
    

ON DUALITY BETWEEN FILTERING AND
INTERPOLATION*

CHRISTOPHER I. BYRNES AND ANDERS LINDQUIST

Abstra ct. Positive real rational functions play a central role in both
deterministic and stochastic linear systems theory, arising in circuit
synthesis, filtering, interpolation, spectral analysis, speech process-
ing, stability theory, stochastic realization theory and systems iden-
tification – to name just a few. For this reason, results about positive
real transfer functions and their realizations typically have many ap-
plications and manifestations.

In this paper, we survey a recent study of certain spaces of positive
real transfer functions, describing a fundamental geometric duality
between filtering and interpolation. Not surprisingly, then, this du-
ality, while interesting in its own right, has several corollaries which
provide solutions and insight into some very interesting and intensely
researched problems. One of these is the rational covariance exten-
sion problem, which was formulated by Kalman and for which the
duality theorem yields a complete solution. In this paper, we shall
describe the duality theorem, which we motivate in terms of both
the rational covariance extension problem, viewed as an interpola-
tion problem, and a fast algorithm for Kalman filtering, viewed as
a nonlinear dynamical system on the space of positive real transfer
functions.

We also outline a new proof of the recent solution to the rational
covariance extension problem, using a global inverse function theo-
rem due to Hadamard. We conclude by describing some additional
corollaries which relate to the minimal stochastic partial realization
problem.

1. Introduction

This paper is a survey on the rational covariance extension problem, a
problem with historical roots in the beginning of the century going back to
work by Carathéodory, Toeplitz and Schur on interpolation [20, 21, 60, 59].
Carathéodory’s interest was in classifying all bounded harmonic functions
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with prescribed first n derivatives at a given point, such as ∞ in our anal-
ysis. This problem was also studied by Toeplitz [60] and Schur [59], who
was able to develop a complete parameterization of the class of such inter-
polants defining meromorphic functions v(z) which are strictly positive real.
From the perspective of classical analysis, however, the question of which
meromorphic interpolants were rational would not have played a major role.

Rationality is a requirement added by systems theoretical considera-
tions, important applications being speech synthesis [23], spectral estima-
tion [36, 54], stochastic systems theory [38], and systems identification [51].
Since these application areas focus principally on mathematical models for
devices, such as circuits, which can be physically realized with a finite num-
ber of active elements, the covariance extension problem in these contexts
insists that the solution to the Carathéodory extension problem be ratio-
nal of a degree no larger than the number of given correlation coefficients,
as well as being positive real. This makes the problem considerably more
challenging. Only recently has it been proved that there is a complete pa-
rameterization of such extensions in terms of the zeros of the corresponding
minimum-phase spectral factor [15], thereby extending a result by Georgiou
[28, 29] and proving a longstanding conjecture by him.

The need to construct stochastic models from a finite window of cor-
relation coefficients has led to the study of several problems involving the
description of classes of stationary linear stochastic systems having outputs
which match a given partial covariance sequence. One of these is the partial
stochastic realization problem, which consists of describing all such stochas-
tic systems having the smallest possible degree, which we refer to as the
positive degree of the partial covariance sequence. Kalman motivated the
study of the partial stochastic realization problem by describing minimal
realizations as being the simplest class of models capable of describing the
given data. A well-known and simply computable solution is the maximum
entropy filter, which may be interpreted as maximizing some measure of
the “entropy” of the covariance window and, in this way, assumes as little
as possible about the completion of the correlation sequence. However, the
output of a maximum entropy filter has a spectral density without zeros,
which makes it less desirable in many applications. For example, in speech
synthesis it produces a “flat” speech, and hence more general solutions with
spectral zeros would be preferable.

The body of the paper is outlined as follows. In Section 2 the rational
covariance extension problem is formulated, Schur’s classical parameteri-
zation of the not necessarily rational solutions is outlined, and Georgiou’s
result is stated. The partial stochastic realization problem is introduced in
Section 3, and modeling filters and applications to speech processing are dis-
cussed. We present the maximum entropy filter and the Georgiou-Kimura
parameterization, the latter of which serves as a device to reparameterize
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the problem. Section 4 presents a fast Kalman filtering algorithm as a de-
vice for spectral factorization and as a preamble for Section 5, in which
we formalize an observation in [15] that filtering and interpolation induce
dual, or complementary, decompositions of the space of positive real ra-
tional functions of degree less than or equal to n. From this basic result,
in Section 6 we provide a complete parameterization of all positive ratio-
nal extensions of a given partial covariance sequence and give a new proof,
based on a global inverse function theorem, that the problem is well-posed.
We begin Section 7 with an alternative complete parameterization of all ra-
tional extensions in terms of the unique positive semidefinite solutions of a
nonstandard Riccati-type matrix equation. The rank of the unique semidef-
inite solution is related to the positive degree of the covariance sequence,
an invariant which is central to the minimal partial stochastic realization
problem. In this context, we also note that, in sharp contrast to the mini-
mal partial deterministic realization problem, the positive degree does not
assume any generic value. We conclude the paper in Section 8 with some
simulations.

2. The rational covariance extension problem

The following interpolation problem, apparently first studied in this form
by Kalman [38], has been a fundamental open problem in systems theory.
Given a finite sequence of real numbers

c0, c1, c2, . . . , cn (2.1)

which is positive in the sense that the Toeplitz matrix

Tn =



c0 c1 c2 . . . cn
c1 c0 c1 . . . cn−1

...
...

...
. . .

...
cn cn−1 cn−2 . . . cn


 (2.2)

is positive definite, find a complete parameterization of the class of all
infinite extensions

cn+1, cn+2, cn+3, . . . (2.3)

of (2.1) with the properties that the function v(z) defined by

v(z) =
1
2
c0 + c1z−1 + c2z−2 + . . . (2.4)

in the neighborhood of infinity is

(i) rational of at most degree n
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(ii) strictly positive real, i.e., it is analytic for |z| ≥ 1 and satisfies

v(z) + v(z−1) > 0 (2.5)

at each point of the unit circle.

It can be shown that any such extension has the property that the infinite
Toeplitz matrix

T∞ =



c0 c1 c2 . . .
c1 c0 c1 . . .
c2 c1 c0 . . .
...

...
...

. . .


 (2.6)

is positive definite. This problem is called the rational covariance extension
problem, since the positivity of the Toeplitz matrix (2.2) or (2.6) is the con-
dition required for the corresponding sequence to be a bona fide covariance
sequence. As we must have c0 > 0, it is no restriction to normalize the
problem by setting c0 := 1. This will be done in the rest of the paper.

This parameterization problem has historical roots going back to impor-
tant work by Carathéodory and Schur in potential theory [20, 21, 59]. In
fact, if the rationality condition (i) is removed, the problem is called the
Carathéodory extension problem and a complete parameterization of all ex-
tensions was given by Schur [59] in 1918. This solution will be discussed
next.

However, our interest in the problem is motivated by its connection to
speech synthesis [23], spectral estimation [36, 54], stochastic systems the-
ory [38], and systems identification [51], application areas which are mainly
concerned with mathematical models for devices, such as circuits, which
can be physically realized with a finite number of active elements. In these
contexts, therefore, it is required that the solution to the Carathéodory
extension problem be rational as well as being positive real. Indeed, ratio-
nal, positive real functions also arise in circuit theory as the mathematical
models for the impedance, or transfer function, of an RLC network, where
the degree of the rational function is precisely the sum of the number of
capacitors and inductors and where the positivity reflects the fact that the
network resistors are positive. For these reasons, systems-theoretic formu-
lations of the Carathéodory extension problem insist on rationality as well,
and then rationality of at most a prescribed degree.

