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1. Introduction. It is a somewhat surprising fact that, in the discrete time case,
the family of minimal state space representations{

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(1.1)

of a stationary stochastic vector process {y(t); t ∈Z} with a rational spectral density
exhibits a remarkably rich structure, affecting the implementation of most estima-
tion algorithms, and that much of this structure is not present in the corresponding
continuous-time setting. This diversity is also reflected in the structure of the corre-
sponding family of matrix Riccati equations, studied in detail in [22] in the context
of invariant directions of matrix Riccati equations [5, 25, 26], a phenomenon that is
not present in the continuous-time case.

As usually, {u(t); t ∈ Z} is a vector-valued white noise process, which passed
through a stable filter with transfer function

W (z) = C(zI −A)−1B + D, (1.2)

beginning at the remote past, produces the output process {y(t); t ∈ Z}, say, of di-
mension m and with an m×m spectral density Φ(z) = W (z)W (1/z)′. (Here ′ denotes
transpose and the white noise u is a zero-mean process such that E{u(t)u(s)′} = Iδts.)

The output process y is of course purely nondeterministic, and we assume that
its spectral density Φ is full rank. The representation (1.1) is a minimal realization
in the sense that the state process x has as few components as possible.

Obviously W is a rational spectral factor having all its poles strictly inside the
unit circle, implying that the same holds for the eigenvalues of A. Note that we are
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not confining ourselves to square spectral factors W , as the dimension p of the input
noise process could be larger than m. In particular, this implies that the state vector
may not be expressible in terms of the output process y(t), t ∈ Zalone but that it
depends on some unobserved exogenous noise also. Another consequence is that the
number of zeros of W may be fewer than the number of poles of W , even if D is full
rank.

Part of this paper is devoted to the following prototype interpolation problem,
which is of a somewhat different type than the interpolation problem considered in
[23, 24]. Suppose, that we observe the state x as well as the output y on some finite
or infinite interval except that there is a blackout of state information on some finite
subinterval (t0, t1). Then the problem is to reconstruct the lost state information in
the least squares sense, given the noisy output and the remaining states information.
This problem provides a framework for studying many important questions concerning
the structure of discrete-time linear stochastic systems.

This interpolation problem is preferably studied in the context of the geometric
theory of stochastic realization (see [17, 18, 14, 15] and references therein), in which
the properties of the state representation (1.1) are expressed in terms of the minimal
Markovian splitting subspace

X = {a′x(0) | a ∈ Rn}, (1.3)

where n := dimX is the number of components of x(0) so that x(0) forms a basis
in X. Due to stationarity, it is sufficient to study {x(t); t ∈ Z} at time t = 0. The
family of such X corresponding to a given y will be denoted X. It is known that X is
endowed with a certain partial ordering. This ordering, reviewed in §2, will play an
important role in this paper.

A basic tool in the analysis of the interpolation problem, and, more generally, the
structural properties of the family X of state space representations, is a pair (σ, σ̄) of
shift operators on X, which, given any X ∈ X produces a family {X(k) | k ∈ Z} of
totally ordered splitting subspaces. We show that these splitting subspaces are tied
together by Kalman filtering recursions in the sense that we can pass from one state
process x(k) to the next by (forward or backward) Kalman filtering, a remarkable fact
that enables us actually to compute these spaces.

These sequences of splitting subspaces provide a deeper insight into the structure
of the related discrete-time matrix Riccati difference equation. In fact, the corre-
sponding sequence of state covariance matrices constitutes a solution of this Riccati
equation. It is well known that the limits at −∞ and at ∞ are solutions of the
steady-state (algebraic) Riccati equation but our procedure also enables us to study
the transient behavior of these equations. This should be compared with the corre-
sponding continuous-time results in [13].

The interpolation estimate of x(t) on the interval (t0, t1) turns out to be a linear
combination of x(t0−t)(t) and x(t1−t)(t), the state processes of X(t0−t) and X(t1−t) re-
spectively, in a certain uniform choice of coordinates, enabling us to use these Kalman
recursions to determine the estimate. As t0 → −∞ and t1 → ∞, we obtain the cor-
responding prototype smoothing problem and the structure of the solution is similar
to those presented in [3] and in [18].

We show that the computational burden of determining the interpolation esti-
mates depends on the dimension of the internal subspace X ∩ H0 of the splitting
subspace, where H0 is the closure, in the inner product 〈ξ, η〉 := E{ξ, η}, of all ran-
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dom variables

{yi(t) | i = 1, 2, . . . ,m; t ∈Z}

of the output process. In fact, we show that, if dimX ∩ H0 = n − ν, we only need
to solve matrix Riccati equations of dimension at most ν × ν rather than n × n, to
compute the appropriate filter estimates. Sometimes, however, we need an initial
number of time steps to achieve this reduction, and to understand this better we need
to study the structure of the internal subspace X ∩H0.

In this paper we show among other things that the internal subspace has the
direct sum decomposition

X ∩H0 = X ∩ {y(−1), . . . , y(−n)} + Y ∗ + X ∩ {y(0), . . . , y(n− 1)},

where the subspace Y ∗ can be determined by algorithms akin to the one used to
compute the maximal output-nulling subspace in geometric control theory [31]. This
decomposition and the theoretical framework in which it is developed give a consider-
able amount of information about the structure of the discrete-time linear stochastic
system (1.1).

First, if the predictable subspace X ∩{y(−1), . . . , y(−n)} is nontrivial, there is an
a ∈ Rn such that

a′x(t) ∈ {y(t− 1), y(t− 2), . . . , y(t− n)},

and consequently the usual Kalman filtering problem of estimating x(t) given the
data y(t− 1), y(t− 2), . . . , y(0) reaches steady state in a finite number of steps in the
direction a. An analogous statement holds for the initial point smoothing problem
and the smoothable subspace X ∩ {y(0), . . . , y(n − 1)}. Nontrivial such directions a
are known as invariant directions and have been studied extensively in the literature
[5, 25, 26, 22], but the connections to the geometric theory of Markovian splitting
subspaces are presented here for the first time.

Secondly, the basic reason why discrete-time models (1.1) are more complicated,
and the study of them is more challenging, than in the continuous-time case is that
DD′ varies over X. If DD′ > 0 for all X ∈ X, the results and the analysis of the
(coercive) continuous-time case generally carry over verbatim. This is known as the
regular case. In the regular case there are no invariant directions and Y ∗ = X ∩ H0.
In this paper we give several geometric characterizations of regularity and investigate
the fine structure of the nonregular case.

Thirdly, the zero structure of the transfer function (1.2) plays an important role
in the analysis of the interpolation problem, and it can be studied in terms of output-
induced subspaces, i.e. subspaces of X ∩ H0 with certain invariance properties to be
specified below. The output-induced subspaces also provide a link between stochastic
realization theory and geometric control theory [31, 4] (see Remark 7.3). This program
was initiated in [18, 19] and was continued in [13] and [29], where, in particular, the
connections to geometric control theory are discussed in great detail in continuous
and discrete time, respectively. In this paper we introduce the concept of strictly
output-induced subspaces, a refinement needed to study the discrete-time case. In
particular, Y ∗ is the maximal strictly output-induced subspace, which plays the role
of X ∩H0 in the nonregular case. The zero structure also provides information about
the possible reduction of the Riccati recursions in the interpolation problem.

The paper is organized as follows. Section 2 is devoted to preliminaries on the
geometric theory of stochastic realization theory and to notations. In §3 we introduce
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the operators σ and σ̄, characterize regularity in terms of these, and establish the
properties of the family {X(k)|k ∈ Z}, and in §4 we introduce the interpolation
problem and relate it to the results in §3. Section 5 is about the zero structure of
{X(k)|k ∈ Z} in the regular case. In §6 we discuss output-induced subspaces, and in
§7 the role of invariant directions is investigated and the algorithm for determining
Y ∗ is given. Finally, in §8, the change in zero structure when applying σ and σ̄ is
discussed and the connections to the zero dynamics operators and the reduction of
the Riccati equations in the interpolation problem are explained.

2. Preliminaries and notations. Given a stationary purely nondeterministic
m-dimensional stochastic process {y(t); t ∈ Z}, any stochastic realization (1.1) of y
may be represented in a coordinate-free manner by a triplet (X,H,U) where X is
given by (1.3), underscoring the fact that two representations (1.1) are considered
identical if they only differ by the choice of coordinates in X. Here H is the Hilbert
space generated by the random variables

{ui(t) | i = 1, 2, . . . , p; t ∈Z},

with inner product

〈ξ, η〉 = E{ξ, η},

and the unitary operator U : H → H is the shift determined by

Uui(t) = ui(t + 1).

Then U acts as the shift for all processes in the system, i.e., Uyi(t) = yi(t + 1) and

Uxi(t) = xi(t + 1). We always assume that the matrix
[
B
D

]
has linearly independent

columns so that H is generated also by

{yi(t), xj(t) | i = 1, . . . ,m; j = 1, . . . , n; t ∈Z}.

The Hilbert space H so defined is called the ambient space of X.
For any subspace Y ⊂ H we shall write EY λ to denote the orthogonal projection

of λ ∈ H onto Y . Occasionally we shall misuse notations somewhat by writing EY z
when z is a random vector to denote the vector with components {EY zi}. By EY Z
we shall mean the closure of {EY ζ | ζ ∈ Z}. For any pair of subspaces Y and
Z we write Y + Z to denote direct sum (implying that Y ∩ Z = 0), Y ⊕ Z for
orthogonal direct sum, and Y ∨ Z for the vector sum in the general case, i.e., for
closure{η + ζ | η ∈ Y, ζ ∈ Z}. Moreover, we write Z⊥ to denote the orthogonal
complement H � Z of Z in the ambient space H. Finally, we write Z ⊥ Y | X to
denote that Z and Y are conditionally orthogonal given X, i.e., that

〈η − EXη, ζ − EXζ〉 = 0 for all η ∈ Y, ζ ∈ Z.

There are some important subspaces related to the given process y, which are
subspaces of H for each representation (X,H,U), and which are considered fixed in
this analysis. Define the past space H− as the subspace generated by the random
variables

{yi(t) | i = 1, 2, . . . ,m; t = −1,−2,−3, . . . },
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and the future space H+ as the subspace generated by

{yi(t) | i = 1, 2, . . . ,m; t = 0, 1, 2, . . . },

and let

H0 := H− ∨H+ ⊂ H (2.1)

be the space generated by all random variables in y. We shall also consider finite-
dimensional subspaces {y(j), . . . , y(k)} spanned by the components of the random
vectors depicted inside the curly brackets. We shall also use the shorthand notation
H−

t−1 and H+
t for U tH− and U tH+ respectively, the past and future spaces shifted

to time t. Then H−
−1 = H− and H+

0 = H+, which is consistent with the asymmetric
definition of past and future.

It is well-known that X is a minimal Markovian splitting subspace [17, 18] and
that it can be represented uniquely in terms of a pair (S, S̄) of subspaces such that

S ⊃ H− and S̄ ⊃ H+, (2.2)

U−1S ⊂ S and US̄ ⊂ S̄ (2.3)

and

H = S̄⊥ ⊕X ⊕ S⊥. (2.4)

Consequently, S and S̄ may be regarded as extensions of the past space H− and
future space H+ respectively, inheriting their invariance properties, and they intersect
perpendicularly so that

X = S ∩ S̄ = ESS̄ = ES̄S. (2.5)

Conversely, S and S̄ can be recovered from X in terms of{
S = H− ∨X−

S̄ = H+ ∨X+
(2.6)

where X− :=
∨0

t=−∞ U tX and X+ :=
∨∞

t=0 U tX. We shall write X ∼ (S, S̄) to
exhibit the one-one correspondence between X and (S, S̄).

Clearly, the ambient space has the representation

H = S ∨ S̄, (2.7)

and S ⊥ S̄ | X, which is equivalent to

ESλ = EXλ for λ ∈ S̄ (2.8)

and to

ES̄λ = EXλ for λ ∈ S. (2.9)

In particular, H− ⊥ H+ | X, i.e., X is a splitting subspace.
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We recall that X ∼ (S, S̄) is minimal both in the sense of subspace inclusion
and in the sense of dimension, two concepts of minimality which can be shown to be
equivalent, if and only if

S̄ = H+ ∨ S⊥ (2.10)

and

S = H− ∨ S̄⊥ (2.11)

[17, 18]. Condition (2.10) is equivalent to X ∩ (H+)⊥ = 0, i.e., to X being observable,
and (2.11) to X ∩ (H−)⊥ = 0, i.e., to X being constructible. Therefore, in view of
(2.5), we have

X = ESH+ = ES̄H− , (2.12)

whenever X in minimal.
The space S is actually identical to the subspace generated by the past of the

driving white noise u in (1.1), so u can be constructed from S by Wold decomposition
[14, 15]. Analogously, S̄ corresponds to another white noise process {ū(t); t ∈Z}, the
future space of which coincides with S̄, and, passed through an antistable filter with
transfer function

W̄ (z) = zC̄(I − zA′)−1B̄ + D̄ (2.13)

from the remote future, ū produces a backward realization of y, namely{
x̄(t− 1) = A′x̄(t) + B̄ū(t− 1)
y(t− 1) = C̄x̄(t) + D̄ū(t− 1)

(2.14)

Here x̄(0) is just another basis in X such that

x̄(t) = P−1x(t), (2.15)

where P is the state covariance

P = E{x(0)x(0)′}. (2.16)

The ambient space H will of course vary over the family X of minimal Markovian
splitting subspaces. If X ⊂ H0, then H = H0 and we say that X is internal. We
write X0 to denote the subclass of internal X ∈ X.

