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Abstract. It is known that certain popular stochastic subspace identification methods may fail
for theoretical reasons related to positive realness. In fact, these algorithms are implicitly based on
the assumption that the positive and algebraic degrees of a certain estimated covariance sequence
coincide. In this paper, we describe how to generate data with the property that this condition
is not satisfied. Using this data we show through simulations that several subspace identification
algorithms exhibit massive failure.
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1. Introduction

In [14] it was pointed out that some popular stochastic subspace identification algo-
rithms for time series [3, 18] are based on an assumption, which may not be satisfied,
about positive realness of a certain rational function and therefore may fail for generic
data.

In this paper we test some of these algorithms on statistical data produced by pass-
ing white noise through a stable, rational, time-invariant, linear filter with properties
to be explained in Section 4. As expected from the theoretical analysis, the algorithms
exhibit massive failure for certain choices of dimensions. Since these dimensions can
not be determined easily from generic data, care has to be exercised when using these
algorithms.

The basic theoretical problem with these stochastic subspace identification meth-
ods can be reduced to the fact that the positive and algebraic degrees of a partial
covariance sequence need not coincide. These concepts are related to covariance ex-
tension, to be discussed in Section 2. A secondary problem arises in connection with
model reduction, as explained in Section 3. In Section 4 we construct a partial co-
variance sequence which has the property that the positive and algebraic degrees do
not agree. From this sequence we obtain a filter through which we pass white noise to
generate test data. In Section 5 we present test results using the stochastic subspace
identification algorithms of [3, 18] on this data. Finally, in Section 6 we present our
conclusions.

∗ This research was supported by the Swedish Research Council for Engineering Sciences (TFR).
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2. Theoretical background

System identification in the form studied here amounts to estimating the matrices
(A,B,C,D) in some linear stochastic system

(Σ)

{
x(t+ 1) = Ax(t) +Bw(t)
y(t) = Cx(t) +Dw(t)

, (2.1)

driven by a (normalized) white noise {w(t)}, from a data string

{y0, y1, y2, . . . , yN} (2.2)

of observations of the output process {y(t)}. More precisely, the system (2.1) should
be such that {y(t)} is a (second-order) stationary stochastic process. In particular this
means that A is a stable matrix, having all its eigenvalues less than one in modulus.
Then the spectral density of {y(t)} is given by Φ(z) = W (z)W (1/z)′ on the unit
circle, where W (z) = C(zI − A)−1B +D is the stable transfer function of (2.1).

This estimation problem can be reduced to determining the spectral density

Φ(eiθ) =
∞∑

k=−∞
Λke

−ikθ (2.3)

from the observed data (2.2), where

Λk = E{y(t+ k)y(t)′}, k = 0, 1, 2, . . . (2.4)

are the covariances of the process. To understand this matter we develop some aux-
iliary results which will be used in the sequel. Since Λ−k = Λ′

k, Φ(z) may also be
additively decomposed as Φ(z) = Φ+(z) + Φ+(1/z)′, where

Φ+(z) =
1

2
Λ0 + Λ1z

−1 + Λ2z
−2 + . . . (2.5)

Now, inserting into (2.4) the output process y as defined by (2.1), a simple calculation
yields

Λk = CAk−1C̄ ′ for k = 1, 2, 3, . . . , (2.6)

where C̄ = CPA′ + DB′, and P := E{x(0)x(0)′} is the unique solution of the Lya-
punov equation P = APA′ +BB′. Consequently we obtain from (2.5) that

Φ+(z) = C(zI − A)−1C̄ ′ +
1

2
Λ0. (2.7)

In the context of system identification, statistical estimates are used to approximate
the covariances. Such estimates could be based on the ergodic limit

Λk = lim
T→∞

1

T + 1

T∑
t=0

yt+ky
′
t, (2.8)

which holds almost surely [4]. Implicitly or explicitly the stochastic subspace identi-
fication procedures of [3, 18] are based on truncated ergodic sums such as