The rational covariance extension problem should not be confused with
another rational interpolation problem arising in linear systems theory, the
deterministic partial realization problem [39, 40, 58, 31], as has often been
the case. In this problem, one insists on rational interpolants which are not
necessarily positive real, so hence condition (ii) is suppressed. This partial
realization problem is considerably simpler. On the other hand, the Schur
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parameterization gives a solution to the problem if one suppresses ratio-
nality. The combination of these two design requirements has made this
problem more elusive, despite its importance in stochastic system theory,
spectral analysis and speech synthesis.

For the moment, let us disregard the rationality condition (i) required
in systems theory and consider the classical Carathéodory extension prob-
lem. Using what are now known as Schur parameters, Schur introduced a
complete parameterization of the class of extensions defining meromorphic
functions v(z), analytic for z ≥ 1 and satisfying �v(z) ≥ 0 there. Such
functions are called Carathéodory functions. Clearly all v(z) satisfying (i)
and (ii) are Carathéodory functions.

More precisely, recall that the Szegö polynomials

ϕt(z) = zt + ϕt1z
t−1 + · · · + ϕtt (2.7)

are monic polynomials orthogonal on the unit circle [1, 32], which can be
determined recursively [1] via the Szegö-Levinson equations

ϕt+1(z) = zϕt(z) − γtϕ∗
t (z) ϕ0(z) = 1 (2.8a)

ϕ∗
t+1(z) = ϕ∗

t (z) − γtzϕt(z) ϕ∗
0(z) = 1, (2.8b)

where γ0, γ1, γ2, . . . are the Schur parameters

γt =
1
rt

t∑
k=0

ϕt,t−kck+1, (2.9)

and where (r0, r1, r2, . . . ) are generated by

rt+1 = (1 − γ2
t )rt r0 = 1. (2.10)

Similarly, the Szegö polynomials

ψt(z) = zt + ψt1z
t−1 + · · · + ψtt (2.11)

of the second kind are obtained from (2.8) by merely exchanging γt for −γt
everywhere.

For each t, the Schur parameters γ0, γ1, . . . , γt−1 are uniquely deter-
mined by the covariance parameters c1, c2, . . . , ct via (2.8), (2.9) and (2.10).
Conversely, it can be shown that c1, c2, . . . , ct are uniquely determined by
γ0, γ1, . . . , γt−1 so that there is a bijective correspondence between partial
covariance and Schur sequences of the same length [59]. Moreover the func-
tion v(z) having the Laurent expansion

v(z) =
1
2

+ c1z−1 + c2z−2 + c3z−3 + . . . (2.12)

for |z| > 1 is a Carathéodory function if and only if

|γt| < 1 for t = 0, 1, 2, . . . , (2.13)
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and, as was shown by Schur [59], (2.12) and (2.13) provide us with complete
parameterization of all meromorphic Carathéodory functions.

Now returning to the covariance extension problem, c1, c2, . . . , cn are
fixed, and hence γ0, γ1, . . . , γn−1 are also fixed. The assumption that the
Toeplitz matrix Tn is positive definite is equivalent to the condition that
|γt| < 1 for t = 0, 1, . . . , n − 1. Covariance extension then amounts to
selecting the remaining Schur parameters

γn, γn+1, γn+2, . . . (2.14)

arbitrarily subject to the positivity constraint (2.13). An important special
case, the maximum entropy solution, is obtained by setting all Schur pa-
rameters (2.14) equal to zero, a choice that certainly satisfies (2.13). This
yields the rational Carathéodory function

v(z) =
1
2
ψn(z)
ϕn(z)

, (2.15)

where ϕn(z) and ψn(z) are the degree n Szegö polynomials of first and
second kind respectively.

The maximum entropy solution also happens to satisfy the rationality
condition (i). In general, however, an arbitrary extension (2.14) satisfying
the Schur condition (2.13) can only be guaranteed to be meromorphic, not
rational of degree at most n as required in our case, and, as pointed out
in [15], there is no way to characterize the rational solutions by a finite
number of inequalities. Indeed, adding rationality changes the character of
the problem considerably.

If v(z) is rational of at most degree n, then, in view of (2.4), v(z) can
be written

v(z) =
1
2
b(z)
a(z)

, (2.16)

where a(z) and b(z) are monic polynomials of degree n. Moreover, v(z) is
strictly positive real if and only if the pseudo-polynomial

d(z) :=
1
2
[a(z)b(z−1) + a(z−1)b(z)] > 0 (2.17)

on the unit circle and the denominator polynomial a(z) is a Schur polyno-
mial, i.e., has all its roots on the open unit disc. Since the function 1/v(z) is
strictly positive real if and only if v(z) is, we may replace the last condition
with the numerator polynomial b(z) being a Schur condition. In fact, both
a(z) and b(z) need to be Schur polynomials for v(z) to be positive real.

Using a very innovative application of topological degree theory Georgiou
[28, 29] proved the following theorem.
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Theorem 2.1 (Georgiou). Given a finite sequence of real numbers (2.1)
with c0 = 1 which is positive in the sense that the Toeplitz matrix (2.2) is
positive definite and an arbitrary pseudo-polynomial

d(z) = d0 + d1(z + z−1) + · · · + dn(zn + z−n) (2.18)

of at most degree n which is positive on the unit circle, there exists two
Schur polynomials

a(z) = zn + a1zn−1 + · · · + an (2.19)

and

b(z) = zn + b1zn−1 + · · · + bn (2.20)

such that

1
2
[a(z)b(z−1) + a(z−1)b(z)] = d(z) (2.21)

and the interpolation condition

1
2
b(z)
a(z)

=
1
2

+ ĉ1z−1 + ĉ2z−2 + . . . ĉi = ci for i = 1, 2, . . . , n
(2.22)

is fulfilled.

As we shall see in Section 3, this is an important result, but it does not
provide a complete parameterization of the rational covariance extension
problem. For this we also need the solution is unique. Georgiou conjec-
tured uniqueness in [29] and left the question of completeness of the pa-
rameterization open. In addition, for computational and other reasons, a
set-theoretical bijection is not sufficient, but the solution needs to be con-
tinuous in the given data so that the problem is well-posed. As we shall see
in Section 6, a strong version of such a result was presented in [15].

3. Modeling filters and speech synthesis

In signal processing and speech processing [29, 42, 23, 19, 53, 41], a signal
is often modeled as a stationary random sequence {y(t)}t∈Z which is the
output of a linear stochastic system{

x(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(3.1)

obtained by passing (normalized) white noise {u(t)}t∈Z through a filter

white noise u−→ w(z)
y−→
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with a stable transfer function

w(z) = C(zI −A)−1B +D (3.2)

and letting the system come to a statistical steady state. Here stability
amounts to the matrix A having all its eigenvalues strictly inside the unit
circle.

Consequently, the stationary stochastic process {y(t)}t∈Z is given by the
convolution

y(t) =
t∑

k=−∞
wt−ku(k) t = 0, 1, 2, . . . , (3.3)

where w0 = D and wk = CAk−1B for k = 1, 2, 3, . . . , and where

w(z) = w0 + w1z
−1 + w2z

−2 + w3z
−3 + . . . . (3.4)

The process {y(t)}t∈Z has a rational spectral density

Φ(z) = w(z)w(z−1), (3.5)

which we assume to be positive on the unit circle. In other words, w(z) is
a stable spectral factor of Φ which we shall take to be minimum-phase, i.e.,
the rational function w(z) has all its poles and zeros in the open unit disc
and w0 = w(∞) 
= 0. In systems-theoretical language we say that y is the
output of a shaping filter driven by a white noise input, with the transfer
function w.

It is well-known that the spectral density Φ has the Fourier representa-
tion

Φ(z) = c0 +
∞∑
k=1

ck(zk + z−k), (3.6)

where

c0, c1, c2, c3, . . . (3.7)

is the covariance sequence defined as

ck = E{y(t+ k)y(t)} k = 0, 1, 2, 3, . . . . (3.8)

Such a covariance sequence has the property that the infinite Toeplitz ma-
trix (2.6) is positive definite.