The family X is endowed with a natural partial ordering [18]. We say that X1 ≤
X2 if

‖EX1λ‖ ≤ ‖EX2λ‖ for all λ ∈ H+

or, equivalently,

‖EX2λ‖ ≤ ‖EX1λ‖ for all λ ∈ H−.

In this ordering the predictor space X− := EH−
H+ is the minimal element in X and

X+ := EH+
H− is the maximal element, i.e.,

X− ≤ X ≤ X+ for all X ∈ X. (2.17)
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Obviously, both X− and X+ are internal.
This ordering can be used to introduce a uniform choice of bases (or coordinates)

in all X ∈ X. In fact, let x+(0) be an arbitrary choice of basis in X+ and define

x(0) = EXx+(0) (2.18)

for all X ∈ X. This will insure the invariance of the matrices A and C over the class
of forward minimal realizations (1.1). In the same way, we define

x̄(0) = EX x̄−(0), (2.19)

where x̄−(0) = P−1
− x−(0), x−(0) being formed via (2.18) for X = X− and P− being

the corresponding state covariance (2.16). Then C̄ will be invariant as well over the
set of backward realizations (2.14).

Introducing coordinates in this uniform fashion, we can also parameterize the
family X in terms of the corresponding class P of state covariances (2.16). The usual
partial ordering of these positive definite matrices reflects the partial ordering of
splitting subspaces in X introduced above. Consequently, in this parameterization
(2.17) becomes

P− ≤ P ≤ P+ for all P ∈ P. (2.20)

(Cf. [8].) In the same way, we can parameterize X in terms of the family P̄ of
covariance matrices

P̄ := E{x̄(0)x̄(0)′} = P−1 (2.21)

of the backward realizations (2.14). Then (2.17) becomes

P̄+ ≤ P̄ ≤ P̄− for all P̄ ∈ P̄. (2.22)

3. An ordered family of splitting subspaces. A fact of central importance
in this paper is that each splitting subspace X ∈ X can be naturally imbedded in
a doubly infinite sequence of elements in X, which contains finitely many different
splitting subspaces if and only if X ∈ X0, i.e., X is internal. To see this, define
operators σ and σ̄ on X so that, for X ∼ (S, S̄),

σX = EH−∨(U−1S)X (3.1)

σ̄X = EH+∨(US̄)X (3.2)

Observe that the operator σ is the geometric counterpart of a one-step-ahead state
predictor given past output and state information. Our first result states, among other
things, that σX is itself a splitting subspace so that σX ∈ X. Remarkably, as we shall
see in §4, the states corresponding to {σkX} are actually generated by a Kalman
filter. Analogous statements hold for σ̄ with respect to the backward setting.
Theorem 3.1. Let X ∼ (S, S̄) be a minimal Markovian splitting subspace. Then

(i) σX and σ̄X are minimal Markovian splitting subspaces and

σX ≤ X ≤ σ̄X. (3.3)

Moreover, they have the same ambient spaces, namely S ∨ S̄.
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(ii) σX = X if and only if

UX ⊂ X ∨ {y(0)} (3.4)

and σ̄X = X if and only if

U−1X ⊂ X ∨ {y(−1)}. (3.5)

(iii) The fixed points of σ and σ̄ are internal minimal Markovian splitting sub-
spaces.

Proof. We prove all statements involving σ. Then those involving σ̄ follow by
symmetry replacing H−, S and U−1 by H+, S̄ and U . Since X ∼ (S, S̄) is a min-
imal Markovian splitting subspace, S is U−1–invariant and X = ESH+. Obviously
S(−1) := H− ∨ (U−1S) is also U−1–invariant and S(−1) ⊂ S. Therefore

σX = ES(−1)
ESH+ = ES(−1)

H+

is an observable Markovian splitting subspace. Since, in addition, S(−1) ⊂ S ⊥
H+ ∩ (H−)⊥, σX is minimal [18, Theorem 4.10]. Since

ES(−1)
ESλ = ES(−1)

λ for eachλ ∈ H+,

the splitting property (2.8) and the fact that ‖ES(−1)
ξ‖ ≤ ‖ξ‖ imply that σX ≤ X.

Since X and σX are finite-dimensional and hence proper [17, 18], their ambient spaces
are

∨∞
t=0 U tS and

∨∞
t=0 U tS(−1) which must coincide in view of the fact that

U−1S ⊂ S(−1) ⊂ S.

In the same way we show that X and σ̄X have the same ambient space. This proves
(i).

Next, we show that, if σX = X, then X ⊂ H0. Now, σX = X is equivalent
to X ⊂ H− ∨ U−1S, and hence to UX ⊂ S ∨ {y(0)}. However, S = X ⊕ S̄⊥ and
{y(0)} ⊂ H+ ⊂ S̄ ⊥ S̄⊥ so

UX ⊂ [X ∨ {y(0)}] ⊕ S̄⊥.

Since UX ⊥ US̄⊥ ⊃ S̄⊥ we have thus established that σX = X if and only

UX ⊂ X ∨ {y(0)}, (3.6)

which is the first part of (ii). A symmetric argument yields the second part.
Finally, to prove (iii), we note that (3.6) implies that

UEH⊥
0 X ⊂ EH⊥

0 X.

But the subspace EH⊥
0 X is finite-dimensional. Since U is a bilateral shift, it has

no eigenvalues [30] and hence cannot have a nontrivial finite-dimensional invariant
subspace. Consequently we must have X ⊂ H0.
Corollary 3.2. Let X ∈ X and X ∼ (S, S̄). Then

X(k) =

{
σ−kX for k = 0,−1,−2, . . .
σ̄kX for k = 0, 1, 2, . . .

(3.7)
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defines a sequence {X(k) | k ∈ Z} of elements in X which have the same ambient
space and which are totally ordered with X(0) = X. More precisely,

· · · ≤ X(−2) ≤ X(−1) ≤ X ≤ X(1) ≤ X(2) ≤ . . . .

Moreover, for each k ∈Z, X(k) ∼ (S(k), S̄(k)) where

S(k) = H− ∨ UkS, S̄(k) = H+ ∨
[
S(k)

]⊥
for k ≤ 0

and

S̄(k) = H+ ∨ UkS̄, S(k) = H− ∨
[
S̄(k)

]⊥
for k ≥ 0.

Here the orthogonal complement ⊥ is taken with respect to the common ambient space
S ∨ S̄.

Proof. This follows from the proof of Theorem 3.1, (2.10) and (2.11). In fact, it
follows by induction that σkX is also a minimal Markovian splitting subspace and
that

σkX = ES(−k)
X for k = 0, 1, 2, . . . ,

where S(−k) := H− ∨ U−kS. The statement about σ̄ follows by symmetry.
Next we show that the sequence {X(k) | k ∈Z} can be extended to include limits

X(−∞) and X(∞).
Theorem 3.3. The limits limk→−∞ ES(k)

ξ and limk→∞ ES̄(k)
ξ exist for all ξ ∈ X

and the spaces

X(−∞) := { lim
k→−∞

ES(k)
ξ | ξ ∈ X} (3.8)

X(∞) := { lim
k→∞

ES̄(k)
ξ | ξ ∈ X} (3.9)

are internal minimal Markovian splitting subspaces. Moreover, the sequences of split-
ting subspaces {X(−k) | k = 0, 1, 2, . . . } and {X(k) | k = 0, 1, 2, . . . } converge in a
finite number of steps if and only if X is internal. In that case the number of steps is
no greater than dimX.

Proof. Since {S(−k) | k = 0, 1, 2, . . . } is a nonincreasing sequence of subspaces,
i.e.,

S ⊃ S(−1) ⊃ S(−2) ⊃ S(−3) ⊃ . . . , (3.10)

it is well known [6, p. 24] that ξ−∞ = limk→∞ ES(−k)
ξ exists for all ξ ∈ X and that

ξ−∞ = ES(−∞)
ξ where S(−∞) =

⋂∞
k=0 S(−k). Thus X(−∞) is well-defined and, since

X = ESH+,

X(−∞) = ES(−∞)
H+.

Therefore, since S(−∞) is U∗–invariant, X(−∞) is an observable Markovian splitting
subspace. But S(−∞) ⊂ S ⊥ H+ ∩ (H−)⊥, and hence X(−∞) is minimal. It remains
to show that X(−∞) is internal. In view of Theorem 3.1, this would follow if X(−∞)

were a fixed point for σ. Next, we prove that this is in fact the case.
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Consequently we want to prove that σX(−∞) = X(−∞), which follows from

H− ∨ U−1S(−∞) = S(−∞). (3.11)

Let us prove (3.11). Since S(−∞) =
⋂∞

k=0 S(−k), U−1S(−k) ⊂ S(−k) and H− ⊂ S(−k),
it is trivial that

H− ∨ U−1S(−∞) ⊂ S(−∞).

It remains to prove the converse. To this end, note that

H− ∨ U−1S(−k) = {y(−1)} ∨ U−1S(−k).

This sum is in general not direct so we want to reformulate it into such a sum. There-
fore, observe that {y(−1)}∩U−1S(k) is nonincreasing in k and finite-dimensional, and
so there is a k0 such that

{y(−1)} ∩ U−1S(k) = {y(−1)} ∩ U−1S(k0) for k ≥ k0.

Let V be a complement of {y(−1)} ∩ U−1S(k0) in {y(−1)}. Then

H− ∨ U−1S(−k) = V + U−1S(−k) (3.12)

is a direct sum. Now, if ξ ∈ S(−∞) =
⋂∞

k=0(H
− ∨ U−1S(−k)), then

ξ = vk + ηk

with vk ∈ V and ηk ∈ U−1S(−k) is a unique representation for each k ≥ k0. Therefore,
since (3.12) is nonincreasing, vk = v ∈ V and ηk = η ∈

⋂∞
k=0 U−1S(−k) = U−1S(−∞)

for k ≥ k0. Hence

ξ = v + η ∈ V ∨ U−1S(−∞) ⊂ H− ∨ U−1S(−∞),

proving that X(−∞) is a fixed point.
Next, we assume that X is noninternal and prove that, in this case, all elements

of the sequences {X(−k) | k = 0, 1, 2, . . . } and {X(k) | k = 0, 1, 2, . . . } are noninternal
and that consequently these sequences cannot converge in a finite number of steps, the
limits being internal. To see this, take a ξ ∈ S such that ξ �= H0. Then U−kξ ∈ S(−k)

but U−kξ /∈ H0, showing that X(−k) is noninternal for k = 0, 1, 2, . . . . A symmetric
argument involving S̄ shows that X(k) is also noninternal for k = 0, 1, 2, . . . .

To prove the converse, first recall that, for any internal X ∼ (S, S̄),

X = (X ∩X−) ∨ (X ∩X+) (3.13)

and that S = H− ∨ X. Relation (3.13) is proved in the same way as Lemma 2.9 in
[13] and can also be found in [21]. Hence,

S = H− ∨ (X ∩X+). (3.14)

Since X = ESH+, the subspace X∩X+ thus uniquely determines the internal splitting
subspace X. In view of (3.14), (3.10) implies that the sequence {X(−k) ∩ X+ |
k = 0, 1, 2, . . . } of finite-dimensional subspaces is nonincreasing. Therefore, it must
converge in a finite number of steps which cannot be larger than dimX, implying via
(3.14) that the same holds for the sequence {X(−k) | k = 0, 1, 2, . . . }.
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We remark that this proof also shows that, if X is internal, the whole sequence
{X(k) | k ∈Z} cannot have more than dimX + 1 different elements.