Λk ≈
1

T + 1

T∑
t=0

yt+ky
′
t, for k ≤ N − T. (2.9)
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If T < N is sufficiently large, these estimates will be good provided k is not too
large. However, only a finite number of covariances

Λ0,Λ1,Λ2, . . . ,Λν (2.10)

can be determined from (2.2) via (2.9); in fact we must have ν << N . To focus
on the essential questions of this paper, we assume that (2.10) is a bona fide partial
covariance sequence in the sense that the (block) Toeplitz matrix of (2.10) is positive
definite.

The key idea of stochastic subspace identification is now to reconstruct (A,C, C̄),
appearing in (2.7), by solving the equations

Λk = CAk−1C̄ ′ for k = 1, 2, . . . , ν (2.11)

for (A,C, C̄), where the Λk are estimated as in (2.9). This is the partial realization
problem [13, 11, 9]. Moreover, (2.7) is a minimal partial realization if it has the
smallest possible Mc Millan degree, and yet satisfies (2.11). We call this the algebraic
degree of (2.10).

However, for Φ to be a bona fide coercive spectral density we must have

Φ(eiθ) > 0, for all real θ. (2.12)

This is achieved by requiring that Φ+(z) is (strictly) positive real, i.e. Φ+(z) is analytic
for |z| ≥ 1 and satisfies 	[Φ+(z)] > 0 in this region. The partial realization problem
with the additional constraint that Φ+(z) be positive real is called the stochastic
partial realization problem [12], and the corresponding minimal degree is called the
positive degree of (2.10).

In stochastic subspace identification the triplet (A,C, C̄) is determined, either
impicitly or explicitly, by a minimal factorization of a (block) Hankel matrix Hij

of the estimated covariances (2.10). In fact, by (2.11), we have

Hij :=




Λ1 Λ2 . . . Λj

Λ2 Λ3 . . . Λj+1
...

...
. . .

...
Λi Λi+1 . . . Λi+j


 =



C
CA
...
CAi−1






C̄
C̄A′

...
C̄(A′)j−1




′

, (2.13)

where the indices i, j are chosen so that i + j = ν and |i − j| ≤ 1. Then C and C̄
can be determined directly as the first block row of the left and right factor of (2.13),
respectively. Likewise, A can be determined by removing the first block row and
the last block row respectively from Γi, the left factor of (2.13), to obtain Γi and Γi

respectively. Then Γi = ΓiA, and therefore A = Γ†
iΓi, where Γ†

i is the pseudo-inverse
of Γi.

Assume that a positive real Φ+(z) is obtained from the identified matrices A, C
and C̄, and the estimated zero lag covariance Λ0. Then, B and D can be determined
from the identified (A,C, C̄,Λ0) by first finding a P ≥ 0 such that

M(P ) =

[
P − APA′ C̄ ′ − APC ′

C̄ − CPA′ Λ0 − CPC ′

]
≥ 0, (2.14)
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in general by solving an algebraic Riccati equation, and then factoring M(P ) as

M(P ) =

[
B
D

] [
B
D

]′
. (2.15)

Modulo a model-reduction step to be discussed in section 3, all stochastic subspace
algorithms are essentially variations of this scheme.

There are, however, several problems with this approach. In fact, if r is the algebraic
and p the positive degree of (2.10), we have

rank Hij ≤ r ≤ p, (2.16)

where each inequality could be strict. The stochastic subspace identification proce-
dures briefly described above, on which the methods of [3, 18] are based, require that
these quantities are equal in order to guarantee the positivity condition mentioned.
This is an assumption that is generally implicit.