The corresponding stochastic realization problem is the inverse problem
of determining the stochastic system (3.1) given the infinite covariance se-
quence (3.7). The condition that Φ(z) be rational introduces a finiteness
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condition on the covariance sequence (3.7). In fact, the positive real part

v(z) =
c0
2

+
∞∑
i=1

ciz
−i (3.9)

of

Φ(z) = v(z) + v(z−1) (3.10)

is rational and may be written

v(z) =
1
2
b(z)
a(z)

, (3.11)

where a(z) and b(z) are monic polynomials (2.19) and (2.20) of degree n.
The property that v(z) be strictly positive real is equivalent to a(z) and
b(z) being Schur polynomials and satisfying

a(z)b(z−1) + a(z−1)b(z) > 0 (3.12)

on the unit circle. Therefore, once a(z) and b(z) has been determined, say,
by identifying coefficient of like powers of z in 2a(z)v(z) = b(z), the unique
stable minimum-phase spectral factor of Φ, i.e., the solution

w(z) = ρ
σ(z)
a(z)

, (3.13)

of (3.5) such that ρ ∈ R+ and σ(z) is a monic Schur polynomial

σ(z) = zn + σ1z
n−1 + · · · + σn, (3.14)

may be determined via the polynomial spectral factorization problem

1
2
[a(z)b(z−1) + a(z−1)b(z)] = ρ2σ(z)σ(z−1). (3.15)

Next let us consider the problem in systems identification to determine
the system (3.1) from an observed string of output data. Let us first con-
sider the idealized situation that we have an infinite string of output data

y0, y1, y2, y3, . . . (3.16)

satisfying the appropriate ergodicity property. Then the covariance se-
quence (c0, c1, c2 . . . ) can be determined as

ck = lim
T→∞

1
T

T∑
t=0

yt+kyt, (3.17)

which defines a unique spectral density and hence a unique (minimum
phase) shaping filter w(z).
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However, in practice only a finite string of observed data

y0, y1, y2, . . . , yN (3.18)

is typically available. If N is sufficient large, there is a T < N such that

1
T

T∑
t=0

yt+kyt (3.19)

is a good approximation of ck, but now only a finite covariance sequence

c0, c1, c2, . . . , cn, (3.20)

where n << N , can be produced. Consequently, we have a rational covari-
ance extension problem, and we have one solution for each rational exten-
sion (2.3) and hence one shaping filter w(z). We shall call each such shaping
filter w(z) a modeling filter of the partial covariance sequence (3.20).

As an illustration from speech synthesis, recall that artificial speech is
produced from a synthesis of two classes of phonemes, one kind for voiced
sounds (such as vowels) and one kind for unvoiced sounds (for consonants
such as “s” or “t”). A speech sample is typically broken into 20 ms seg-
ments which are then regarded as the synthesis of a combination of voiced
and unvoiced segments, each of which is viewed as the output of the same
transfer function, driven by periodic “pulse trains” and by white noise, re-
spectively. For each 20 ms segment a new transfer function is computed
from the speech sample. In particular, on a sufficiently small interval of
time the unvoiced speech pattern, which is produced by passing white noise
through a shaping filter, can be regarded as a realization of a stationary
random sequence y with covariances

ck := E{y(t+ k)y(t)}

and with a spectral density (3.6). For speech synthesis the covariance se-
quence c0, c1, c2, . . . on each stationary interval of time needs to be de-
termined from output data via an ergodic limit (3.17) or some equivalent
procedure. Of course, in practice only a finite string of observed data (3.18)
is typically available, in which case only a finite covariance sequence (3.20)
can be produced.

The usual method for determining modeling filters for each of the partial
covariance sequences is the maximum entropy procedure, basically because
this is the only solution to the rational covariance extension problem for
which there has been computational procedures. As mentioned in Section
2, the maximum entropy filter is obtained by setting

γi = 0 for i = n, n+ 1, n+ 2, . . . ,
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yielding the Carathéodory function

v(z) =
1
2
ψn(z)
ϕn(z)

, (3.21)

where {ϕt(z)} and {ψt(z)} are the Szegö polynomials of the first and second
kind respectively. In fact, it can be shown that

1
2
ψn(z)
ϕn(z)

=
1
2

+ c1z−1 + c2z−2 + · · · + cnz−n + . . . (3.22)

and that

ϕn(z)ψn(z−1) + ϕn(z−1)ψn(z) = rn > 0. (3.23)

Consequently, since ϕn(z) and ψn(z) are Schur polynomials, v is strictly
positive real and

v(z) + v(z−1) =
rn

ϕn(z)ϕn(z−1)
, (3.24)

yielding the modeling filter

w(z) =
√
rnz

n

ϕn(z)
, (3.25)

the maximum entropy filter.
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Since the maximum entropy solution has the property that the cor-
responding spectral density (3.24) lacks finite zeros, the speech becomes
rather ”flat”. This is illustrated in Figure 3.1 where a true spectrum has
been approximated by that of a 6th order maximum entropy filter. In Fig-
ure 3.2 we depict another solution, determined by our methods, of the same
order but with appropriately chosen zeros.
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As these examples illustrate, in many speech processing applications
zeros are desired, and the question arises whether it is possible to assign
zeros arbitrarily and while still satisfying the interpolation condition. In
view of (3.15) and (2.21), Georgiou’s result (Theorem 2.1) answers this
question in the affirmative, even though the question of uniqueness had
been left open. However, a computational procedure is needed. To this end,
Georgiou [29] and Kimura [42] independently observed that the formula
(3.22) could be generalized to

v(z) =
1
2
ψn(z) + α1ψn−1(z) + · · · + αnψ0(z)
ϕn(z) + α1ϕn−1(z) + · · · + αnϕ0(z)

(3.26)

=
1
2

+ c1z−1 + c2z−2 + · · · + cnz−n + . . . , (3.27)

thus expressing v(z) in terms of the 2n parameters (α, γ), where α =
(α1, α2, . . . , αn)′ ∈ R

n and γ = (γ0, γ1, . . . , γn−1)′ ∈ R
n. In fact, it was

shown in [29] and later also in [17] that the interpolation condition in (3.26)
holds for all α, and consequently the Georgiou-Kimura parameterization
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(3.26) characterizes rationality but not positivity. We denote by Pn the
subset of R2n for which v(z) is strictly positive real, and let

Pn(γ) = {(α, γ) ∈ Pn | γ fixed} ⊂ R
n

be the positive real region for fixed covariance data.
Of course, given the partial covariance data γ, the choice α = 0 is the

maximum entropy solution, but in general it is very complicated to charac-
terize those other α for which v(z) is positive real, i.e., to characterize the
sets Pn(γ). For n = 1 the representation (3.26) takes the form

v(z) =
1
2
z + γ0 + α1

z − γ0 + α1
. (3.28)

The strictly positive real region is the diamond depicted in Figure 3.3 below,
and fixing the partial covariance data γ0, the admissible α are the ones on
the open interval in the figure.

γ

α1

1

−1

−1

Figure 3.3

Next, let us consider the case n = 2. Fixing the covariance data at
γ0 = 1

2 and γ1 = 1
3 , we obtain

v(z) =
1
2
z2 − 2

3z + 1
3 + α1(z + 1

2 ) + α2

z2 + 1
3z + 1

3 + α1(z − 1
2 ) + α2

, (3.29)

and the region of positive real α = (α1, α2) is as depicted in Figure 3.4.
The higher-dimensional cases become much more complicated. While

it is true that Pn(γ) is always diffeomorphic to Euclidean space [11], any
good solution to the rational covariance extension problem would give such
a parameterization in terms of familiar systems theoretic objects. In this
direction, the possibility of parameterizing those filters which are positive
real by arbitrarily prescribing the zeros of a modeling filter was suggested
by Georgiou in Theorem 2.1 and his conjecture. Recently we proved an am-
plification of Georgiou’s conjecture that, for any desired choice of spectral
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density zero structure, there is one and only one positive extension, i.e.,
one and only one modeling filter. This result was obtained by viewing a
certain fast filtering algorithm as a nonlinear dynamical system defined on
the space of positive real rational functions of degree less than or equal to n.
It is then observed that filtering and interpolation induce complementary,
or “dual” decompositions (or foliations) of this space. From this assertion
about the geometry of positive real functions follows the first complete pa-
rameterization of all positive rational extensions [15]. This will be the topic
of Sections 4–6.