As pointed out in the end of the proof of Theorem 3.3, an internal X is completely
characterized by its intersection X ∩X+ = X ∩H+ with the future via (3.14). In the
same way,

S̄ = H+ ∨ (X ∩X−), (3.15)

so X ∈ X0 is also characterized by its intersection X ∩X− = X ∩H− with the past.
In particular, we have the following characterizations of σX+ and σ̄X−.
Proposition 3.4. The intersection of σX+ with the past H− is described by

(σX+) ∩X− = (X+ ∩X−) ∨ ({y(−1)} ∩X−) (3.16)

and the intersection of σ̄X− with the future H+ is described by

(σ̄X−) ∩X+ = (X− ∩X+) ∨ ({y(0)} ∩X+). (3.17)

Proof. First observe that (3.16) is equivalent to

S̄
(−1)
+ = H+ ∨ ({y(−1)} ∩X−). (3.18)

In fact, that (3.18) implies (3.16) follows from the facts that

S̄
(−1)
+ ∩X− = (σX+) ∩X−

and [
H+ ∨ ({y(−1)} ∩X−)

]
∩X− = (X+ ∩X−) ∨ ({y(−1)} ∩X−),

while the opposite implication follows from the fact that

S̄
(−1)
+ = H+ ∨ [(σX+) ∩X−] .

Next let us prove (3.18). We have

S̄
(−1)
+ = H+ ∨ (S(−1)

+ )⊥ = H+ ∨ (H− ∨ U−1S+)⊥

= H+ ∨
[
(H−)⊥ ∩ (U−1H+) ∩ (U−1H−)⊥

]
= H+ ∨

[
(H−)⊥ ∩ (U−1H+)

]
= H+ ∨

[
(H−)⊥ ∩ (H+ ∨ {y(−1)})

]
where in the third step we have used the fact that S⊥

+ = H+ ∩ (H−)⊥. (See, for
example, [18, Example 4.4].) Now suppose that ξ ∈ (H−)⊥ ∩ (H+ ∨ {y(−1)}). Then
ξ = α+β where α ∈ H+ and β ∈ {y(−1)} ⊂ H−. But α+β ⊥ H−, and consequently

β = −EH−
α ∈ EH−

H+ = X−

so that β ∈ {y(−1)} ∩X−. Hence S̄
(−1)
+ ⊂ H+ ∨ ({y(−1)} ∩X−).

Conversely, if β ∈ {y(−1)} ∩ X−, there is an α ∈ H+ such that β = −EH−
α,

which implies that α + β ⊥ H− and that α + β ∈ (H+ ∨ {y(−1)}). Hence

{y(−1)} ∩X− ⊂ H+ ∨
[
(H−)⊥ ∩ (H+ ∨ {y(−1)})

]
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which concludes the proof of (3.16) and (3.18).
The proof of the dual statement is completely symmetric, using the fact that

S
(1)
− = H− ∨ ({y(0)} ∩X+) (3.19)

is equivalent to (3.17).
Since a minimal internal splitting subspace is completely characterized by its

intersection with X− via (3.15) and by its intersection with X+ via (3.14), Proposition
3.4 has the following corollary, which we shall need later.
Corollary 3.5. The splitting subspace X+ is a fixed point of the operator σ if and
only if X− ∩ {y(−1)} = 0. Likewise, X− is a fixed point of the operator σ̄ if and only
if X+ ∩ {y(0)} = 0.

The proof of Proposition 3.4 is easily modified to yield the following amplification,
describing the chains of splitting subspaces {X(k)

+ } and {X(k)
− }.

Proposition 3.6. For k = 1, 2, 3, . . . , we have

(σkX+) ∩X− = (X+ ∩X−) ∨ ({y(−1), . . . , y(−k)} ∩X−), (3.20)

or, equivalently,

S̄
(−k)
+ = H+ ∨ ({y(−1), . . . , y(−k)} ∩X−); (3.21)

and

(σ̄kX−) ∩X+ = (X− ∩X+) ∨ ({y(0), . . . , y(k − 1)} ∩X+), (3.22)

or, equivalently,

S
(k)
− = H− ∨ ({y(0), . . . , y(k − 1)} ∩X+). (3.23)

We shall now characterize the fixed points of the operators σ and σ̄ in terms of
the matrices D and D̄ in equations (1.1) and (2.14), respectively.
Corollary 3.7. Let X ∈ X and let D and D̄ be the corresponding matrices in the
models (1.1) and (2.14). Then σX = X if and only if kerD′ = 0 and σ̄X = X if
and only if ker D̄′ = 0.

Proof. Given (1.1) an elementary calculation yields

x(1) = Ax(0) + BD′(DD′)� [y(0) − Cx(0)] + B2u(0),

where B2 := B −BD′(DD′)�D and (DD′)� is a pseudoinverse of DD′. In particular,
this implies that

E{B2u(0)y(0)′} = BD′ −BD′(DD′)�DD′ = 0.

Since therefore the components of B2u(0) are orthogonal to both those of x(0) and
y(0), (3.4) is equivalent to B2 = 0, which in turn is equivalent to[

B
D

]
[I −D′(DD′)�D] = 0

But the columns of
[
B
D

]
are – according to our assumption – linearly independent so

(3.4) is equivalent to D′(DD′)�D = I, which holds if and only if DD′ is full rank, i.e.
if (DD′)−1 exists. Then the first statement follows from Theorem 3.1(ii). The second
statement follows by symmetry.
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Remark 3.8. In view of Corollary 3.7 we have another proof of the fact that any
fixed point of σ is internal. In fact, we established in the proof above that (3.4) is
equivalent to B2 = 0, which in the case when DD′ is full rank implies that the transfer
function (1.2) of (1.1) must be a square spectral factor and thus correspond to an
internal realization [16, Theorem 5.2].

Theorem 3.1 and Corollary 3.7 give characterizations of precisely which internal
X are fixed points of σ and σ̄. It follows trivially from the definitions (3.1) and (3.2)
that

σX− = X− and σ̄X+ = X+,

which, by Corollary 3.7, implies that D− and D̄+ are always full rank, a well-known
property of the innovations models. The following proposition together with Corollary
3.7 gives a more global picture on this question. (Also see [14].)
Proposition 3.9. Let X ∈ X, and let D and D̄ be the corresponding matrices in the
models (1.1) and (2.14). Then

dim kerD′ = dim(X ∩ {y(0)}) ≤ dim(X+ ∩ {y(0)}) = dim kerD′
+ (3.24)

and

dim ker D̄′ = dim(X ∩ {y(−1)}) ≤ dim(X− ∩ {y(−1)}) = dim ker D̄′
−. (3.25)

Proof. Let a ∈ kerD′. Then a′D = 0 so that a′y(0) ∈ X. Conversely, suppose
that a′y(0) ∈ X. Then, since a′Cx(0) ∈ X, we must have a′Du(0) ∈ X ⊥ {u(0)},
implying that a′D = 0. This proves the equalities in (3.24). To prove the inequality,
note that

X ∩X+ ∩ {y(0)} = X ∩H+ ∩ {y(0)} = X ∩ {y(0)}.

A symmetric argument yields (3.25).
Corollary 3.10. The splitting subspace X+ is a fixed point of the operator σ if and
only if X+ ∩ {y(0)} = 0. Likewise, X− is a fixed point of the operator σ̄ if and only
if X− ∩ {y(−1)} = 0.

Proof. In view of Corollary 3.7, this follows from the last equalities in (3.24) and
(3.25) respectively.

Comparing Corollaries 3.5 and 3.10, we can now see that the two conditions
X+ ∩ {y(0)} = 0 and X− ∩ {y(−1)} = 0 are actually equivalent. We shall refer to
the situation when they are satisfied as the regular case. From Proposition 3.9 and
Corollary 3.7 it readily follows that, in the regular case, and only in the regular case,
all X ∈ X0 are fixed points of both σ and σ̄. All this could also have been shown
without using Corollary 3.5 by instead invoking the fact, proven in [14, Theorem 10.2],
that D+ has full rank if and only if D̄− has.

The fact that σX+ = X+ and σ̄X− = X− are the critical conditions in this
analysis is also reflected in the ordering of covariances. In fact,

DD′ = Λ0 − CPC ′ ≥ Λ0 − CP+C ′ = D+D′
+

for all P ≤ P+ so that regularity is equivalent to

Λ0 − CPC ′ > 0 for all P ∈ P,
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and analogous in the backward setting. This is also equivalent to all minimal spectral
factors having zeros neither at zero nor at infinity.

We collect the regularity conditions in the following proposition. Some other
characterizations can be found in [22, Theorem 3.2].
Proposition 3.11. The following regularity conditions are equivalent.

(i) Λ0 − CP+C ′ > 0
(ii) Λ0 − C̄P̄−C̄ ′ > 0
(iii) X+ ∩ {y(0)} = 0
(iv) X− ∩ {y(−1)} = 0
(v) σX+ = X+

(vi) σ̄X− = X−
Clearly regularity is a property of the output process y. Therefore, we introduce

the following definition.
Definition 3.12. The process y is regular if the conditions of Proposition 3.11 are
satisfied.

The regularity conditions can also be stated in terms of the whole family of
minimal realizations.
Proposition 3.11

′
. Each of the following regularity conditions is equivalent to those

in Proposition 3.11.
(i)′ Λ0 − CPC ′ > 0 for all P ∈ P
(ii)′ Λ0 − CP̄C ′ > 0 for all P̄ ∈ P̄
(iii)′ X ∩ {y(0)} = 0 for all X ∈ X
(iv)′ X ∩ {y(−1)} = 0 for all X ∈ X
(v)′ σX = X for all X ∈ X0

(vi)′ σ̄X = X for all X ∈ X0

We shall next prove that the operators σ and σ̄ are invertible in the regular case
and that σ̄ = σ−1. In fact, as we shall see in Theorem 3.13 and Corollary 3.14
below, this property characterizes the regularity of the process y. In §6 we study the
nonregular case and give a more complete description of the subspaces σX, σ̄X for
any X ∈ X.

In view of Corollary 3.4, a straight-forward calculation shows that

σ̄σX+ = X+ and σσ̄X− = X−. (3.26)

A natural question is under what conditions these fixed point properties can be gen-
eralized to arbitrary X ∈ X.
Theorem 3.13. Let X ∈ X. Then

σσ̄X ≤ X ≤ σ̄σX, (3.27)

and

σ̄σX = X ⇐⇒ {y(0)} ∩X = {y(0)} ∩X+. (3.28)

Symmetrically,

σσ̄X = X ⇐⇒ {y(−1)} ∩X = {y(−1)} ∩X−. (3.29)

Proof. We prove (3.29) and the first inequality in (3.27). Then, the rest follows
by symmetry. First observe that, since X ∩H− = X ∩X− ⊂ X− and {y(−1)} ⊂ H−,
it always holds that

{y(−1)} ∩X ⊂ {y(−1)} ∩X−.
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In view of Corollary 3.2, σ̄X ∼ (S(1), S̄(1)) where

S̄(1) = H+ ∨ US̄

S(1) = H− ∨ (S̄(1))⊥ = H− ∨
[
(H+)⊥ ∩ (US̄⊥)

]
.

Then apply σ to σ̄X to obtain

H− ∨ U−1S(1) = H− ∨ U−1H− ∨
[
(U−1H+)⊥ ∩ S̄⊥]

.

Since U−1H− ⊂ H− and U−1H+ = {y(−1)} ∨H+, we have

H− ∨ U−1S(1) = H− ∨
[
S̄⊥ ∩ {y(−1)}⊥

]
⊂ S, (3.30)

the last of which is a consequence of the condition S = H− ∨ S̄⊥. hence σσ̄X ≤ X.
To find a condition under which σσ̄X = X, we need to characterize the converse in-
equality. To this end, we consider the converse inclusion of (3.30) and take orthogonal
complements in it to obtain

(H−)⊥ ∩ (S̄ ∨ {y(−1)}) ⊂ (H−)⊥ ∩ S̄. (3.31)

Now, let ξ be an element in the subspace on the left side of (3.31). Then, ξ = α + β,
where α ∈ S̄ and β ∈ {y(−1)} ⊂ H−, and ξ ⊥ H−. Consequently,

β = −EH−
α ∈ EH−

S̄ = X−,

and hence β ∈ {y(−1)} ∩ X−. So, if {y(−1)} ∩ X = {y(−1)} ∩ X− holds, β ∈
{y(−1)} ∩X ⊂ S̄. Therefore, since α ∈ S̄, we have β ∈ S̄, and hence (3.31) holds.

Conversely, suppose that (3.31) holds. Consider a β ∈ {y(−1)}∩X−. Then, there
is an α ∈ S̄ such that β = −EH−

α so that

α + β ∈ (H−)⊥ ∩ (S̄ ∨ {y(−1)}).