Only the first equality in (2.16) is a generic property. To illustrate this, let us con-
sider the scalar output case. For the partial covariance sequence (Λ0,Λ1,Λ2, . . . ,Λν) :=
(1, 0, 0, . . . , 1/2), rank Hij = 1, while r = p = ν [9]. This situation is a rare event,
but having strict inequality in the second inequality of (2.16) is not. In fact, it is
easy to see that the algebraic degree has the generic value r =

[
ν
2

]
, any other value

being rare. The situation for the positive degree is much more complex. In fact, it
was shown by Byrnes and Lindquist [7] that, for any integer n such that

[
ν
2

]
≤ n ≤ ν,

there is a nonempty set of scalar covariance sequences (2.10) which is open in Rν+1

so that n is the positive degree of (2.10).
This shows that the positive degree has no generic value. Also there is no easy way

to determine the positive degree; see [7] for details. The statistical test data, which
will be used in Section 5 to induce failure of the subspace identification procedures,
will have the property that the algebraic and positive degrees of the corresponding
partial covariance sequence (2.10) differ for certain ν. The result from [7] just stated
shows that such failure is a nonrare event.

The problems show up when determining B and D from (2.14). In fact, in order to
perform the factorization (2.14) we must have M(P ) ≥ 0. However, by the Kalman-
Yakubovich-Popov Lemma (see, e.g., [2]), the existence of a positive definite P such
that M(P ) ≥ 0 is equivalent to Φ+(z) being positive real.

3. Subspace identification algorithms

In the stochastic subspace identification methods studied here the factorization of
the estimated Hankel matrix of (2.13) is performed by singular-value decomposition,
either directly on Hij, as in [3], or on some weighted version

Ĥij = QHijR
′, (3.1)

where Q and R are nonsingular matrices, as in [17, 18, 19]. Singular value decom-
position is a reliable numerical procedure for determining the numerical rank of a
matrix. Hence when, factoring (3.1), the numerical rank of Ĥij, n, is chosen so that
the decreasingly ordered singular values {σk} are approximately zero for k > n.

In the basic stochastic subspace identification method of Van Overschee and De
Moor [17, 18, 19], Q and R are chosen to be the inverted Cholesky factors of the
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block Toeplitz matrices of (2.10) and Λ0,Λ
′
1,Λ

′
2, . . . ,Λ

′
ν respectively. As explained

in [1] (also see [14]) this choice of weights, to which we shall refer as the canonical
weights, is natural, since then the singular values {σk} are the canonical correlation
coefficients, i.e. the cosines of the angles between the spaces spanned by the future
and past observations; see [14]. All canonical correlation coefficients are less than one
in modulus.

In our context the methods of Van Overschee and De Moor [17, 18, 19] amount to
factoring the square block Hankel matrixHτ obtained by setting i = j = τ inHij. Two
integer parameters need to be chosen when implementing the algorithms: τ and the
desired dimension n of the system. The numerical rank determination discussed above
selects n = rank Hτ , but the subspace identification procedures allow for choosing
n < rank Hτ ; we shall refer to this as model reduction. For model order selection
see [10, 21]. In [17, 18, 19], model reduction is done after performing the singular

value decomposition of Ĥτ , by setting some nonzero singular values equal to zero but
keeping the matrices of left and right singular vectors fixed. From this rank-reduced
matrix the system matrices A, C, and C̄ are computed, even though it is no longer
a Hankel matrix. Therefore the question whether such model reduction preserves
positivity has so far no answer; see [14] for a discussion of this issue. Probably the

answer is negative in general. If Ĥτ is of full rank, a model reduction step is obligatory,
at least if the process y is scalar. In fact, since i = j = τ , the procedure of determining
A described in Section 2 requires us to take n < τ .

In Aoki [3] the model reduction step consists in setting some of the smallest singular
values of Hτ equal to zero, which is equivalent to replacing the triplet (A,C, C̄)
obtained from the nonreduced Hτ by a triplet of “north-west corners” (A11, C1, C̄1)
in the sense that

A =

[
A11 A12

A21 A22

]
, C =

[
C1 C2

]
, C̄ =

[
C̄1 C̄2

]
.