α2

α1

1

1

Figure 3.4

4. The fast filtering algorithm: a dynamical system which
computes spectral factors

The connection between the Carathéodory function v(z) of a rational
covariance extension and the corresponding modeling filter w(z) is through
spectral factorization. More precisely, given a strictly positive real v(z),
the modeling filter w(z) is the minimum phase solution of

w(z)w(z−1) = v(z) + v(z−1). (4.1)

If

v(z) :=
1
2
b(z)
a(z)

, (4.2)

where a(z) and b(z) are monic Schur polynomials (2.19) and (2.20), we saw
in Section 3 that

w(z) = ρ
σ(z)
a(z)

, (4.3)
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where σ(z) is the Schur polynomial solution (3.14) of the polynomial spec-
tral factorization problem

ρ2σ(z)σ(z−1) = d(z) :=
1
2
[a(z)b(z−1) + a(z−1)b(z)]. (4.4)

The spectral factorization problem (4.1) then amounts to determining σ(z)
from a(z) and b(z).

There is a well-known connection between spectral factorization and
Kalman filtering that we shall exploit next. In fact, solving the spectral
factorization problem by iterating the Riccati equation of Kalman filtering
to steady state is a common procedure. Here we shall use the same idea
but instead applied to a certain fast algorithm for Kalman filtering.

We shall formulate the Kalman filtering problem in terms of covariance
data or, equivalently, in terms of the Carathéodory function v(z). Defining

g(z) :=
1
2
[b(z) − a(z)] = g1zn−1 + g2zn−2 + · · · + gn, (4.5)

we may write

v(z) =
1
2

+
g(z)
a(z)

, (4.6)

or, alternatively,

v(z) =
1
2

+ h′(zI − F )−1g, (4.7)

where, without lack of generality, we have taken (F, g, h) in the observer
canonical form

F =




−a1 1 0 · · · 0
−a2 0 1 · · · 0

...
...

...
. . .

...
−an−1 0 0 · · · 1
−an 0 0 · · · 0


 g =



g1
g2
...
gn


 h =




1
0
...
0


 (4.8)

and where prime (′) denotes transpose. Sometimes it is convenient to write

F = J − ah′ (4.9)

where a is the column vector (a1, a2, . . . , an)′ and J is the obvious shift
matrix.

Now, let w(z) be the corresponding modeling filter, and consider the sta-
tionary random sequence {y(t)}t∈Z obtained by passing white noise through
the shaping filter

white noise u−→ w(z)
y−→
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with transfer function w(z) or some other spectral factor of v(z) + v(z−1).
Then the one-step predictor, i.e., the linear least squares estimate ŷ(t) of
y(t) given y(0), y(1), . . . , y(t− 1), is generated by the Kalman filter

{
x̂(t+ 1) = Fx̂(t) + k(t)[y(t) − h′x̂(t)]

ŷ(t) = h′x̂(t)
(4.10)

where the gain k(t) can be determined via a matrix Riccati equation. Ap-
parently less well-known is that the gain can also be determined via the
fast algorithm

{
a(t+ 1) = 1

1−g1(t)
[a(t) + (I − J)g(t)] a(0) = a

g(t+ 1) = 1
1−g1(t)2

[−g1(t)a(t) + (J − g1(t)I)g(t)] g(0) = g (4.11)

consisting of 2n nonlinear first-order difference equations, in terms of which

k(t) = a(t) + g(t) − a. (4.12)

We say that it is “fast” since, for n > 1, 2n is less than the number 1
2n(n+1)

of scalar equations in the corresponding matrix Riccati equation.
This algorithm is a version, appearing in [47], of the fast Kalman filter-

ing algorithm introduced in [46]. (Also see [16] where these matters are
reviewed.) It is also shown in [47] that the equality

1
2
rt[at(z)bt(z−1) + at(z−1)bt(z)] = d(z) (4.13)

is preserved along the trajectory of (4.11), where rt :=
∏t−1

k=0 [1 − g1(t)2]
and the monic polynomials at(z) and bt(z) := at(z) + 2gt(z) are formed
from a(t) and b(t) := a(t) + 2g(t) as above, and that at(z) and bt(z) have
all their zeros in the unit disc |z| < 1.

An important property of the fast algorithm (4.11) is that the 2n pa-
rameters (a, g) of the problem appear only in the initial conditions and not
in the dynamical system, which is invariant under parameter changes. In
fact, the algorithm updates the parameters and can therefore be regarded
as an iteration in parameter space. Moreover, the algorithm makes sense
also for initial data (a, g) which does not correspond to a positive real v(z).

We now express this dynamical system in the Georgiou-Kimura coordi-
nates. In fact, the parameterization (3.26) can be given a nice geometric
interpretation as a birational diffeomorphic change of coordinates in the
strictly positive real region

P = {(a, g) ∈ R2n | v(z) is strictly positive real}
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[18]. In fact, the Georgiou-Kimura parameterization yields{
a(z) = ϕn(z) + α1ϕn−1(z) + · · · + αnϕ0(z)
b(z) = a(z) + 2g(z) = ψn(z) + α1ψn−1(z) + · · · + αnψ0(z)

(4.14)

where the Szegö polynomials {ϕn(z)}n0 and {ψn(z)}n0 are determined from
γ := (γ0, γ1, . . . , γn−1)′ via the Szegö recursions (2.8) and (2.11).

The fast filtering algorithm (4.11) can now be reformulated as a nonlinear
dynamical system in (α, γ)-space [18]. More precisely, if (α, γ) ∈ Pn and
the maps A,G : Rn → R

n×n are defined as

A(γ) =




1
1−γ2

n−1

γn−1γn−2

(1−γ2
n−1)(1−γ2

n−2)
· · · γn−1γ0

(1−γ2
n−1)···(1−γ2

0)

0 1
1−γ2

n−2
· · · γn−2γ0

(1−γ2
n−2)···(1−γ2

0)

...
...

. . .
...

0 0 · · · 1
1−γ2

0


 (4.15)

and

G(α) =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−αn −αn−1 −αn−2 · · · −α1


 , (4.16)

then the dynamical system{
α(t+ 1) = A(γ(t))α(t), α(0) = α
γ(t+ 1) = G(α(t+ 1))γ(t), γ(0) = γ

(4.17)

initiated at (α, γ) evolves on the invariant manifold defined by (4.13). In
fact, the preserved pseudo-polynomial (4.13) yields, after change of coordi-
nates and identification of coefficients of like powers in z, n+1 equations in
the 2n+1 variables {α(t), γ(t), rt} which, upon elimination of rt by dividing
the last n equations by the first, in turn yields n integrals

fi(α(t), γ(t)) = κi i = 1, 2, . . . , n (4.18)

for the dynamical system (4.17), where κ1, κ2, . . . , κn are constants, which
can be determined from the initial conditions (α, γ). Moreover, γ(t) is
updated by shifting so that

γk(t) = γt+k. (4.19)



     

18 C. I. BYRNES AND A. LINDQUIST

Theorem 4.1 ([18]). The strictly positive real region Pn is invariant un-
der the dynamical system (4.17), which is globally convergent on Pn. More
specifically, (α(t), γ(t)) tends to (α∞, 0), where α∞ ∈ Pn(0) ⊂ R

n so that

α∞(z) = zn + α∞1z
n−1 + · · · + α∞n (4.20)

is a monic Schur polynomials of degree n and Pn(0) is the equilibrium set.
The global stable manifold Ws(α∞, 0) of the equilibrium (α∞, 0) is defined
by (4.18) with κi = fi(α∞, 0) for i = 1, 2, . . . , n.