Using condition (3.31), we obtain α + β ∈ S̄. But α ∈ S̄, and hence β ∈ S̄. In other
words, (3.31) implies that {y(−1)} ∩X− ⊂ S̄, and consequently

{y(−1)} ∩X− = {y(−1)} ∩X− ∩ S̄ ⊂ {y(−1)} ∩X,

since X− ∩ S̄ = X− ∩ S ∩ S̄ = X− ∩X. But the converse inclusion has already been
proven above. Hence we have established (3.29).
Corollary 3.14. In the regular case the operators σ and σ̄ are invertible and

σ̄ = σ−1. (3.32)

Proof. This follows from regularity condition (iii) in Proposition 3.11 and (3.28)
in Theorem 3.13.

In particular Corollary 3.14 implies that relations (3.7) can be extended so that

X(j) = σj−kX(k) = σ̄k−jX(k) for all j, k ∈Z. (3.33)
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4. An interpolation problem. The ordered family of splitting subspaces in-
troduced in §3 is intimately connected to the following estimation problem. Given a
minimal stochastic system {

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(4.1)

of the type defined in §2 and integers t0, t1 such that t0 < t1, find, for each time t
between t0 and t1, the linear least squares estimate1

x̂(t | t0, t1) = E{x(t) | y(s), s ∈Z;x(τ), τ ∈Z\ {t0 + 1, . . . , t1 − 1}} (4.2)

of the state x(t) given the whole output process y and the whole state process x except
for times τ such that t0 < τ < t1.

This interpolation problem is a prototype of an estimation problem of the follow-
ing type. The state of a linear stochastic system is being observed both directly and
through a noisy channel. During an interval of time (t0, t1) the direct state informa-
tion is lost, and the problem is to estimate the lost states from the noisy observations
and the remaining state information. Letting t0 → −∞ and t1 → ∞, we obtain a
smoothing problem. In a practical situation one would of course expect the information
to be given on a finite interval containing [t0, t1] and not on all of Zas here. However,
as will be seen in Theorem 4.6 below, our solution will depend only on data from the
interval [t0, t1] and hence applies also to this situation, a remarkable fact that derives
from the Markov property and allows us to use Kalman filtering. Nevertheless, it is
convenient to formulate the problem in terms of infinite data.

In the more compact notation of §2, the interpolation estimate may be written

x̂(t | t0, t1) = EH0∨(Ut0X−)∨(Ut1X+)x(t), (4.3)

where X is the splitting subspace corresponding to (4.3), and X− and X+ are the
past and future of X as defined after (2.6) . Now, one of the main results of this
section is that the estimate (4.3) can be represented as a linear combination of the
two estimates

x(t0−t)(t) = EH−
t−1∨(Ut0X−)x(t), (4.4)

based on the past information, and

x(t1−t)(t) = EH+
t ∨(Ut1X+)x(t), (4.5)

based on the future information. As we demonstrate below, this is due to the fact
that x(t0−t) and x(t1−t) are state processes of minimal realizations of y, the splitting
subspaces of which bound X from below and from above in the ordering defined in
§2. In fact, x(t0−t)(t) = U tx(t0−t)(0) and x(t1−t)(t) = U tx(t1−t)(0), where

x(−k)(0) = EH−∨U−kX−
x(0) (4.6)

and

x(k)(0) = EH+∨UkX+
x(0) (4.7)

are defined for k = 0, 1, 2, . . . . Obviously x(0) = x by both formulas. This relates the
estimates (4.4) and (4.5) to the operators σ and σ̄ defined in §3.

1Clearly E{· | ·} denotes wide sense conditional expectation unless the system is assumed to be
Gaussian.
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Proposition 4.1. The family of subspaces {X(k) | k ∈ Z}, defined in terms of (4.6)
and (4.7) by

X(k) = {a′x(k)(0) | a ∈ Rn}, (4.8)

is a family of minimal Markovian splitting subspaces such that

X(−k) = σkX and X(k) = σ̄kX (4.9)

for k = 0, 1, 2, . . . , where X = {a′x(0) | a ∈ Rn} and σ, σ̄ are the operators defined by
(3.1) and (3.2). Moreover, for each k ∈ Z, x(k)(0) is the basis in X(k) in the same
uniform choice of coordinates as x(0).

Proof. Let X ∼ (S, S̄). Then S = H− ∨ X− and S̄ = H+ ∨ X+ and so, since
U−1S ⊂ S and US̄ ⊂ S̄,

x(k)(0) =

{
EH−∨UkSx(0) = ES(k)

x(0) for k ≤ 0

EH+∨UkS̄x(0) = ES̄(k)
x(0) for k ≥ 0

(4.10)

where S(k) and S̄(k) are defined as in Corollary 3.2. Then the first statement is an
immediate consequence of (4.10) and Corollary 3.2. Moreover, since S(k) ⊂ S for
k ≤ 0,

x(k)(0) = ES(k)
x(0) = ES(k)

ESx+(0) = ES(k)
x+(0)

for the appropriate choice of basis in X+. Similarly, for k ≥ 0, S̄(k) ⊂ S̄ so that

x̄(k)(0) = ES̄(k)
x̄(0) = ES̄(k)

ES̄ x̄−(0) = ES̄(k)
x̄−(0),

where x̄−(0) = P−1
− x−(0) and x−(0) = EX−x+(0). This proves the second statement.

Consequently, we have established that

x̂(0 | t0, t1) = ES(t0−t)∨S̄(t1−t)
x(0), (4.11)

where X(t0−t) ∼ (S(t0−t), S̄(t0−t)) and X(t1−t) ∼ (S(t1−t), S̄(t0−t)) are elements in X
such that

X(t0−t) ≤ X ≤ X(t1−t) (4.12)

and such that S(t0−t) ⊂ S and S̄(t1−t) ⊂ S̄. The following chain of lemmas deal with
this setup and leads to the first main result of this section.
Lemma 4.2. Let X ∼ (S, S̄), X1 ∼ (S1, S̄1) and X2 ∼ (S2, S̄2) be minimal Marko-
vian splitting subspaces such that S1 ⊂ S and S̄2 ⊂ S̄. Then X1 ≤ X ≤ X2 and

x1(0) = EX1x2(0) (4.13)

for any uniform choice x1(0), x2(0) of bases in X1 and X2.
Proof. Since S̄2 ⊂ S̄, we have

S̄2 ∩ (H−)⊥ ⊂ S̄ ∩ (H−)⊥.

Since X and X2 are minimal, this is equivalent to S⊥
2 ⊂ S⊥ [18, Corollary 4.5], or,

equivalently,

(S̄2 ∨ S2) � S2 ⊥ S. (4.14)
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In fact, S̄2 ∨ S2 is the ambient space of X2. But (4.14) is equivalent to S̄2 ⊥ S | S2

[18, Proposition 2.1] and also to

ESλ = ESES2λ for all λ ∈ S̄2. (4.15)

Apply EX1 to this. Since X1 ⊂ S1 ⊂ S and H+ ⊂ S̄2,we obtain in particular

EX1λ = EX1ES2λ for all λ ∈ H+.

But X2 is a splitting subspace, so ES2λ = EX2λ for all λ ∈ H+ and X+ ⊂ H+.
Consequently

EX1λ = EX1EX2λ for all λ ∈ X+.

Hence, for an arbitrary choice of basis x+(0) in X+, we have

EX1x+(0) = EX1EX2x+(0),

which is equivalent to (4.13) with x1(0) and x2(0) being the corresponding bases in
X1 and X2. The fact that X1 ≤ X follows immediately from ES1 = ES1ES and [18,
Lemma 6.7]. The relation X ≤ X2 follows analogously from S̄2 ⊂ S̄.
Lemma 4.3. Let X ∼ (S, S̄), X1 ∼ (S1, S̄1) and X2 ∼ (S2, S̄2) be minimal Marko-
vian splitting subspaces such that S1 ⊂ S and S̄2 ⊂ S̄. Then

ES1∨S̄2X ⊂ X1 ∨X2. (4.16)

Proof. Applying the projection operator ES to H+ ⊂ S̄2 ⊂ S̄ we obtain

ESH+ ⊂ ESS̄2 ⊂ ESS̄ = X.

But, since X is observable, X = ESH+, and therefore

X = ESS̄2. (4.17)

Moreover, since S1 ⊂ S, we have ES1H+ = ES1ESH+, and therefore, since X1 and
X are both observable,

X1 = ES1X, (4.18)

which together with (4.17) yields

X1 = ES1 S̄2. (4.19)

Now, it is well-known and easy to check that the orthogonal decomposition

A = (EAB) ⊕ (A ∩B⊥) (4.20)

holds for all pairs of subspaces A,B. Therefore, in view of (4.19), we have

S1 = X1 ⊕ (S1 ∩ S̄⊥
2 ). (4.21)

a completely symmetric argument yields

S̄2 = X2 ⊕ (S̄2 ∩ S⊥
1 ). (4.22)
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Therefore, since X1 ⊥ S⊥
1 and X2 ⊥ S̄⊥

2 , we have

S1 ∨ S̄2 = (S1 ∩ S̄⊥
2 ) ⊕ (X1 ∨X2) ⊕ (S̄2 ∩ S⊥

1 ). (4.23)

To prove (4.16), take any ξ ∈ X. Then

ξ − ES1ξ ⊥ S1 ⊃ S1 ∩ S̄⊥
2

and, by (4.18) and (4.21),

ES1ξ ∈ X1 ⊥ S1 ∩ S̄⊥
2 .

Consequently, ξ ⊥ S1∩ S̄⊥
2 . In the same way we show that ξ ⊥ S̄2∩S⊥

1 , and therefore
it follows from (4.23) that

ES1∨S̄2ξ ∈ X1 ∨X2,

establishing (4.16).
Lemma 4.4. Let X ∼ (S, S̄), X1 ∼ (S1, S̄1) and X2 ∼ (S2, S̄2) be minimal Marko-
vian splitting subspaces such that S1 ⊂ S and S̄2 ⊂ S̄, and let x(0), x1(0) and x2(0)
be a uniform choice of bases in X, X1 and X2 with covariances P , P1 and P2, respec-
tively. Then

EX1∨X2x(0) = (I − L)x1(0) + Lx2(0), (4.24)

for any n× n matrix solution L of the linear system of equations

P − P1 = L(P2 − P1). (4.25)

Proof. Setting x̂(0) := EX1∨X2x(0), we have

x̂(0) = Kx1(0) + Lx2(0) (4.26)

for some n× n matrices K and L. By construction, a′[x(0) − x̂(0)] ⊥ X1 ∨X2 for all
a ∈ Rn, which in particular implies that

(i) a′[x(0) − x̂(0)] ⊥ X1 for all a ∈ Rn

(ii) a′[x(0) − x̂(0)] ⊥ X2 for all a ∈ Rn.
Condition (i) together with (4.26) yields

E{x(0)x1(0)′} −KP1 − LE{x2(0)x1(0)′} = 0.

But, from Lemma 4.2 it follows that

E{x2(0)x1(0)′} = P1 and E{x(0)x1(0)′} = P1,

and therefore, since P1 is nonsingular,

K = I − L. (4.27)

In the same way, Condition (ii) implies that

P = KP1 + LP2, (4.28)

where again we have used Lemma 4.2 to see that

E{x(0)x2(0)′} = P and E{x1(0)x2(0)′} = P1.
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Then (4.24) and (4.25) follow from (4.26)–(4.28).
To show that any solution L of (4.25) yields the same estimate x̂(0), let L1 and

L2 be any two such solutions and let x̂1(0) and x̂2(0) be the corresponding estimates
(4.26). Then

(L1 − L2)(P2 − P1) = 0 (4.29)

and

x̂1(0) − x̂2(0) = (L1 − L2) [x2(0) − x1(0)] . (4.30)

Equating the covariances of each sides in (4.30), equation (4.29) implies that x̂1(0) =
x̂2(0), as claimed.

This immediately yields the following representation formula for the interpolation
estimate.
Theorem 4.5. Given the stochastic system (4.1) and t0, t1 ∈ Z such that t0 < t1,
the state estimate

x̂(t | t0, t1) = E{x(t) | y(s), s ∈Z;x(τ), τ ∈ (−∞, t0] ∨ [t1,∞)} (4.31)

is given by

x̂(t | t0, t1) = [I − L(t0 − t, t1 − t)]x(t0−t)(t) + L(t0 − t, t1 − t)x(t1−t)(t), (4.32)

where {x(k) | k ∈ Z} is the estimation sequence (4.6) – (4.7) corresponding to x with
covariances {P (k) | k ∈Z} and L(τ, s) is an arbitrary solution of

P − P (τ) = L(τ, s)
[
P (s) − P (τ)

]
. (4.33)

It remains to design a procedure for determining the estimation sequence {x(k) |
k ∈Z}. We shall address this question next. For this we need the following important
consequence of the Markov property.
Theorem 4.6. The state estimate (4.31) depends only on the data from the interval
[t0, t1] or, more precisely, on x(t0), x(t1) and y(t), t = t0, t0 +1, . . . , t1. In particular,

x(t0−t)(t) := E{x(t) | x(t0), y(t0), . . . , y(t− 1)} for t > t0 (4.34)

x(t1−t)(t) := E{x(t) | y(t), . . . , y(t1), x(t1)} for t ≤ t1 , (4.35)

where {x(k); k ∈Z} is the sequence of estimation processes defined by (4.6) and (4.7).
Proof. Let X ∼ (S, S̄) be the splitting subspace corresponding to the state process

x. In view of the definition (4.4), the first statement (4.34) is equivalent to

EH−
k−1(y)∨X−

ξ = η for all ξ ∈ UkX and k ≥ 0 (4.36)

where

η := E{y(0),...,y(k−1)}∨Xξ.

