 are functions of 
i�j ; 
i�j+1; : : : ; 
i�1 only. Consequently, it follows
from (A-15) that

d0 = �2n + r1�
2
n�1 + � � �+ rn; (A-18)
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and that

d(z)� 1

2
d0 =

n�1X
i=0

nX
j=i+1

�i�j�n�i;n�j(z; z
�1)

=
n�2X
i=0

n�1X
j=i+1

�i�j�n�i;n�j(z; z
�1) + �n

nX
j=1

�n�j�j(z)
(A-19)

because �j0 = �j . Now, writing d(n) instead of d(z) to stress the fact that n is the di-
mension of � or 
 (but not necessarily the degree of d(z)), we observe that the �rst term
of (A-19) equals d(n�1)(z) � 1

2d0 except that �kl has been replaced by �k+1;l+1, which re-
placement according to (A-17) amounts to exchanging f
0; 
1; : : : ; 
n�1; 
0; 
1; : : : ; 
n�1g by
f
1; 
2; : : : ; 
n; 
1; 
2; : : : ; 
ng. Consequently, since d(1)(z) = 1

2d0 + �1z, the coeÆcients of

(4.10) are generated by the recursion in d(k) de�ned in the lemma.
Finally, suppose di = 0 for i = 1; 2; : : : ; n. Then, since 1�
2i 6= 0 for i = 0; 1; 2; : : : ; n�1,

it follows from the recursion in d(k) that �1 = �2 = � � � = �n = 0. But then, by (4.11),

d0 = rn :=
Qn�1
i=0 (1 � 
2i ) 6= 0. Hence at least one of the coeÆcients must be nonzero as

claimed.

Proof of Lemma 6.8. Let [XY ] be a matrix basis of U as in (6.19). Then

W =

��
X
Y

�
z j z 2 kerY

�
(A-20)

The S-invariance of U implies that there is a n� n matrix R such that

S

�
X
Y

�
=

�
X
Y

�
R (A-21)

and therefore (i) holds if and only if Rz 2 kerY for all z 2 kerY , i.e. kerY is R-invariant.
Set z 2 kerY . Then, using (6.14), the second block of (A-21) yields

gg0(A0)�1Xz = Y Rz (A-22)

Since U is Lagrangian, X 0Y = Y 0X so that z0X 0Y = 0, and therefore

[z0X 0g][g0(A0)�1Xz] = 0 (A-23)

Let V1 and V2 be the largest subspaces of kerY for which g0(A0)�1Xz = 0 and g0Xz = 0
respectively. Then for (A-23) to hold for all z 2 kerY either V1 or V2 must be all of kerY .
In fact, if there are two one-dimensional subspaces l1 2 V1 and l2 2 V2, then an arbitrary
point in the plane spanned by l1 and l2 must belong to kerY and hence to either V1 or V2
for (A-23) to hold; say V1. But then the whole plane must belong to V1, and hence also l2.

Now, �rst suppose that g0(A0)�1Xz = 0 for all z 2 kerY . Then, it follows from (A-22)
that kerY is R-invariant, and hence (i) holds.

Next, suppose that g0Xz = 0 for all z 2 kerY . Since �n 6= 0, �n 6= 0, and hence S is
nonsingular (Proposition 6.6). Therefore, in view of (A-21), R is also nonsingular so that

S�1
�
X
Y

�
=

�
X
Y

�
R�1 (A-24)

and consequently

S�1W =

��
X
Y

�
R�1z j z 2 kerY

�
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which belongs to W if and only if R�1z 2 kerY for all z 2 kerY . Now, by (6.12), S�1 =

Ĵ�1S0Ĵ and hence (A-24) is equivalent to

S0
��Y
X

�
=

��Y
X

�
R�1 (A-25)

Taking z 2 kerY and remembering that g0Xz = 0, the top block of (A-25) yields Y R�1z = 0
which is what is required for condition (ii) to hold. Hence, we have proved that at least one
of conditions (i) and (ii) holds.

Finally, we shall prove that these conditions are actually equivalent. Suppose dimW = k.
If k = 0, the statement is trivial, so we assume that k > 0. Then

W = Im

�
U
0

�
(A-26)

for some full-rank n� k matrix U such that

S

�
U
0

�
=

�
U
0

�
T (A-27)

Since S is nonsingular, so is T , so (A-27) is equivalent to

S�1
�
U
0

�
=

�
U
0

�
T�1 (A-28)

which holds if and only if S�1W � W. This concludes the �rst part of the lemma. The
proof of the second part, concerning ~W is analogous.
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