A consequence of this theorem and (4.19) is that

γt → 0 as t→ ∞. (4.21)

Therefore, since the Szegö polynomials ϕk(z) and ψk(z) become zk when
the Schur parameters are zero, this implies in view of (4.14) that

at(z) → α∞(z) and bt(z) → α∞(z) as t→ ∞ (4.22)

in (4.13). Likewise,

rt → r∞ as t→ ∞, (4.23)

and consequently the pseudo-polynomial d(z) corresponding to the stable
manifold Ws(α∞, 0) becomes

d(z) = r∞α∞(z)α∞(z−1). (4.24)

Therefore, evaluating (4.13) for t = 0 and noting that r0 = 1 we have

1
2
[a(z)b(z−1) + a(z−1)b(z)] = r∞α∞(z)α∞(z−1), (4.25)

which should be compared with the spectral factorization equation (4.4).
Consequently, the required spectral factor is

w(z) =
√
r∞
α∞(z)
a(z)

, (4.26)

where α∞(z) is obtained from the limit of the dynamical system and r∞ is
easiest determined from (4.25) by identifying coefficient of like power in z.
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5. The complementary foliations

In this section we shall investigate the geometry of the strictly positive
real region, i.e. the open subset P ⊂ R

2n of (α, γ) such that

v(z) =
1
2
ψn(z) + α1ψn−1(z) + · · · + αnψ0(z)
ϕn(z) + α1ϕn−1(z) + · · · + αnϕ0(z)

(5.1)

is strictly positive real, where {ϕk(z)}n0 and {ψk(z)}n0 are the Szegö of the
first and second type respectively corresponding to the covariance data γ.
Similarly, as before let

Pn(γ) = {(α, γ) ∈ Pn | γ fixed} ⊂ R
n (5.2)

be the strictly positive real region for fixed covariance data.
Geometrically, the decomposition

F1 : Pn =
⋃
γ

Pn(γ) (5.3)

is an important example of what is known as a foliation of the open manifold
Pn. Intuitively, a foliation is a decomposition of a manifold into disjoint
connected submanifolds, called leaves, with the additional property that
in the neighborhood of any point the leaves vary in a sufficiently smooth
way. More precisely, a foliation F of dimension m on a smooth manifold
M of dimension n is a partition of M into a family of disjoint, connected
m-dimensional submanifolds Lβ , called the leaves of the foliation, such that
(i) M = ∪βLβ , (ii) each point x ∈M has a Euclidean neighborhood U and
coordinates (x1, ..., xn) for which the equations

x1 = 0, x2 = 0, . . . , xn−m = 0

define the connected components of the nonempty intersections U ∩Lβ . In
fact, it was shown in [11] that Pn(γ) is diffeomorphic to Euclidean space
and is therefore connected. With this in mind, we note (see [7]) that the
Kimura-Georgiou parameterization shows that this decomposition is suf-
ficiently regular to define a foliation F1 of Pn into the leaves Pn(γ) (see
[15].

In Section 4 we showed that for any (α, γ) ∈ Pn the dynamical sys-
tem (4.17) converges to a limit (α∞, 0) ∈ Pn along the stable manifold
Ws(α∞, 0). As proved in [15], the decomposition of Pn as a union of the
global stable manifolds Ws(α∞, 0) defines a second foliation

F2 : Pn =
⋃

α∞∈P(0)

W
s(α∞, 0) (5.4)

of Pn. In the special case n = 1, Figure 5.1 depicts the global stable
manifold Ws(α∞, 0) at ( 1

3 , 0) as a subset of P1. Also depicted is P1( 1
2 ).
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As Figure 5.1 suggests the leaves of the foliations F1 and F2 are trans-
verse, i.e. at a point of intersection of the leaves of these two foliations the
corresponding tangent spaces are complementary subspaces. Indeed, using
the characterization of the tangent spaces to the stable manifoldWs(α∞, 0)
developed in [18], in [15] we proved that the intersection of Ws(α∞, 0) with
Pn(γ) is in fact always transverse. In such a case, one says that two folia-
tions are complementary.

γ

1

−1

−1
σ

α 1

1
α

P

P

(γ)

1

W  (σ,0)
s

Figure 5.1

Theorem 5.1. The positive real region Pn is connected and is foliated by
the stable manifolds Ws(α∞, 0) of the equilibrium set Pn(0). The set Pn is
also foliated into leaves given by the submanifolds Pn(γ). Moreover, these
foliations are complementary.

Consequently, there are two complementary foliations of Pn, one indexed
by the partial covariance data and one by the zero polynomial of the mod-
eling filter. Theorem 5.1 suggests that, given a partial covariance sequence
and a stable zero polynomial, there is a unique solution of the rational co-
variance problem represented by the intersection between the corresponding
leaves of the foliations F1 and F2. The fact that these foliations are comple-
mentary says that this uniqueness does occur to first order, in the following
sense.

Corollary 5.2. For each (λ, α) ∈ R+×Pn(γ), the Jacobian matrix Jac fγ
of fγ is nonsingular.

In fact, in [15] Corollary 5.2 formed the basis for a degree theoretic
argument which demonstrated that to any point σ in Pn(0), there is one
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and only one α such that (α, γ) ∈ Pn(γ). This α defines a modeling filter
w(z) having the zeros of σ(z).

It is interesting to note that, conversely, any α such that (α, γ) ∈ Pn(γ)
determines a Schur polynomial σ(z), which can be computed via the con-
vergence of the dynamical system (4.17) with initial condition determined
by (α, γ). In fact, the dynamical system defines a map

g : Pn(γ) → Pn(0) (5.5)

sending a strictly positive real choice of the parameters α in the Georgiou-
Kimura parameterization (5.1) to the corresponding choice of stable zeros

g(α) = σ. (5.6)

As an illustration in the case n = 2 , Figure 5.2 depicts the connected open
submanifolds P2(γ) and P2(0), the latter corresponding to the monic Schur
polynomials in S2, for γ = (1/2, 1/3). These sets form the domain and
codomain of the function g sending α to σ .

α2

α1

1

11

1

σ2

σ1

Figure 5.2

In the next section we shall sketch a new proof that the function g is
a diffeomorphic bijection, using a theorem of Hadamard to show that the
rational covariance extension problem is well-posed.

6. A complete parameterization of all rational covariance
extensions

As pointed out above, the maximum entropy solution gives rise to a ra-
tional spectral density with no finite zeros, and hence a modeling filter with
all zeros in the origin. In many applications, it turns out to be important
to be able to design filters with prescribed zeros and which shape processes
with observed correlation coefficients. The important question as to which
zeros can be prescribed, and in which manner, has been a limiting factor
in filter design.

In order to address this issue, Georgiou [29] launched an investigation of
which zeros could be prescribed using degree theory a tool for studying the
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existence of solutions to nonlinear equations. In 1983, he proved that any
Schur polynomial is possible as the numerator of a modeling filter which
interpolated the given covariance data (Theorem 2.1) and conjectured that
there is a unique zero polynomial to each rational covariance extension of
degree at most n.

In practice, however, we would require more, e.g., that the solutions
should depend continuously in the problem data, so that small variations
in problem data would give rise to small variations in the solution. In [15]
we proved Georgiou’s conjecture in this stronger form as a corollary of The-
orem 5.1, which, among other things, provides a complete (and analytic)
parameterization of all rational covariance extensions of degree at most n.

Theorem 6.1 ([15]). Suppose one is given a finite sequence of real num-
bers

c0, c1, c2, . . . , cn (6.1)

which is positive in the sense that the Toeplitz matrix

Tn =



c0 c1 c2 . . . cn
c1 c0 c1 . . . cn−1

...
...