The original statement is obtained from (4.36) by merely applying the shift U t0 . To
prove (4.36) first note that, since S = H− ∨X−,

H−
k−1 ∨X− = {y(0), . . . , y(k − 1)} ∨ S

= [{y(0), . . . , y(k − 1)} ∨X] ⊕ [S �X] .
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To see this, note that {y(0), . . . , y(k−1)} ⊂ H+ ⊂ S̄ ⊥ S�X. Moreover, ξ ∈ UkX ⊂
UkS̄ ⊂ S̄, and hence ξ ⊥ S � X, which implies (4.36). A completely symmetric
argument yields (4.35).

Note that (4.34) and (4.35) are really forward and backward Kalman estimates
initiated at x(t0) and x(t1) respectively, enabling us to use Kalman filtering techniques
to generate them. Due to the fact that the initial conditions are states, these Kalman
filters will have some remarkable properties, especially in the regular case when the
reversibility condition (3.32) holds. This will be further discussed below.

The estimate (4.34) is generated by the recursion{
x(t0−t)(t) = Ax(t0−t+1)(t− 1) + K(t0−t)

[
y(t− 1) − Cx(t0−t+1)(t− 1)

]
x(0)(t0) = x(t0)

(4.37)

where

K(−k) = (C̄ ′ −AP (−k)C ′)(Λ0 − CP (−k)C ′)�.

Here � denotes pseudoinverse and the state covariance

P (−k) = E{x(−k)(0)x(−k)(0)′}

is given by the matrix Riccati equation{
P (−k−1) = AP (−k)A′ + (C̄ ′ −AP (−k)C ′)(Λ0 − CP (−k)C ′)�(C̄ ′ −AP (−k)C ′)′

P (0) = P

(4.38)
Note that this is the (invariant) formulation of the Kalman filter used in stochastic
realization theory [1, 8, 16].

In the same way, the estimate (4.35) can be generated by a backward Kalman
filter applied to the backward model{

x̄(t− 1) = A′x̄(t) + B̄ū(t− 1)
y(t− 1) = C̄x̄(t) + D̄ū(t− 1)

(4.39)

of X. Using a similar calculation as that in the forward direction, it is not hard to
see that the process x̄(k)(t) = [P (k)]−1x(k)(t) is the solution of the backward Kalman
filter{

x̄(t1−t)(t) = A′x̄(t1−t−1)(t + 1) + K̄(t1−t−1)
[
y(t) − C̄x̄(t1−t−1)(t)

]
x̄(0)(t1) = x(t1)

(4.40)

where

K̄(k) = (C ′ −A′P̄ (k)C̄ ′)(Λ0 − C̄P̄ (k)C̄ ′)�

and the backward covariance matrix P̄ (k) = (P (k))−1 is given by the matrix Riccati
equation{

P̄ (k+1) = A′P̄ (k)A + (C ′ −A′P̄ (k)C̄ ′)(Λ0 − C̄P̄ (k)C̄ ′)�(C ′ −A′P̄ (k)C̄ ′)′

P̄ (0) = P−1.
(4.41)
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Then the process x(t1−t) is given by

x(t1−t)(t) = (P̄ (t1−t))−1x̄(t1−t)(t),

defining x(k) for k ≥ 0.
At least in the regular case, the inverse (Λ0 − CP (−k)C ′)−1 will exist for all

k ∈Z(Proposition 3.11) and the pseudoinverses can be replaced with inverses. In the
regular case we also have the reversibility property σ̄ = σ−1 (Corollary 3.14) leading
to (3.33). This useful property can be expressed in terms of estimation processes as

E{x(t) | H[t,t1](y), x(t0−t1)(t1)} = E{x(t) | H[t0,t−1](y), x(t0)} = x(t0−t)(t), (4.42)

i.e., tying together forward and backward estimation. This relation illustrates an
important property of the Kalman recursions (4.37) and (4.40), namely that a con-
secutive application of forward and backward Kalman filtering brings us back through
the same sequence of state processes of totally ordered stochastic realizations. This
remarkable fact which is due to the invertibibility of the operator σ, can also be jus-
tified by elementary calculations expressing x(t0−t+1)(t− 1) in terms of x(t0−t)(t) and
y(t− 1) in (4.37), leading to a backward Kalman filter which is an extension of (4.40)
for negative k = t0 − t. Similarly (4.40) can be reversed to give a forward Kalman
filter identical to (4.37) for positive k = t1 − t.

Given a stochastic realization (4.1) of y and a corresponding splitting subspace
X ∼ (S, S̄), we have thus constructed a sequence of splitting subspaces {X(k); k ∈Z}
with bases

x(k)(0) =

{
EH−∨(UkS)x(0) k ≤ 0
P (k)P−1EH+∨(UkS̄)x(0) k ≥ 0

(4.43)

which are tied together by the Kalman filtering recursions (4.37) and (4.40). Each
such basis vector defines a vector process

x(k)(t) = Ukx(k)(0)

which is the state process of a (forward) realization{
x(k)(t + 1) = Ax(k)(t) + B(k)u(k)(t)
y(t) = Cx(k)(t) + D(k)u(k)(t)

(4.44)

connected with a spectral factor

W (k)(z) = C(zI −A)−1B(k) + D(k). (4.45)

It is a manifestation of the fact that (4.43) is a uniform choice of bases for the splitting
subspaces {X(k) | k ∈ Z} in the sense defined in §2, and also easy to check, that the
system matrices A and C remain constant for all k ∈ Zwhile B(k), D(k) and P (k)

will vary. We shall not need to determine {B(k)} and {D(k)}, but we note that this is
easy to do either from the Riccati equation (4.37) or by means of a ”fast algorithm”
formulated directly in terms of {B(k), D(k)} as reported in Badawi [2].
Remark 4.7. Let us point out that the Riccati equation (4.38) can be written in the
following form.

P (−k−1) = P (−k) −B(−k){I − (D(−k))′[D(−k)(D(−k))′]�D(−k)}(B(−k))′
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The last term is nothing else than the covariance matrix of that part of the noise
in the state space equation, i.e. of B(−k)u(−k), which cannot be explained using the
noise in the corresponding observation equation, i.e. via D(−k)u(−k).

Similar statement can be formulated for the Riccati equation (4.41).
In the next section we show that, in the regular case, all spectral factors {W (k) |

k ∈Z} have the same zeros, and in §8 we demonstrate that this is no longer the case
in the nonregular case.

5. The zero structure of the estimation sequence in the regular case.
Let us recall that λ ∈ C is an (invariant) zero of a spectral factor

W (z) = C(zI −A)−1B + D

if there are row vectors a and b so that

[
a b

] [
A− λI B

C D

]
= 0

or, in other words,

[
a b

] [
A B
C D

]
=

[
λa 0

]
. (5.1)

Here a is called a zero direction (of order one) of W . In the regular case, when
DD′ > 0, we may eliminate b in these equations, to obtain{

aΓ = λa

aB2 = 0

where

Γ := A−BD′(DD′)−1C

B2 := B −BD′(DD′)−1D

showing that a is perpendicular to the reachability space

〈Γ | B2〉 = Im(B2,ΓB2,Γ2B2, . . . ).

More generally, the zero directions (of any order) of W are defined using the Jordan
structure of Γ. Then it can be proved that the orthogonal complement 〈Γ | B2〉⊥ of
this space in Rn is spanned by the zero directions of W . Hence, if Π is a matrix whose
rows form a basis in 〈Γ | B2〉⊥, i.e.,

ker Π = 〈Γ | B2〉, (5.2)

then there is a matrix Λ such that {
ΠΓ = ΛΠ
ΠB2 = 0.

(5.3)

Conversely, if Π is a matrix satisfying (5.3), then

ker Π ⊃ 〈Γ | B2〉. (5.4)
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This fact can also be expressed in terms of a generalization of (5.1): Relation (5.4) is
equivalent to the existence of matrices Λ and M so that

[
Π −M

] [
A B
C D

]
=

[
ΛΠ 0

]
. (5.5)

The row vectors of the maximal solution Π satisfying (5.2) (in the sense of hav-
ing maximal rank) are the generalized zero directions, and the eigenvalues of the
corresponding matrix Λ are of course precisely the finite zeros of W .
Remark 5.1. The matrix equation (5.5) is the appropriate generalization of (5.6)
also in the nonregular case to be discussed in §§7 and 8; see [20]. Note, however,
that W may have zeros at infinity in the nonregular case, so the eigenvalues of Λ
corresponding to the maximal solution of (5.5) are here the finite zeros of W .

The following lemma enables us to characterize the zero directions in terms of a
connection between the state x and the output y.
Lemma 5.2. A matrix Π satisfies (5.3) if and only if there are matrices Λ and M
such that

Πx(t + 1) = ΛΠx(t) + My(t) (5.6)

We shall here give a proof which exhibits the connection between the Γ-matrix
and the zero directions, and which works in the present regular case. In §8, we shall
provide an alternative proof which also works in the nonregular case; in fact, even
when the Γ-matrix cannot be defined.

Proof. As mentioned in the proof of Corollary 3.7, the state equation can be
reformulated in the form

x(t + 1) = Γx(t) + BD′(DD′)−1y(t) + B2u(t), (5.7)

which, in the present regular case, is a unique decomposition of x(t + 1) in terms of
x(t), y(t) and B2u(t). Hence

Πx(t + 1) = ΠΓx(t) + ΠBD′(DD′)−1y(t) + ΠB2u(t)

so that if Π satisfies (5.3) then (5.6) is also satisfied with M = ΠBD′(DD′)−1. Con-
versely, if there are Λ and M so that (5.6) holds, then the uniqueness of decomposition
(5.7) implies that (5.3) holds.
Remark 5.3. Since Λ has no zero eigenvalues in the regular case, (5.6) may be
written

ΠPx̄(t− 1) = Λ−1ΠPx̄(t) − Λ−1My(t− 1),

showing that the zeros of W̄ (z−1) are precisely the eigenvalues of Λ−1. Consequently,
the forward and the backward models have the same zeros although the zero directions
are transformed by the covariance matrix P . In fact, introducing the matrix

Γ̄ = A′ − B̄D̄′(D̄D̄′)−1C̄,

the zeros of W̄ are connected to the reciprocals of the eigenvalues of Γ̄ in a manner
analogous to (5.3).
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Let us note the similarity between (5.6) and (3.4). In Theorem 3.1 we proved that
(3.4) implies that X ⊂ H0. In view of this, it is not surprising that (5.6) characterizes
the subspace X ∩H0. Recall that

X ∩H0 = (X ∩X−) ∨ (X ∩X+), (5.8)

where the sum is direct if and only if H− ∩H+ = 0, i.e., if and only if

P+ − P− > 0 (5.9)

[13, Lemma 2.9]. We note that X∩X− is connected to the stable zeros of W (including
the zeros on the unit circle) and that X ∩ X+ is connected to the antistable zeros
(again including the zeros on the unit circle). If (5.9) holds, these sets of zeros are
disjoint, there being no zeros on the unit circle.

As explained in [13], the subspaces ker(P − P−) and ker(P+ − P ) are isomorphic
to the subspaces X ∩ X− and X ∩ X+ respectively under the bijection a �→ a′x(0).
Based on these observations it can be proved that the zeros of W form a subset of
those of W− and W̄+. Let us collect the statements about the zeros of W in the
following theorem. Proofs can be found in [13, 19, 29].
Theorem 5.4. The subspace ker(P − P−) is invariant under Γ′

− and Γ′. Moreover,

Γ′|ker(P−P−) = Γ′
−|ker(P−P−). (5.10)

The stable zeros of W and W̄ (including the ones on the unit circle) are the eigenvalues
of (5.10), and the corresponding zero directions of W span the subspace ker(P −P−).
Similarly, ker(P̄ − P̄+) is invariant under Γ̄′

+ and Γ̄′. Moreover,

Γ̄′|ker(P̄−P̄+) = Γ̄′
+|ker(P̄−P̄+). (5.11)

The antistable zeros of W and W̄ (including the ones on the unit circle) are the
reciprocals of the eigenvalues of (5.11), and the corresponding zero directions of W̄
span the subspace ker(P̄ − P̄+).