This is called principal subsystem truncation. Since Aoki is using an unweighted
Hankel matrix, i.e., Q = R = I in (3.1), we do not know whether this reduction
procedure preserves positivity either. However, in Theorem 7 of [14] it was shown
that principal subsystem truncation preserves positivity if the canonical weights are
used, provided {y(t)} has coercive spectral density and τ is sufficiently large.

Consequently, failure of the stochastic subspace identification procedures may have
several causes. The noncoincidence of positive and algebraic degrees prior to model re-
duction is the primary reason, but, as we have pointed out above, there are secondary
factors, such as those connected to model reduction.

In order to illustrate the primary cause for failure, we first test our data on a
modified stochastic subspace identification procedure with the following properties.
First, we take i = τ + 1 and j = τ , that is we consider a rectangular matrix Hτ+1,τ .
Hence, the choice n = τ is possible. Secondly, we use the canonical weights and do
model reduction by principal subsystem truncation so that positivity (if it is present in
the unreduced solution) is preserved, at least in the limit as N → ∞ and τ → ∞ [14,
Theorem 16]. We shall refer to this algorithm as the modified subspace identification
algorithm. Let us stress that this algorithm is not introduced as an alternative to
the subspace algorithms mentioned above, but merely as a means to factor out the



       

6 A. DAHLÉN, A. LINDQUIST, AND J. MARI

primary cause of failure and to avoid the obligatory model reduction step mentioned
above.

Then we shall test the three stochastic subspace algorithms in the book [19] by Van
Overschee and De Moor. Algorithms 1 and 2 differ in the computation of the matrices
A and C. Algorithm 2 does it exactly as described in Section 2, while Algorithm 1 does
it in a slightly modified form, which theoretically is essentially equivalent. Algorithm
3 is of a different character. An ad hoc modification is made which produces a positive
real solution provided it first produces a stable A. The problem here is not only that it
is unclear what precisely this modification implies for the solution, but that positivity
is not guaranteed, because, as for any of the subspace algorithms considered here,
there is no guarantee that the identified A will be stable. In fact, it was shown in
[6], that such stability is not a generic property: there are nonempty open sets in the
parameter space where stability fails.

4. Construction of a test example

Next we construct a scalar covariance sequence, relevant partial sequences of which
have the property that the positive degree is greater than the algebraic degree. This
construction, which is motivated by the proof of Theorem 3 in [14] and the underlying
theory in [8], is based on the degree-one rational function

V (z) =
1

2

z + 1 + ε

z + 1 − ε , (4.1)

which is stable, having a pole of modulus less than one, but is not positive real for
any ε > 0.

Expanding V (z) as a Laurent series for |z| ≥ 1 we obtain

V (z) = 1
2
c0 + c1z

−1 + c2z
−2 + . . . ,

where c0 = 1 and ck = ε(ε−1)k−1 for k > 0. Now, it is well-known [1] that c0, c1, . . . , cν
is a bona fide partial covariance sequence if and only if

|γk| < 1 k = 0, 1, 2, . . . , ν − 1, (4.2)

where γ0, γ1, γ2, . . . are its Schur parameters. Obviously, since V (z) is not positive
real, this is not the case for all ν. It can be shown [8, 14] that these Schur parameters
can be generated by the nonlinear dynamical system{

αt+1 = αt

1−γ2
t
α0 = 1

γt+1 = −γtαt

1−γ2
t

γ0 = ε
(4.3)

which evolves along the curve 1− γ2
t = (2/κ− αt)αt, where κ = 2/(2− ε2). Hence γt

can be eliminated in the first of the equations (4.3) to yield

αt+1 =
κ

2 − καt

α0 = 1, (4.4)

Setting αt = vt/ut, (4.4) can be replaced by the linear system[
ut+1

vt+1

]
=

[
2/κ −1
1 0

] [
ut
vt

]
,

[
u0

v0

]
=

[
1
1

]
. (4.5)
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Since κ is greater than one in modulus, the coefficient matrix of (4.5) has complex
eigenvalues and is thus, modulo a constant scalar factor, similar to[

cos θ sin θ
− sin θ cos θ

]
,

where θ := arctan
√
κ2 − 1 is small if ε is small. Hence αt is the slope of a line through

the origin in R2 which rotates counter-clockwise with the constant angle θ, so that
arctanαt+1 = arctanαt + θ.