...
. . .

...
cn cn−1 cn−2 . . . cn


 (6.2)

is positive definite. Then, to each Schur polynomial

σ(z) = zn + σ1z
n−1 + · · · + σn, (6.3)

there corresponds a unique Schur polynomial

a(z) = zn + a1zn−1 + · · · + an (6.4)

such that, for some suitable uniquely defined positive number ρ,

w(z) = ρ
σ(z)
a(z)

(6.5)

satisfies the interpolation condition

w(z)w(z−1) = 1 +
∞∑
i=k

ĉi(zk + z−k) ; ĉi = ci for i = 1, 2, . . . , n
(6.6)

Moreover, this one-one correspondence is an analytic diffeomorphism.

We begin by noting that Theorem 6.1 would follow if we could prove
that the function fγ : R+ × Pn(γ) → Dn, given by

fγ(λ, α) =
1
2
λ[a(z)b(z−1) + a(z−1)b(z)] (6.7)
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is a diffeomorphism. Here a(z) and b(z) depend on α ∈ Rn via (4.14), and
Dn is the space of pseudo-polynomials

d(z) = d0 + d1(z + z−1) + · · · + dn(zn + z−n), (6.8)

of degree at most n which are positive on the unit circle. In fact, if fγ is a
diffeomorphism for all γ satisfying the Schur condition (2.13), then it is in
particular a diffeomorphism for γ = 0 so that the map f0 : R+ × Pn(γ) →
Dn defined via

f0(µ, σ) = µσ(z)σ(z−1)

is a diffeomorphic bijection. Then the commutative diagram

R+ × Pn(0) h−→ R+ × Pn(γ)

f0 ↘ ↗ f−1
γ

Dn

defines a homeomorphic bijection h under which

1
2
λ[a(z)b(z−1) + a(z−1)b(z)] = µσ(z)σ(z−1).

Setting ρ2 := µ/λ, this is equivalent to

1
2
b(z)
a(z)

+
1
2
b(z−1)
a(z−1)

= ρ2
σ(z)
a(z)

σ(z−1)
a(z−1)

,

where
1
2
b(z)
a(z)

=
1
2

+ c1z + · · · + cnz−n + . . .

interpolates the given partial covariance sequence so that

w(z) = ρ
σ(z)
a(z)

is a modeling filter. Therefore, Theorem 6.1 would follow.
A new proof of the fact that fγ is a diffeomorphic bijection can in fact

be based on a theorem by Hadamard [33, 34, 35], as we shall now see.
Hadamard formalized the concept of well-posedness of problems described
by maps between Euclidean n-spaces was as follows. For such an f , the
problem of finding solutions to f(x) = y is said to be well-posed provided
f is (i) surjective, (ii) injective, and (iii) has a continuous inverse. The
criterion for well-posedness given by Hadamard reposes upon a property of
maps which reflects the existence of a priori bounds on the size of solutions,
given bounds on the size of the problem data. Topologically, this can be
expressed in terms of properness. Recall that a function f : Rn → Rn

is said to be proper if, and only if, f−1(K) is compact for every compact
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K. In these terms, there are several related criteria for well-posedness, the
earliest such result being in essence a global inverse function theorem.

Theorem 6.2 (Hadamard’s Theorem). Suppose f : Rn → Rn is a C1

map. If f is proper and satisfies det Jac f 
= 0 for every x ∈ Rn, then f is
a diffeomorphism onto Rn.

Hadamard’s Theorem can be proven by either degree theory or by the
theory of covering spaces [5]. For these reasons, there are also extensions
of this theorem to classes of spaces and maps to which either of these the-
ories apply. However, one should also expect the topology of more general
spaces to complicate the conclusion of the analogues of this basic theorem.
As an example, consider the map f defined on the unit circle S1 in the
complex plane, with the unit circle as its range, defined via f(z) = z2. The
map f satisfies all the hypotheses in Hadamard’s Theorem, except that
of having Euclidean spaces for it domain and range. However, f is not a
diffeomorphism but rather exhibits its domain as a double covering of its
range.

In our application of Hadamard’s Theorem it is of course essential that
the domain and range be Euclidean spaces. To illustrate this point further,
we shall consider as a preliminary example the question of whether fγ is
a diffeomorphism in the case, γ = 0, which is the problem of spectral
factorization.

More precisely, given a symmetric pseudo-polynomial

d(z) = d0 + d1(z + z−1) + · · · + dn(zn + z−n), (6.9)

of degree at most n, which is positive on the unit circle, find a stable
polynomial a(z) of degree n, i.e., a polynomial

a(z) = a0zn + a1zn−1 + · · · + an, a0 > 0 (6.10)

having all its roots strictly inside the unit circle, such that

a(z)a(z−1) = d(z). (6.11)

Such spectral factors a(z) are of course unique if they exist. In fact, a(z)
has n roots each of which is either zero, and hence canceling with a(z−1),
or a root of d(z). Conversely, a root of d(z) located in the open unit disc is
nonzero and a root of a(z). Consequently, all polynomials satisfying (6.11)
have the same roots. Then the a0 must also be the same, and hence the
polynomials are identical. Although simple to see in a more direct way, to
illustrate our point of view we shall give a topological proof for existence
of a solution to (6.11).

Lemma 6.3. The space Zn of all stable polynomials of degree n is diffeo-
morphic with Rn+1.
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Proof. Denote by Sn the space of Schur polynomials, that is the space of
monic polynomials

b(z) = zn + b1zn−1 + · · · + bn, (6.12)

which have all its roots strictly inside the unit circle. The space Zn of all
stable polynomials of degree n is diffeomorphic to the product R+ × Sn via
the mapping ϕ : a(z) → (a0, a(z)/a0). By identifying a monic polynomial
with its roots, the space Sn may be identified with the space of real divisors
of order n in the open unit disc, where by a real divisor of order n we mean
a self-conjugate, unordered sets of n points. Therefore, by identifying the
open unit disc with the complex plane via a diffeomorphism which preserves
conjugation, one can also identify the space of all real divisors of order n
in the open unit disc with the space of all real divisors of order n in the
complex plane, i.e., with the space of all real monic polynomials of degree
n. In this way, Sn is diffeomorphic to Rn. Therefore, Zn is diffeomorphic
with a product of Euclidean spaces and hence diffeomorphic with Rn+1.

For any a ∈ Zn, define the operator S(a) : Zn → Wn from the vector
space Zn into the n+1-dimensional vector space Wn of symmetric pseudo-
polynomials of degree at most n via

S(a)b =
1
2
[a(z)b(z−1) + a(z−1)b(z)]. (6.13)

In view of the unit circle version of Orlando’s formula [27], S(a) is nonsin-
gular for all a ∈ Zn. (Also see, e.g., [24] where a determinantal expression
is given.) Let Dn ⊂Wn be the space of pseudo-polynomials (6.9) which are
positive on the unit circle. Then for any d ∈ Dn, S(a)b = d uniquely defines
a strictly positive real function v(z) = 1

2
b(z)
a(z) and hence b = S(a)−1d ∈ Zn.

The operator G : Zn → Zn defined by

Ga = S(a)−1d (6.14)

is an involution, i.e., G2a = a. In fact, in view of (6.13), Ga = b and
Gb = a. By Smith’s Theorem [6], an involution which maps a Euclidean
space into itself has a fixed point, and therefore there exists a solution
a ∈ Zn to (6.11) for all d ∈ Dn.

Remark 6.4. The existence of spectral factors can of course, be proven
in a much more straight-forward manner. On the other hand, polynomial
spectral factorization is the simplest form of the rational covariance exten-
sion problem and also illustrates one of the key points to which we shall
now turn. That is, our proof relies heavily on the fact that Zn is homeomor-
phic to Rn+1 since on many non-Euclidean spaces there exist involutions
without fixed points.
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We now proceed with the proof of Theorem 6.1 using the global inverse
function theorem, Theorem 6.2. We note that fγ is easily shown to be
proper, as in [15, Lemma A.2]. Next, the duality between filtering and
interpolation implies that for each (λ, α) ∈ R+ × Pn(γ) the matrix Jac fγ
is in fact nonsingular, as we noted in Corollary 5.2.