Note that in the nonregular case, to be considered in §§7 and 8, the matrix Γ
may not be well-defined for all X. Nevertheless all other statements of the theorem
remain true.

To obtain coordinate-free versions of Γ′ and Γ̄′ we first observe that, in the regular
case and with Π maximal so that ker Π = 〈Γ | B2〉, (5.6) is equivalent to

U(X ∩H0) ⊂ X ∩H0 + {y(0)}, (5.12)

where the sum is direct because of the regularity condition (iii)′ of Proposition 3.11.
Similarly,

U−1(X ∩H0) ⊂ X ∩H0 + {y(−1)}. (5.13)

Now, following [13], let us introduce the zero dynamics operators in the regular case.
Definition 5.5 (regular case). Let the operators G : X ∩ H0 → X ∩ H0 and Ḡ :
X ∩H0 → X ∩H0 be defined as

G = πU |X∩H0 (5.14)

and

Ḡ = π̄U−1|X∩H0 , (5.15)

where π : (X ∩ H0) + {y(0)} → X ∩ H0 and π̄ : (X ∩ H0) + {y(−1)} → X ∩ H0 are
the oblique projectors projecting parallel to {y(0)} and {y(−1)} respectively.
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In view of Definition 5.5, (5.10) and (5.11) may be written

G|X∩X− = G−|X∩X−

and

Ḡ|X∩X+ = Ḡ+|X∩X+

respectively. Moreover, X ∩X− is invariant under both G and G− and X ∩X+ under
both Ḡ and Ḡ+. In the nonregular case, the operators G and Ḡ may not be defined
on all of X ∩H0 but only on a subset of it, a circumstance manifested in the fact that
Γ and Γ̄ cannot be defined as above. However, G− and Ḡ+ are always defined as in
the regular case. This will be further discussed in §7.

Let us now return to the estimation sequence {x(k) | k ∈ Z}. The following
theorem insures that no zeros are being lost when we move along the sequence {W (k)}
from k = 0 through negative k.
Theorem 5.6. If Π is a matrix of zero directions of W (k), it is also a matrix of zero
directions for W (k−j) for j = 0, 1, 2, . . . . Moreover, the zeros are preserved.

Proof. Since Π is a zero direction of W (k), there is a matrix Λ such that

ΠΓ(k) = ΛΠ,

and therefore, in view of (5.7),

Πx(k)(t) − ΛΠx(k)(t− 1) − ΠK(k)y(t− 1) = 0, (5.16)

because B(k)(D(k))′[D(k)(D(k))′]−1 = K(k). Consequently, by (4.37),

Πx(k−1)(t + 1) − ΛΠx(k−1)(t) − ΠK(k−1)y(t)

= ΠΓ(k)x(k)(t) − ΛΠΓ(k)x(k)(t− 1) − ΛΠK(k)y(t− 1)

= Λ
[
Πx(k)(t) − ΛK(k)(t− 1) − ΠK(k)y(t− 1)

]
which is zero by (5.16). This together with (5.16) establishes that not only the zero
directions but also that the zeros are preserved, since the same matrix Λ can be used
in each step.

By symmetry we also have the following theorem.
Theorem 5.6

′
. If Π̄ is a matrix of zero directions of W (k), it is also a matrix of

zero directions for W̄ (k+j) for j = 0, 1, 2, . . . . Moreover, the zeros are preserved.
We observe that W (k) and W̄ (k) have the same zeros in view of Remark 5.3.

Theorems 5.6 and 5.6′ show that there is no loss of zeros when we apply a forward or
backward Kalman filter step in (4.37) or (4.40). By the invertibility condition 3.32,
all the elements in the sequence {W (k) | k ∈Z} must then have the same zeros. It is
also easy to see that the zero directions are being preserved.

These results illustrate the fact that, in the regular case, all internal minimal
splitting subspaces are fixed points of the operators σ and σ̄. In fact, if X is internal,
then so are σX and σ̄X by construction. Hence they have square spectral factors [16],
which, by Theorems 5.6 and 5.6

′
, have the same zeros. Hence X, σX and σ̄X must

be the same. This analysis and the fact that in general there may be X ∈ X0 which
are not fixed points, show that, in the nonregular case, the zeros may change as you
move along the estimation sequence. The precise manner in which this happens is the
topic of §8.
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Remark 5.7. Note that Theorem 5.6 and 5.6
′

imply that in the regular case the
stable and unstable zero directions, i.e. the subspaces ker(P (−k)−P−), ker(P+−P (−k))
and ker(P̄ (k)− P̄+), ker(P̄+− P̄ (k)), remain unchanged as k tends to ∞ in the forward
and backward Riccati equations (4.38) and (4.41). In other words, the solutions of
the Riccati recursions remain constant in the zero directions, providing a possibility
of reducing the size of the Riccati equation. In fact, choosing coordinates so that the
last basis vectors span

ker(P (−k) − P−) ∨ ker(P+ − P (−k)) ⊂ Rn,

the matrices {P (−k)} in the solution of the Riccati recursion (4.38) take the form

P (−k) =
[
P

(−k)
11 P12

P ′
12 P22

]
, (5.17)

where only the upper left matrix block varies with k. Then, substituting (5.17)
into (4.38) we obtain a reduced-order Riccati equation of dimension ν × ν where
ν = n − dim(X ∩ H0). A completely symmetric argument can be applied to the
backward Riccati recursion (4.41).

6. Output-induced subspaces. We have just seen that the matrices Γ and Γ̄
play an important role in the analysis of the estimation sequence x(k). We have also
pointed out that they are only easily defined in the regular case. Therefore, in this
section we shall only consider their coordinate-free versions, G and Ḡ, which have
natural definitions in the general case.

In the regular case, considered in §5, the zero dynamics operators G and Ḡ, of a
splitting subspace X ∈ X, were defined on all of its internal subspace X ∩ H0. This
is possible due to the direct sum decompositions (5.12) and (5.13). In the nonregular
case these decompositions will fail to exist as we demonstrate in §7. Therefore, we
must shrink the domains of the zero dynamics operators.

As demonstrated in [29], G can always be defined on X ∩ X−, yielding only the
stable zeros (including those on the unit circle), and Ḡ can always be defined on
X ∩ X+, producing only the antistable zeros (including those on the unit circle and
those at infinity). In fact, this can also be seen from the following representations.
(Also see [29, Lemma 5.1].)
Lemma 6.1. Let X ∈ X. Then

U−1(X ∩X+) ⊂ (X ∩X+) + {y(−1)} (6.1)

and

U(X ∩X−) ⊂ (X ∩X−) + {y(0)}. (6.2)

Proof. We prove (6.2). Then (6.1) follows by symmetry. Obviously,

U(X ∩X−) ⊂ UX− ⊂ H− ∨ {y(0)}.

Also X ∩X− ⊂ S̄ ∩ S̄− which is U–invariant. Therefore,

U(X ∩X−) ⊂ (H− ∨ {y(0)}) ∨ (S̄ ∩ S̄−).

But {y(0)} ⊂ H+ ⊂ S̄ ∩ S̄− and H− ∩ S̄ ∩ S̄− = X ∩X−, implying (6.2).
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In this paper, however, we would like to define G and Ḡ on the largest possible
spaces. We show that this can be done in such a way that the eigenvalues of G are
precisely the finite zeros of X, and the eigenvalues of Ḡ are the reciprocals of the
nonzero zeros of X (using the definition 1/∞ = 0). Moreover, we want to know on
which subspaces G and Ḡ are invertible so that they can be directly related to each
other. This leads to the topic of output-induced subspaces, introduced in [13] in the in
the continuous time setting. We now define it in the discrete-time case. Since, in the
nonregular discrete-time case, the covariance matrix of the observation noise of the
model (4.1) may be singular, the definition used in the continuous time case must be
somewhat modified.
Definition 6.2. Let X be a Markovian splitting subspace. A subspace Y ⊂ X is
called output-induced if

(i) Y ⊂ H0

(ii) UY ⊂ Y ∨ {y(0), y(1), . . . , y(k)} for some k ≥ 0
(iii) U−1Y ⊂ Y ∨ {y(−1), y(−2), . . . , y(−k − 1)} for some k ≥ 0.

We say that Y is strictly output-induced if it is output-induced and k can be chosen
to be zero in (ii) and (iii).

The following proposition is an immediate consequence of the definition and the
finite dimension of X.
Proposition 6.3. The sum of two output-induced (strictly output-induced) subspaces
is also output-induced (strictly output-induced). There exist a maximal output-induced
(strictly output-induced) subspace in the sense of subspace inclusion.

Since any output-induced subspace Y satisfies

Y ⊂ X ∩H0 = (X ∩X−) ∨ (X ∩X+),

let us first consider the subspaces X ∩ X− and X ∩ X+. These, of course, trivially
satisfy condition (i), and, by Lemma 6.1, they also satisfy one of the conditions (ii) and
(iii) with k = 0, as required in the definition of being strictly output-induced. Next,
we show that these subspaces also satisfy the remaining condition so that they are
output-induced, and we investigate under what conditions they are actually strictly
output-induced.
Theorem 6.4. Let X ∈ X. Then the subspaces X ∩ X+ and X ∩ X− are output-
induced. Moreover, X ∩X+ is strictly output-induced if and only if

(σX) ∩X+ = X ∩X+, (6.3)

and X ∩X− is strictly output-induced if and only if

(σ̄X) ∩X− = X ∩X−. (6.4)

Proof. First we prove that X ∩ X+ is output-induced. To this end, in view of
(6.1), it is enough to check that there exists a k ≤ dimX such that

U(X ∩X+) ⊂ (X ∩X+) ∨ {y(0), y(1), . . . , y(k)}. (6.5)

Since

X ∩X+ = X0− ∩X+

where X0− is the tightest lower internal bound [18, 13], we may without loss of
generality assume that X is internal. By Theorem 3.3, there is a k ≤ dimX such that

σkX = σk+1X.
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Consequently,

U−kS ⊂ S(−k) ⊂ S(−k−1) = H− ∨ (U−(k+1)S),

from which we have

US ⊂ S ∨ Uk+1H−.

Taking intersection with H+ in both sides and noting that U(S ∩H+) ⊂ (US)∩H+,
we have

U(S ∩H+) ⊂ [S ∨ {y(0), . . . , y(k)}] ∩H+

= U(S ∩H+) ∨ {y(0), . . . , y(k)}.

Then (6.5) follows from the fact that X ∩X+ = S ∩H+. In the same way, we prove
that there is an 3 ≤ dimX such that

U−1(X ∩X−) ⊂ (X ∩X−) ∨ {y(−1), y(−2), . . . , y(−3− 1)}, (6.6)

implying together with (6.2) that X ∩X− is output-induced.
To characterize the strictly output-induced property we prove that

(σX) ∩X+ = (X ∩X+) ∩
[
{y(−1)} ∨ U−1(X ∩X+)

]
(6.7)

and that

(σ̄X) ∩X− = (X ∩X−) ∩ [{y(0)} ∨ U(X ∩X−)] . (6.8)

To this end, let X ∼ (S, S̄), and note that S(−1) := H− ∨ U−1S ⊂ S. Hence

(σX) ∩X+ = S(−1) ∩X+ = S(−1) ∩ S ∩X+

= S(−1) ∩X ∩X+ =
[
{y(−1)} ∨ U−1S

]
∩X ∩X+

But, since U−1S = U−1X ⊕ U−1S̄⊥ and {y(−1)} ⊂ U−1S̄ ⊥ U−1S̄⊥,

(σX) ∩X+ =
[
({y(−1)} ∨ U−1X) ⊕ U−1S̄⊥]

∩X ∩X+

= ({y(−1)} ∨ U−1X) ∩X ∩X+,

because X+ ⊂ S̄ ⊂ U−1S̄ ⊥ U−1S̄⊥. Moreover, if ξ = ({y(−1)} ∨U−1X) ∩X+, then
ξ = α + β where α ∈ {y(−1)} ⊂ U−1H+ and β ∈ U−1H+. Since ξ ∈ H+ ⊂ U−1X,
we must have β ∈ U−1H+ so that β ∈ U−1(X ∩ H+) = U−1(X ∩ X+). Therefore
(6.7) follows. A symmetric argument yields (6.8).