Sooner or later, therefore, the slope αt will either change sign or become infinite at
which time condition (4.2) will fail, as can be seen from the first of equations (4.3).
Supposing that ε is chosen so that finite escape does not occur, and let ν be the last
step prior to the slope changing sign. Then c0, c1, . . . , cν will be a partial covariance
sequence, but c0, c1, . . . , cν+1 will not. Clearly, however, ν can be made arbitrarily
large by just choosing ε small enough.

Let ϕν(z) = zν + ϕν1z
ν−1 + · · · + ϕνν be the Szegö polynomial determined from

γ0, γ1, . . . , γν−1 via the Szegö-Levinson recursion

ϕt+1(z) = zϕt(z) − γtztϕ∗
t (z

−1) ϕ0(z) = 1

and set rν :=
∏ν−1

k=0(1 − γ2
k). Then the maximum-entropy filter

W (z) =

√
rν

ϕν(z)
(4.6)

is stable and minimum-phase [5, 20]. Let Φ+(z) be the positive real part of the
spectral density Φ(z) := W (z)W (z−1), and define the infinite covariance sequence
Λ0,Λ1,Λ2, . . . via the Laurent expansion (2.5). Clearly this is a covariance extension
of c0, c1, . . . , cν . In fact, Λk = ck for k = 0, 1, 2, . . . , ν.

degree

k

1

3

5

5 10

Figure 4.1: The positive (×) and algebraic degrees (•) for the case ν = 5.

Now let us consider the algebraic degree r and the positive degree p of the partial
sequence

Λ0,Λ1,Λ2, . . . ,Λk (4.7)

as k varies. In this context, recall that the subspace algorithms studied here implicitly
require that p = r. In our example, by construction, p > r for 2 ≤ k ≤ 2ν − 1. For
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k ≥ 2ν − 1, we always have r = p. Note that we can choose ν arbitrarily large and
thus construct an arbitrarily long interval for which the condition p = r will fail.

In Figure 4.1 we show a typical situation for ν = 5, depicting p (marked by ×) and
r (marked by •) as a function of k.

5. Simulations

To obtain data we pass white noise through a filter

white noise−→ W (z) −→output process

with the transfer function (4.6) constructed in Section 4.
The experiments will be carried out in the following manner. In each of the algo-

rithms to be tested there are two integer parameters to be chosen: the size τ of the
approximate Hankel matrix, as defined previously for each algorithm, and the desired
dimension n of the resulting system. To choose n is to choose which singular values
will be set equal to zero. For each choice of τ and n, we make 100 simulations and
apply the subspace algorithms to each of these sets of data. The number of failures
are recorded in tables. By failure we mean that the estimated triplet (A,C, C̄) is such
that (2.7) fails to be positive real.

We begin by testing the modified subspace identification algorithm introduced in
Section 3 as a means to illustrate more precisely the failures anticipated from the
analysis in Section 4. Thus, in particular, the most important secondary reason for
failure – that the model reduction phase may not preserve positivity – has been
removed. The index k in (4.7) needed for the appropriate Hankel matrix of size τ is
precisely k = 2τ .

First, to illustrate the behavior expected from Figure 4.1, we consider a very simple
example for which ν = 5, which corresponds to the choice ε = 0.25 in (4.1). Table 5.1
shows the percentage of failure for different choices of τ and n.

n 1 2 3 4 5 6 7
τ : 1 100

2 99 100
3 78 98 100
4 58 100 100 100
5 0 0 0 0 0
6 0 0 0 0 0 41
7 0 0 0 0 0 28 69

Table 5.1. Percentage of failures for modified algorithm when ν = 5.