Finally, it remains to check that the domain and range of fγ are diffeo-
morphic to Euclidean space. By spectral factorization, the open manifold
Dn is diffeomorphic to Zn, which we know is Euclidean by Lemma 6.3.
Thus, it remains to prove that the domain of fγ is Euclidean.

The fact that the open manifold R+×Pn(γ) is diffeomorphic to Euclidean
space follows of course from the same assertion about Pn(γ). That Pn(γ)
is diffeomorphic to Euclidean space was shown in [11] using the Brown-
Stallings criterion [55], which asserts that an n-manifold is diffeomorphic
to Euclidean n-space if and only if every compact subset has a Euclidean
neighborhood. Very briefly, the proof uses two facts. The first is that
to say v(z) is positive real is to say that for any µ ∈ C+ the polynomial
b(z) + µa(z) has all its roots in the unit disc. This allows one to pass to a
problem about compact sets of divisors in the unit disc. The second tool
is a general method for recognizing Euclidean spaces of polynomials from
their divisors: If U is a self conjugate open subset of C with a simple, closed,
rectifiable, orientable curve as boundary, then the space of all monic real
polynomials with all of their roots lying in U is diffeomorphic to Rn. The
proof, of course, follows the proof of Lemma 6.3, mutatis mutandis.

This concludes the proof of Theorem 6.1.

Caveat. This solution to the rational covariance extension problem ex-
presses the choice of free parameters in familiar systems theoretic terms,
viz. the numerator of the resulting modeling filter. One might imagine
that a similar situation holds if one were to first choose the pole polyno-
mial. However, although the zeros of the modeling filter can be chosen
arbitrarily, this is not the case for the poles, as can be seen from the fol-
lowing simple counter example.

Counter Example. Consider the partial covariance sequence (1, c1) = (1, 1
2 ).

Then n = 1 and γ0 = 1
2 . Now suppose we would like to chose the stable

pole polynomial a(z) = z + a1 with a1 = 3
4 . Then it follows from (3.28)

that α1 = a1 + γ0 = 5
4 . However, as can be seen from Figure 3.3, the point

(α, γ) = (5
4 ,

1
2 ) does not belong to the strictly positive real region P1. This

can also be seen from the fact that b(z) = z + 7
4 , which is not a Schur

polynomial.

7. Minimality

An important and partially open question in partial stochastic realization
theory is to find the rational covariance extension of minimum McMillan
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degree. More precisely, given a partial covariance sequence

1, c1, c2, . . . , cn, (7.1)

find an infinite extension cn+1, cn+2, . . . with the property that the corre-
sponding positive real function

v(z) =
1
2

+ c1z−1 + c2z−2 + c3z−3 + . . .

has minimum degree. This degree is called the positive degree of the partial
covariance sequence (7.1). It is easy to see, and follows readily from classical
stochastic realization theory, that the degree of the corresponding modeling
filter w(z) is the same as that of v(z). If p < n, the polynomials a(z), b(z)
and σ(z) thus must have common factors.

This is equivalent to finding the minimum triplet (F, g, h) of matrices
such that

(i) h′F k−1g = ck for k = 1, 2, . . . , n and
(ii) v(z) is strictly positive real,

i.e. the matrices F, g and h having the dimensions p × p, p × 1 and p × 1
respectively with the smallest possible p such that (i) and (ii) are satisfied.
This p is precisely the positive degree of (7.1). If the positivity requirement
(ii) is removed, the problem reduces to the much simpler deterministic
partial realization problem [39, 40, 31], The corresponding degree, the al-
gebraic degree of (7.1), is of course smaller or equal to the positive degree
p. Nevertheless, they are often confused in the literature.

As a starting point for studying the positive degree of a partial covariance
sequence, it would be helpful to be able to compute the degree of the positive
real rational function which we know corresponds to any fixed choice of
zero polynomial σ(z). To this end, we shall next introduce a Riccati-type
equation, called the Covariance Extension Equation, which is formulated
in terms of the partial covariance data and a choice of desired modeling-
filter zeros [14, 12, 13]. This is a nonstandard Riccati equation the positive
semidefinite solutions of which parameterize the solution set of the rational
covariance extension problem in terms of the partial covariance sequence
and the zeros of the desired modeling filter. While it is interesting in its
own right, in the present setting of partial covariance data, the Covariance
Extension Equation (CEE) replaces the usual algebraic Riccati equation of
stochastic realization theory required when the covariance data is complete.

It is convenient to represent the given covariance data 1, c1, c2, . . . , cn in
terms of the first n coefficients in the expansion

zn

zn + c1zn−1 + · · · + cn
= 1 − u1z

−1 − u2z
−2 − u3z

−3 − . . . (7.2)
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about infinity and to define

u =



u1

u2

...
un


 U =




0
u1 0
u2 u1

...
...

. . .
un−1 un−2 · · · u1 0


 . (7.3)

Likewise, we may collect the coefficients of the desired zero polynomial

σ(z) = zn + σ1z
n−1 + · · · + σn, (7.4)

in the matrices

σ =



σ1

σ2

...
σn


 , Γ =




−σ1 1 0 · · · 0
−σ2 0 1 · · · 0

...
...

...
. . .

...
−σn−1 0 0 · · · 1
−σn 0 0 · · · 0


 and h =




1
0
...
0


 . (7.5)

The Covariance Extension Equation is given in terms of these parameters
as

P = Γ(P − Phh′P )Γ′ + (u+ Uσ + UΓPh)(u+ Uσ + UΓPh)′ (7.6)

where the n× n matrix P is the unknown.
Our principal result concerning the CEE concerns existence and unique-

ness of the positive semi-definite solution, similar in spirit to the classical
existence and uniqueness theorems for the Riccati equations arising in fil-
tering and control, and the connection of this solution to the corresponding
modeling filter (7.7). This, of course, is of considerable independent inter-
est in partial stochastic realization theory. The following theorem was first
presented in [12, 13] and proved in [14].

Theorem 7.1. Let (1, c1, · · · , cn) be a given positive partial covariance se-
quence. For every Schur polynomial σ(z), there exists a unique positive
semidefinite solution P of the Covariance Extension Equation satisfying
h′Ph < 1, to which in turn there corresponds a unique modeling filter

w(z) = ρ
σ(z)
a(z)

, (7.7)

for which the denominator polynomial

a(z) = zn + a1zn−1 + · · · + an, (7.8)

is given by

a = (I − U)(ΓPh+ σ) − u (7.9)
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and ρ ∈ (0, 1] is a real number given by

ρ = (1 − h′Ph)1/2. (7.10)

All modeling filters are obtained in this way. Moreover, the degree of w(z),
and hence that of v(z), equals the rank of P .

From the last statement of Theorem 7.1 we see that the degree of any
rational covariance extension, and hence the positive degree of a partial
covariance sequence, is connected to the corresponding solution of the Co-
variance Extension Equation. In fact, one can derive the following corollary
of Theorem 7.1.

Corollary 7.2. The positive degree of the partial covariance sequence (7.1)
is given by

p = min
σ∈Sn

rank P (σ), (7.11)

where P (σ) is the unique solution of the Covariance Extension Equation
corresponding to (7.1) and the zero polynomial σ, and the minimization is
over the space Sn of all Schur polynomials of degree n. The modeling filter
corresponding to a minimizing σ is a minimal partial stochastic realization
of (7.1).

This corollary does not of course provide us with an applicable algo-
rithm for determining the positive degree or a minimal rational covariance
extension, but it does explain the connection to the CEE.