Now, (6.7) and (6.8) immediately imply that

(σX) ∩X+ = X ∩X+ ⇐⇒ U(X ∩X+) ⊂ (X ∩X+) ∨ {y(0)} (6.9)

and

(σ̄X) ∩X− = X ∩X− ⇐⇒ U−1(X ∩X−) ⊂ (X ∩X−) ∨ {y(−1)} (6.10)

concluding the proof.
Corollary 6.5. The subspace X ∩H0 is the maximal output-induced subspace of X ∈
X.
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Proof. This follows immediately from Theorem 6.4 and (5.8).
Corollary 6.6. The subspace X− ∩X+ is always strictly output-induced.

Proof. This follows either from Lemma 6.1 or from (6.3) and the fact that σX− =
X−.

We are now in a position to connect the concept strictly output-induced subspaces
to fixed points of σ and σ̄.
Corollary 6.7. An X ∈ X0 is a fixed point of σ if and only if X ∩ X+ is strictly
output-induced. Likewise, X ∈ X0 is a fixed point of σ̄ if and only if X∩X− is strictly
output-induced.

Proof. In the end of the proof of Theorem 3.3 we pointed out that the internal
Markovian splitting subspaces are uniquely determined by X ∩X+. Observe that, if
X ∈ X0, then σX ∈ X0. Consequently, Theorem 6.4 implies that σX = X if and
only if X ∩X+ is strictly output-induced. The rest follows by a symmetric argument.

As we shall see in §8 these conditions can be formulated in terms of the stable
and unstable zeros of the spectral factor (1.2) corresponding to the splitting subspace
X.

The notion of strictly output induced subspaces enables us in some cases to char-
acterize the limits X(−∞) and X(∞) of the sequence {X(k) | k ∈Z} defined in §3. To
this end, let us recall [18] that the tightest internal bounds, X0− and X0+, are the
closest internal X such that

X0− ≤ X ≤ X0+.

More precisely,

X0− := sup{X0 ∈ X0 | X0 ≤ X}

and

X0+ := inf{X0 ∈ X0 | X ≤ X0}.

Corollary 6.8. Let X ∈ X and let X0− and X0+ be its tightest internal bounds.
Then

X(−∞) = X0−

if and only if X ∩X+ is strictly output-induced, and

X(∞) = X0+

if and only if X ∩X− is strictly output-induced.
Proof. Let us first recall that

S0− = S ∩H0 = H− ∨ (X ∩X+).

(Cf. [18, Lemma 6.11] and [13].) Therefore Theorem 6.4 implies that X0− is the lower
tightest internal bound of σX also if and only if X ∩ X+ is strictly output-induced.
By induction, we then have that σ−kX ≥ X0− for k = 0, 1, 2, . . . and hence that
X(−∞) ≥ X0−. But X(−∞) ∈ X0 (Theorem 3.3), and consequently X(−∞) = X0−
follows from the tightness of the bound. The proof for the upper bound is analogous.
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Another consequence of Theorem 6.4 is that the splitting subspaces in the se-
quence {X(k) | k ∈ Z} have the same tightest local frame [18], if and only if the
internal subspace X ∩ H0 is strictly output-induced. As we shall see in the next
section, this is only true in the regular case.
Corollary 6.9. A necessary and sufficient condition for all splitting subspaces in the
family {X(k) | k ∈ Z} to have the same tightest internal bounds is that X ∩ H0 is
strictly output-induced.

Proof. This follows immediately from Corollary 6.8, Proposition 6.3 and (5.8).

Theorem 6.4 also yields the following alternative characterizations of regularity.
Corollary 6.10. The following conditions are equivalent to the regularity conditions
of Propositions 3.11 and 3.11

′
.

(vii) X+ is strictly output-induced
(viii) X− is strictly output-induced
(vii)′ X ∩X+ is strictly output-induced for all X ∈ X0

(viii)′ X ∩X− is strictly output-induced for all X ∈ X0

(ix)′ All X ∈ X0 are strictly output-induced
(x)′ The internal subspace X ∩H0 is strictly output-induced for all X ∈ X
Proof. By Corollary 6.7, (vii)′ and (viii)′ are equivalent to conditions (v)′ and

(vi)′ of Proposition 3.11′, and (vii) and (viii) are equivalent to conditions (v) and (vi)
of Proposition 3.11. In view of Proposition 6.3, (ix)′ follows from (vii)′, (viii)′ and
(3.13), and (x)′ follows from (vii)′, (viii)′ and (5.8). Clearly either (vii) or (viii) imply
(ix)′ and (x)′.

7. Invariant directions and the maximal strictly output-induced sub-
space. Proposition 6.3 states that, to each X ∈ X, there exists a maximal strictly
output-induced subspace Y ∗. In this section we construct Y ∗ explicitly. Let us recall
that Y ⊂ X ∩H0 is said to be strictly output-induced if

UY ⊂ Y ∨ {y(0)} (7.1)

and

U−1Y ⊂ Y ∨ {y(−1)}. (7.2)

To determine Y ∗, we first construct the subspaces Y, Ȳ ⊂ X ∩H0 satisfying (7.1) and
(7.2) respectively which are maximal in the sense of subspace inclusion and show that
Y ∗ is precisely the intersection of these.

To this end, we design a procedure which is akin to the one used in geometric
control theory [31] to construct the maximal output-nulling subspace. More precisely,
define two sequences of subspaces {Y0, Y1, Y2, . . . } and {Ȳ0, Ȳ1, Ȳ2, . . . } by

Yk = (σkX) ∩X ∩H0 (7.3)

and

Ȳk = (σ̄kX) ∩X ∩H0 (7.4)

and show that they converge monotonically to Y and Ȳ respectively, in finitely many
steps. As will be seen below these are precisely the largest spaces on which the zero
dynamics operators may be defined. Obviously, Y0 = Ȳ0 = X ∩ H0. We now give
alternative characterizations of these sequences and obtain iterative solutions of (7.1)
and (7.2) respectively.
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Lemma 7.1. For each k = 1, 2, 3, . . . the subspaces (7.3) and (7.4) can be written

Yk = {ξ ∈ X ∩H0 | Ukξ ∈ (X ∩H0) ∨ {y(0), . . . , y(k − 1)}} (7.5)

and

Ȳk = {ξ ∈ X ∩H0 | U−kξ ∈ (X ∩H0) ∨ {y(−1), . . . , y(−k)}} (7.6)

respectively. Moreover, the sequences {Yk} and {Ȳk} satisfy the recursions

Yk+1 = {ξ ∈ Yk | Uξ ∈ Yk ∨ {y(0)}} (7.7)

and

Ȳk+1 = {ξ ∈ Ȳk | U−1ξ ∈ Ȳk ∨ {y(−1)}} (7.8)

for k = 1, 2, 3, . . . .
Proof. We prove only (7.5) and (7.7), (7.6) and (7.8) following by a symmetric

argument.
To prove (7.5), observe that

σkX = E(U−kS)∨H−
X ⊂ U−kX ∨ {y(−1), . . . , y(−k)}, (7.9)

in view of the decomposition

(U−kS) ∨H− =
[
(U−kX) ∨ {y(−1), . . . , y(−k)}

]
⊕ U−kS̄⊥

and the fact that U−kS̄⊥ ⊂ S̄⊥ ⊥ X.
Consequently, if ξ ∈ Yk, then ξ ∈ X ∩H0 and

Ukξ ∈ [X ∨ {y(0), . . . , y(k − 1)}] ∩H0 = (X ∩H0) ∨ {y(0), . . . , y(k − 1)}.

Conversely, if ξ ∈ X ∩H0 and Ukξ ∈ (X ∩H0) ∨ {y(0), . . . , y(k − 1)}, then

E(U−kS)∨H−
ξ = E(U−kX)∨{y(−1),...,y(−k)}ξ = ξ,

proving that ξ ∈ σkX so that ξ ∈ Yk.
Concerning the proof of (7.7), first consider a ξ ∈ Yk such that Uξ ∈ Yk ∨{y(0)}.

By (7.5) we have

Uk+1ξ = Uk(Uξ) ∈ UkYk ∨ {y(k)}
⊂ (X ∩H0) ∨ {y(0), . . . , y(k)},

proving that ξ ∈ Yk+1, as can be seen from (7.5).
Conversely, if ξ ∈ Yk+1, then (7.5) implies that Uk+1ξ has the representation

Uk+1ξ = ζ + λ0 + λ1

where ζ ∈ X ∩H0, λ0 ∈ {y(0), . . . , y(k− 1)} and λ1 ∈ {y(k)}. We want to prove that
Uξ − U−kλ1 ∈ Yk, which implies (7.7). To this end, we note that

Uξ − U−kλ1 = U−kζ + U−kλ0.
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The left member of this belongs to S̄, while the right member belongs to S, implying
that they are in X and hence in X ∩H0. Moreover, in view of (7.5), the identity

Uk(Uξ − U−kλ1) = ζ + λ0

implies that Uξ − U−kλ1 ∈ Yk concluding the proof of (7.7).
An immediate consequence of Lemma 7.1 is that

X ∩H0 = Y0 ⊃ Y1 ⊃ Y2 ⊃ . . . (7.10)

and that

UYk+1 ⊂ Yk ∨ {y(0)}. (7.11)

Dually, we also have

X ∩H0 = Ȳ0 ⊃ Ȳ1 ⊃ Ȳ2 ⊃ . . . (7.12)

and

U−1Ȳk+1 ⊂ Ȳk ∨ {y(−1)}. (7.13)

Since X ∩ H0 is finite-dimensional, the chain of inclusions (7.10) implies that there
is a k ≤ dim(X ∩ H0) such that Yk+1 = Yk. Then (7.7) implies that Y� = Yk for all
3 ≥ k. Since dim(X∩H0) ≤ dimX := n, we may refer to this subspace as Yn. Clearly

UYn ⊂ Yn ∨ {y(0)}

Similarly, Ȳn is the limit of {Ȳk} and satisfies

U−1Ȳn ⊂ Ȳn ∨ {y(−1)}.

Theorem 7.2. The subspace Yn is the maximal subspace of X ∩H0 with the property

UY ⊂ Y ∨ {y(0)} (7.14)

and Ȳn is the maximal subspace in X ∩H0 such that

U−1Ȳ ⊂ Ȳ ∨ {y(−1)}. (7.15)

In the regular case, Yn = Ȳn = X ∩H0.
Proof. We have already proved that Yn and Ȳn satisfy (7.14)) and (7.15) respec-

tively. To prove maximality, consider a Y ⊂ X ∩H0 = Y0 satisfying (7.14). We prove
by induction that Y ⊂ Yk for k = 0, 1, 2, . . . . To this end, assume that Y ⊂ Yi and
show that Y ⊂ Yi+1. If ξ ∈ Y , then

Uξ ∈ Y ∨ {y(0)} ⊂ Yi ∨ {y(0)}.

Consequently, in view of (7.7), ξ ∈ Yi+1, as claimed. The maximality of Ȳn is proved
in the same way. The last statement follows from (5.12) and (5.13).
Remark 7.3. Applying the orthogonal projection operator EX to (7.14), we obtain

FY ⊂ Y ∨ EX{y(0)}, (7.16)
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where F is the compressed shift operator F := EXU |X . From the systems equations
(1.1) one can infer that F has the matrix representations A′ in the corresponding
basis and that EX{y(0)} has the matrix representations C ′. Therefore, analogously
to the continuous-time case [13], (7.16) is a stochastic version of (A′, C ′)-invariance
in geometric control theory [31, 4]. This connection to geometric control theory is
elaborated upon in [29]. In this context, we note that a similar application of EX to
(7.11) yields

FYk+1 ⊂ Yk ∨ EX{y(0)},

which should be compared to the algorithm in geometric control theory to determine
the maximal output-nulling subspace V∗.

Now, referring back to the regular case and (5.12) and (5.13), we recall that, in
this case, X∩H0 satisfies (7.14) and (7.15) with direct sum. This enabled us to define
the operators G and Ḡ. In the general case X ∩ H0 ∩ {y(0)} and X ∩ H0 ∩ {y(−1)}
may be nontrivial subspaces. Nevertheless, as we will prove below, Yn and Ȳn satisfy
(7.14) and (7.15) with direct sum decomposition in the right member. This requires
a deeper analysis of so called invariant directions of a system representation (1.1) of
X [5, 25, 26, 22].