The dimension of the system generating this data is five. From the theoretical
considerations reported above, we expect the algorithm to succeed for τ ≥ 5 as long
as n ≤ 5. This agrees with the experiment as can be seen from the zeros in the table.
We also see that the algorithm has an almost massive failure rate in the area where
positive and algebraic degrees do not match, as explained in Section 4. Finally, we
have large failure rate when n > 5; in these cases, the transfer functions of the systems
may have approximate common factors in the numerators and the denominators, likely
to be unstable in approximately half of the runs.
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This is a very simple example, but it exhibits all the characteristics of a larger
example. In fact, the corresponding result for ν = 15, obtained by setting ε = 0.097,
is depicted in Table 5.2. It shows massive failure for τ ≤ 14, which agrees with theory.
Similarly, the algorithm has complete success for τ ≥ 15 as long as n ≤ 15.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
τ : 1 85

2 86 95
3 97 96 100
4 93 99 98 99
5 99 100 99 100 100
6 97 99 100 99 100 100
7 96 98 100 100 100 100 100
8 60 99 100 100 100 100 100 100
9 47 97 100 100 100 100 100 100 100
10 45 97 98 98 98 98 100 100 100 100
11 48 88 96 95 96 96 96 96 100 100 100
12 43 91 97 97 97 97 97 97 97 97 100 100
13 42 90 95 95 97 97 98 98 98 98 98 98 100
14 53 93 100 100 100 100 100 100 100 100 100 100 100 100
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37 67

Table 5.2. Percentage of failures for modified algorithm when ν = 15.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
τ : 2 91

3 100 96
4 100 100 100
5 100 100 100 100
6 100 100 100 100 100
7 100 100 100 100 100 100
8 100 100 100 100 100 100 100
9 0 100 99 100 100 100 100 100
10 0 0 96 97 98 100 100 100 100
11 0 0 37 87 87 93 100 100 100 100
12 0 0 0 58 50 84 78 98 100 100 100
13 0 0 0 0 7 67 47 84 76 97 99 100
14 0 0 0 0 0 1 11 72 75 84 85 100 100
15 0 1 100 0 0 0 0 0 21 55 86 98 100 100
16 100 100 100 100 100 100 100 100 100 100 100 100 100 93 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46
18 0 0 0 0 0 0 10 1 32 4 42 24 33 17 0 38 56

Table 5.3. Percentage of failures for Algorithm 1 in when ν = 15.

Next, for the case ν = 15, we test the three stochastic subspace identification
methods of van Overschee and De Moor [19] with canonical weights. These algorithm
operate in a setting which in our notation corresponds to a square Hankel matrix
Hτ := Hτ,τ , so the index k in (4.7) is k = 2τ − 1. Algorithm 2 in [19] uses the
procedure described in Section 2 to determine A, and the other algorithms use an
equivalent shift strategy. Consequently, as pointed out in Section 3, we must take
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n < τ , and hence we cannot allow for the case that Hτ is full rank and there is no
model reduction.

The simulations for Algorithm 1 and Algorithm 2 are reported in Tables 5.3 and
5.4, respectively, which show the percentage of failure for different choices of τ and
n. As before the dimension of the system generating the data is 15. Since we have
at least one model reduction step, we expect the algorithm to succeed for τ ≥ 16
as long as n ≤ 15. The adherence to this pattern is not as good as for the modified
algorithm, and this is probably due to the secondary effects discussed in Section 3. We
get massive failure not only in the area where positive and algebraic degrees do not
match, but also in certain cases when they do agree. We stress that data producing
failure for τ < ν can be constructed for arbitrarily large ν, as explained in Section 4.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
τ : 2 94