Since positive degree has often been confused with algebraic degree, and
since the algebraic degree of sequences (7.1) has the generic value

[
n+1

2

]
, it

is important to investigate whether there is a generic positive degree and,
if so, what it is. To this end, represent the covariance data as a vector

c :=



c1
c2
...
cn


 ∈ Cn ⊂ R

n,

where Cn is the set of c with positive Toeplitz matrix. Recall that a subset
of Rn is semialgebraic provided it can be defined by a finite number of
polynomial equations, inequations, and inequalities. For example, Cn is a
semialgebraic subset of Rn, being defined by polynomial inequalities. A
subset of Rn is algebraic provided it can be defined by a finite number of
polynomial equations. Finally, a property of points in R

n is said to be
generic if the set of points which enjoy this property is nonempty, with its
complement being contained in an algebraic set.
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Theorem 7.3. Let p be any integer such that n
2 ≤ p ≤ n. Then the sub-

set of c ∈ Cn having positive degree p is a semialgebraic set containing
a nonempty open subset of Rn. Consequently, the positive degree has no
generic value.

The proof of this theorem, which has important consequences for so-
called subspace identification algorithms [61, 51], can be found in [14]. We
shall now illustrate this result by considering the special case n = 2. Instead
of using the representation c = (c1, c2)′ for the covariance data, we shall
use (γ0, γ1), which of course is equivalent. It is easy to check that p = 0 if
and only if γ0 = γ1 = 0, p = 1 if and only if

|γ1| <
|γ0|

1 + |γ0|
, (7.12)

and p = 2 otherwise [28, 29] (also see [14]). It can be seen that p = 1 if and
only if the line

α2 = γ1(1 − 1
γ2
0

)(γ0α1 + γ1) (7.13)

intersects the strictly positive real region P2. These are precisely the points
for which a(z) and b(z) have a common factor. All other α correspond to
v(z) of degree two. For example, if γ0 = 0.5 and γ1 = 0.2, condition (7.12)
is satisfied, and the line (7.13) intersects the positive real region as depicted
to the left in Figure 7.1. All v(z) corresponding to points on the interval
defined by this intersection have degree one. The positive degree p = 2
for those c for which γ 
= 0 and condition (7.12) is violated. The situation
corresponding to such a point, γ0 = 0.5 and γ1 = 0.4, is illustrated to the
right in Figure 7.1. Here the intersection between P2(γ) and the line (7.13)
is empty.

1 α1

α2

1 α1

α2

Figure 7.1

For n > 2 the situation is more complicated, but we have a sufficient
condition for the positive degree p to be strictly less than n, which is similar
to (7.12).



      

ON A DUALITY BETWEEN FILTERING AND INTERPOLATION 31

Corollary 7.4. Suppose n ≥ 2. Any partial covariance sequence satisfying
the condition

|γn−1| <
|γn−2|

1 + |γn−2|
(7.14)

has a positive degree p < n. If n = 2, the condition is also necessary.

From this result we see that the occurrence of partial covariance data
for which there exists a modeling filter with a(z) and b(z) having common
factors is not a “rare event”.

8. Simulations

In this section we shall briefly present some computational results about
determining modeling filters from partial covariance and zero data. For
this we have two different computational procedures: one based on the Co-
variance Extension Equation presented in Section 6 and another involving
a convex optimization problem, details about which we present elsewhere
[9].

Let us start by depicting in Figure 8.1 the zeros (marked as ◦) and poles
(marked as ×) of the sixth degree modeling filters whose spectra are illus-
trated in Figures 3.1 and 3.2 respectively. The left unit circle corresponds
to the maximum entropy filter and hence all the zeros are at z = 0. To
obtain the better fit of the modeling filter of Figure 3.2 we must move the
zeros close to the unit circle. Those zeros and the corresponding poles are
depicted to the right in Figure 8.1.

o

o

o
o

o

o

o

x

x
x

x

x

x

x

x

x

x x

x

Figure 8.1

With modeling filters of this low degree we can of course not model the
fine structure of spectra corresponding to for example 20 ms windows of
speech. However, we can handle much larger problems, and next we show
an example corresponding to a partial covariance sequence

1, c1, c2, c3, . . . , c50
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determined from such data in the manner described in Section 3. Figure 8.2
depicts both 50 suitably chosen zeros and the corresponding poles computed
by our methods.

Figure 8.2

The corresponding modeling filter of degree 50 produces an output with
the rather rugged spectrum depicted in Figure 8.3.

0 0.2 0.4 0.6 0.8 1
-50

-40

-30

-20

-10

0

10

frequency

dB

Figure 8.3

These examples show that by choosing sufficiently many zeros close to
the unit circle we obtain a more realistic spectrum which does not exhibit
the “flatness” of the maximum entropy filter.
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32. U. Grenander and G. Szegö, Nonlinear Methods of Spectral Analysis, Univ. Califor-

nia Press, 1958.
33. J. Hadamard, Sur les transformations planes, C. R. Acad. Sci. Paris 142 (1906), 74.
34. J. Hadamard, Sur les transformations ponctuelles, Bull. Soc.Math. France 34 (1906),

71–84; Oeuvres, 349–363.
35. J. Hadamard, Sur les correspondances ponctuelles, Oeuvres, Editions du Centre

Nationale de la Researche Scientifique, Paris (1968), 383–384.
36. S. Haykin, Toeplitz forms and their applications, Springer-Verlag, 1979.
37. N. Jacobson, Lectures in Abstract Algebra, Vol. III, Van Nostrand, 1964.
38. R. E. Kalman, Realization of covariance sequences, Proc. Toeplitz Memorial Con-

ference (1981), Tel Aviv, Israel, 1981.
39. R. E. Kalman, On minimal partial realizations of a linear input/output map,in As-

pects of Network and System Theory (R. E. Kalman and N. de Claris, eds.), Holt,
Reinhart and Winston, 1971, 385–408.

40. R. E. Kalman, On partial realizations, transfer functions and canonical forms, Acta
Polytech. Scand. MA31 (1979), 9–39.

41. S. M. Kay and S. L.Marple,Jr., Spectrum Analysis–A modern perspective, Proceed-
ings IEEE 69 (1981), 1380–1419.

42. H. Kimura, Positive partial realization of covariance sequences, Modelling, Identi-
fication and Robust Control (C. I. Byrnes and A. Lindquist, eds.), North-Holland,
1987, pp. 499–513.

43. L. Kronecker, Zur Teorie der Elimination einer Variabeln aus zwei algebraischen
Gleichnungen, Monatsber. König. Preuss. Akad. Wiss., Berlin, 1881.

44. S. Lang, Algebra,Addison & Wesley, 1970.
45. C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear

differential and integral operators, J. Res. Nat. Bur. Standards 45 (1950), 255–282.
46. A. Lindquist, A new algorithm for optimal filtering of discrete-time stationary pro-

cesses, SIAM J. Control 12 (1974), 736–746.
47. A. Lindquist, Some reduced-order non-Riccati equations for linear least-squares es-

timation: the stationary, single-output case, Int. J. Control 24 (1976), 821–842.
48. A. Lindquist, On Fredholm integral equations, Toeplitz equations and Kalman-Bucy

filtering, Applied mathematics and optimization 1 (1975), 355–373.
49. A. Lindquist and G. Picci, On the stochastic realization problem, SIAM J. Control

Optim., 17 (1979), 365–389.
50. A. Lindquist and G. Picci, On ”subspace method identification” and stochastic model

reduction, Proceedings of the 10th IFAC Symposium on Systems Identification,
Copenhagen, June 1994, 397–403.

51. A. Lindquist and G. Picci, Canonical correlation analysis, aproximate covariance
extension, and identification of stationary time series, Automatica 32 (1996), 709–



   

ON A DUALITY BETWEEN FILTERING AND INTERPOLATION 35

733.
52. A. Magnus, Certain continued fractions associated with the Padé table, Math. Z. 78
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