3 100 99
4 100 100 99
5 100 100 99 100
6 100 99 100 100 100
7 100 100 100 100 100 100
8 100 100 100 100 100 100 100
9 100 100 98 99 99 100 100 100
10 100 45 99 95 99 100 100 100 100
11 100 12 99 71 100 92 99 100 100 100
12 100 50 73 24 98 78 92 99 99 100 100
13 100 89 19 4 28 37 92 84 89 95 99 100
14 94 100 100 0 18 1 8 38 91 98 100 100 100
15 62 100 100 4 100 0 2 0 1 3 10 21 54 97
16 100 100 100 100 100 100 100 100 100 100 100 100 100 90 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43
18 21 77 13 56 48 6 66 11 78 23 57 31 33 18 0 40 60

Table 5.4. Percentage of failures for Algorithm 2 when ν = 15.

The corresponding simulations for Algorithm 3, reported in Table 6.5, show failure
which is due to unstability of A. This is in complete agreement with the theory since
stability is not automatic unless p = r; see [6]. The failure in the critical region is not
as massive, but on the other hand the meaning of the solution is not entirely clear,
since the modification needed is quite ad hoc.

Finally, we test Aoki’s method [3]. As seen in Table 6.6, a similar pattern as
in the modified subspace algorithm occurs, except that sporadic failures may also
occur in the “good region”, as expected from the manner in which model reduction is
performed. On the other hand the algorithm is likely to succeed if n is chosen much
smaller than τ .

6. Conclusions

In [14] it was pointed out that there is no guarantee that some popular stochastic
subspace identification algorithms will actually work for generic data, and theoretical
evidence for this fact was provided.

In this paper we constructed statistical data for which said identification algorithms
exhibit massive failure. This data was produced by passing white noise through a
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filter which was constructed in such a way that the corresponding partial covariance
sequences of the output process do not fulfill the requirement of stochastic subspace
identification that the positive and algebraic degrees coincide.

Failure can also occur if the dimension of the identified system is chosen too high,
so that almost cancellations of unstable factors occur between the numerator and the
denominator of the transfer functions.

Consequently some care has to be exercised when using these stochastic subspace
identification methods. In [15] possible remedies are discussed, and in [16] the authors
present an alternative identification procedure which overcomes these difficulties.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
τ : 2 20

3 11 55
4 8 31 63
5 6 24 46 79
6 2 15 42 65 89
7 0 26 49 65 77 97
8 0 22 29 48 67 84 92
9 0 15 91 100 100 100 100 100
10 0 0 96 91 95 98 99 100 100
11 0 0 36 58 80 90 99 100 100 100
12 0 0 0 7 48 49 67 92 99 100 100
13 0 0 0 0 6 11 47 62 68 94 99 100
14 0 0 0 0 0 0 11 23 70 50 77 98 100
15 0 0 100 0 0 0 0 0 19 18 68 82 100 100
16 0 7 100 1 94 0 62 0 1 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38 56

Table 6.5. Percentage of failures for Algorithm 3 when ν = 15.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
τ : 1 80

2 97 96
3 100 100 98
4 100 99 98 100
5 100 100 100 100 100
6 100 100 100 100 100 100
7 100 100 100 100 100 100 100
8 99 87 98 100 100 100 100 100
9 0 0 45 90 96 100 100 100 100
10 0 0 0 0 70 91 100 100 100 100
11 0 0 0 0 0 0 57 95 99 100 100
12 0 0 0 0 0 0 0 6 61 97 99 100
13 0 0 0 0 0 0 0 0 1 98 62 95 100
14 0 0 0 0 0 0 0 0 0 0 0 100 66 100
15 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0
16 0 4 0 0 0 0 0 0 1 3 4 4 9 15 21 48
17 0 0 0 0 4 3 11 7 6 4 8 11 20 29 34 56 68

Table 6.6. Percentage of failures for Aoki’s method when ν = 15.
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