More precisely, there are two kinds of invariant directions. An a ∈ Rn is a
predictable direction if there is a positive integer k such that

a′x(0) ∈ {y(−1), y(−2), . . . , y(−k)}. (7.17)

The smallest k with this property is called the order of the invariant direction a. If a
satisfies (7.17), the Kalman filter estimate x̂ takes the form

a′x̂(t) = a′x(t) =
r∑

i=1

c′iy(t− i)

in that direction so that the estimation error becomes zero. This manifests itself in
that the filtering Riccati equation can be reduced in dimension after a finite number of
steps. A similar reduction occurs in the fast filtering algorithm [11]; see in particular
[12]. It can be shown [22] that a is a predictable direction if and only if, for some
k ≥ 0,

a ∈ ker(Γ′
−)k ∩ ker(P − P−). (7.18)

Dually, a ∈ Rn is a smoothable direction if there is a positive integer k such that

a′x̄(0) ∈ {y(0), y(1), . . . , y(k − 1)}, (7.19)

causing a reduction in the backward Kalman filtering algorithms. Again the smallest
k with this property is the order of the invariant direction a, and

a ∈ ker(Γ̄′
+)k ∩ ker(P+ − P ), (7.20)

for some k, is a necessary and sufficient condition condition for a to be a smoothable
direction.

It can be seen from (7.18) and (7.20) that the order of an invariant direction
cannot be larger than the dimension of X. Although the definition of invariant direc-
tions depends on the particular choice of coordinates in X, a′x(0) and a′x̄(0) in the



OUTPUT-INDUCES SUBSPACES AND INTERPOLATION 35

definitions (7.17) and (7.19) are independent of the coordinate system. Therefore we
shall refer to these elements of X as the invariant directions of X.

Now, let H be the frame space

H = X− ∨X+, (7.21)

i.e., the closed linear hull of all internal subspaces X ∩ H0 as X ranges over X, and
define the subspace

H0+ = H ∩ {y(−n), . . . , y(n− 1)}.

In analogy with the continuous-time case [7], H0+ is called the germ space [22], since
it contains all differences of y up to order n at t = 0.
Proposition 7.4. The germ space has the direct sum decomposition

H0+ = X− ∩ {y(−1), . . . , y(−n)} + X+ ∩ {y(0), . . . , y(n− 1)}. (7.22)

Moreover, X− contains no smoothable and X+ no predictable directions.
Proof. The inclusion ⊃ is trivial. To prove the other direction, note that, since y

is purely nondeterministic, the two terms in (7.22) has a zero intersection, and every
ξ ∈ H0+ has a unique representation ξ = ξ−+ξ+ such that ξ− ∈ {y(−1), . . . , y(−n)} ⊂
H− and ξ+ ∈ {y(0), . . . , y(n−1)} ⊂ H+. But, in view of decomposition (4.20), ξ− has
an orthogonal decomposition ξ− = ξ̂− + ξ̃− such that ξ̂− ∈ X− and ξ̃− ∈ H−∩ (H+)⊥

and ξ+ can be written ξ+ = ξ̂++ξ̃+ where ξ̂+ ∈ X+ and ξ̃+ ∈ H+∩(H−)⊥. Therefore,
since

H0 =
[
H− ∩ (H+)⊥

]
⊕H ⊕

[
H+ ∩ (H−)⊥

]
,

the fact that ξ = ξ̃− +(ξ̂− + ξ̂+)+ ξ̃+ ∈ H shows that ξ̃− = ξ̃+ = 0. Hence ξ− ∈ X−
and ξ+ ∈ X+, establishing the inclusion ⊂.

Consequently, the germ space is spanned by the predictable invariant directions
in X− and the smoothable invariant directions in X+. Moreover, y is regular if and
only if it has a trivial germ space.
Proposition 7.5. Let X ∈ X. Then

X ∩H0+ = X ∩ {y(−1), . . . , y(−n)} + X ∩ {y(0), . . . , y(n− 1)}, (7.23)

i.e., X ∩H0+ is spanned by the invariant directions of X. Moreover,

X ∩ {y(−1), . . . , y(−n)} ⊂ X− ∩ {y(−1), . . . , y(−n)} (7.24)

and

X ∩ {y(0), . . . , y(n− 1)} ⊂ X+ ∩ {y(0), . . . , y(n− 1)}. (7.25)

Proof. Let X ∼ (S, S̄). Relations (7.24) and (7.25) follow from the fact that
X ∩ H− = X ∩ X− and that X ∩ H+ = X ∩ X+ respectively. In view of this
and Proposition 7.4, the inclusion ⊃ in (7.23) is immediate. To prove ⊂, take ξ ∈
X ∩H0+. By Proposition 7.4, there is a unique decomposition ξ = ξ− + ξ+ such that
ξ− ∈ X− ∩ {y(−1), . . . , y(−n)} and ξ+ ∈ X+ ∩ {y(0), . . . , y(n − 1)}. Hence it just
remains to prove that ξ− ∈ X and ξ+ ∈ X. To this end, note that ξ− ∈ H− ⊂ S and
that ξ ∈ X ⊂ S so we must have ξ+ ∈ S. But ξ+ ∈ H+ ⊂ S̄, so ξ+ ∈ S ∩ S̄ = X.
Since, ξ ∈ X, we must have ξ− ∈ X also.
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We have thus proved that all invariant directions of X− are predictable and all the
invariant directions of X+ are smoothable, while an arbitrary X can have invariant
directions of either kind. In view of (7.18), the predictable directions of X are also
among the predictable directions of X−. In the same way, (7.20) implies that the
smoothable directions of X form a subspace of the smoothable directions of X+ [22].
We call X ∩{y(−1), . . . , y(−n)} the predictable subspace and X ∩{y(0), . . . , y(n− 1)}
the smoothable subspace of X.
Theorem 7.6. Let X ∈ X. Then,

(i) The internal subspace X ∩H0 of X has the direct-sum decomposition

X ∩H0 = Yn + X ∩ {y(0), . . . , y(n− 1)}. (7.26)

Moreover,

X ∩X− ⊂ Yn. (7.27)

In particular, Yn contains the predictable directions X ∩ {y(−1), . . . , y(−n)}
of X.

(ii) The internal subspace X ∩H0 of X has the direct-sum decomposition

X ∩H0 = Ȳn + X ∩ {y(−1), . . . , y(−n)}. (7.28)

Moreover,

X ∩X+ ⊂ Ȳn. (7.29)

In particular, Ȳn contains the smoothable directions X ∩ {y(0), . . . , y(n− 1)}
of X.

(iii) The maximal strictly output-induced subspace of X is given by

Y ∗ = Yn ∩ Ȳn. (7.30)

Moreover,

Yn = Y ∗ + X ∩ {y(−1), . . . , y(−n)} (7.31)

and

Ȳn = Y ∗ + X ∩ {y(0), . . . , y(n− 1)}. (7.32)

In the regular case, Y ∗ = X ∩H0 for all X ∈ X.
This theorem, the proof of which we defer to the end of the section, shows, in

particular, that the internal subspace X ∩H0 can be decomposed as

X ∩H0 = X ∩ {y(−1), . . . , y(−n)} + Y ∗ + X ∩ {y(0), . . . , y(n− 1)}, (7.33)

i.e., as the direct sum of the subspace of predictable directions, the maximal strictly
output-induced subspace and the subspace of smoothable directions of X. In view of
Proposition 7.5, X ∩H0 is also the direct sum of Y ∗ and the germ subspace of X, i.e.,

X ∩H0 = Y ∗ + X ∩H0+. (7.34)

This has the following consequence.
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Corollary 7.7. The process y is regular if and only if no X ∈ X has invariant direc-
tions.
Remark 7.8. An immediate consequence of the definitions of Yn, Ȳn and Y ∗ is that

Y ∗ ⊂ Yn ⊂ (σkX) ∩H0 and Y ∗ ⊂ Ȳn ⊂ (σ̄kX) ∩H0

for all k=0,1,2,. . . , showing that the maximal strictly output-induced subspace of any
X ∈ X is contained in each of the internal subspaces of the corresponding sequence
of splitting subspaces {X(k); k ∈Z}.

8. The change of zero dynamics under σ and σ̄. In Definition ?? we as-
signed to each X ∈ X two operators G and Ḡ, defined on the appropriate subspaces
of X. Now, we will relate the eigenvalues of G and Ḡ to the zeros of W and W̄ ,
the spectral factors corresponding to X, justifying the name zero dynamics operators.
Next we analyze the connections between the zero dynamics operators belonging to
different splitting subspaces. Finally, using these operators, we describe completely
the change in the zero structure when applying the prediction operators σ and σ̄.

To this end, we recall from [20] that the finite zeros of W and the corresponding
zero directions are characterized by the solutions of (5.5), i.e.,

[
Π −M

] [
A B
C D

]
=

[
ΛΠ 0

]
, (8.1)

in the sense that the eigenvalues of Λ are zeros of W and the rows of Π span the
subspace of the corresponding generalized zero directions. In order to describe all
finite zeros we need to consider a maximal solution of (8.1) in the sense that Π has
maximal rank, or in the sense that the subspace generated by the row vectors of Π is
maximal.

We now give an alternative proof of a generalization of Lemma 5.2 which also
works in the nonregular case.
Lemma 8.1. A matrix Π satisfies (8.1) if and only if there are matrices Λ and M
such that

Πx(t + 1) = ΛΠx(t) + My(t). (8.2)

Proof. Equation (8.1) is equivalent to

[
Π −M

] [
A B
C D

] [
x(t)
u(t)

]
=

[
ΛΠ 0

] [
x(t)
u(t)

]
,

where x is the state process and u is the driving noise of the stochastic model (1.1).

This is seen by observing that the covariance matrix of
[
x(t)
u(t)

]
is full rank. Together

with the systems equations (1.1) this yields (8.2).
A coordinate-free version of (8.2) is provided by

UY ⊂ Y ∨ {y(0)}, (8.3)

where Y consists of the random variables of the form b′Πx(0). This observation allows
us to characterize the zeros of W in terms of the eigenvalues of G.
Proposition 8.2. The eigenvalues of G are precisely the finite zeros of W . Similarly,
the eigenvalues of Ḡ are the finite zeros of W̄ (z−1).
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Proof. Consider the maximal solution of (8.1). Then the eigenvalues of Λ are
the finite zeros of W . Moreover, since Yn is the maximal subspace satisfying (8.3)
(Theorem 7.2), z := Πx(0) is a basis in Yn, the space on which G is defined. It then
follows from (8.2) that

Gzi =
∑
j

Λijzj ,

and consequently Λ′ is a matrix representation of G in the basis of z, thus having
the same eigenvalues. This concludes the proof of the first statement. The second
statement follows by symmetry.

This together with Theorem ?? illustrates that we have zeros at zero and/or
infinity precisely in the nonregular case and that such zeros are connected to invariant
directions. More precisely, predictable directions correspond to zeros at zero and
smoothable directions to zeros at infinity.

It was proved in [20] and in [29], independently and with different methods, that
W and W̄ have the same zeros also in the nonregular case. (A modification of the
argument in Remark 5.3 could also be used to see this.) Therefore, any statement
about the zeros of W also holds for W̄ and vice versa.

Recall that

X ∩H0 = (X ∩X−) ∨ (X ∩X+), (8.4)

where the sum is direct if and only if X− ∩ X+ = 0, or, equivalently, H− ∩ H+ = 0.
Only in the regular case can we define G and Ḡ on all of X ∩ H0, but, in view of
Theorem 7.6(i), X ∩ X− is always contained in the domain of G and X ∩ X+ in the
domain of Ḡ.
Theorem 8.3. Let G− be the G-operator of X− and Ḡ+ the Ḡ-operator of X+. Let
(W, W̄ ) be the spectral factors of X ∈ X. Then

G|X∩X− = G−|X∩X− (8.5)

and

Ḡ|X∩X+ = Ḡ+|X∩X+ . (8.6)

Consequently, the eigenvalues of G|X∩X− are the stable zeros of W (including those on
the unit circle) and that the eigenvalues of Ḡ|X∩X+ are the reciprocals of the antistable
zeros (including those on the unit circle and at infinity). Finally,

G|X−∩X+ =
[
Ḡ|X−∩X+

]−1 (8.7)

and its eigenvalues are precisely the zeros on the unit circle.
Proof. Referring to (6.2) we see that X ∩X− is invariant under both G and G−

and hence (8.5) follows. In the same way, (6.1) implies that X∩X+ is invariant under
both Ḡ and Ḡ+ implying (8.6). This is in harmony with Theorem 5.4 and implies
the statements on stable and unstable zeros. Finally, by Corollary 6.6, X− ∩ X+ is
strictly output-induced and is thus contained in Y ∗, on which space G is invertible
(Theorem 7.6). Consequently, the last statement follows.

In particular, we have the following observation which has previously been re-
ported in [10] and in [9]. (In the latter paper the proof is somewhat incomplete, since
the multiplicities are not counted properly.)
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Corollary 8.4. All minimal spectral factors have the same number of zeros on the
unit circle (counting multiplicity), namely dimX− ∩X+ = dimH− ∩H+.

In §5 we showed that, in the regular case, the zeros, as well as the zero directions,
are preserved as the operators σ and σ̄ are applied. In general this is not true in the
nonregular case. In view of Theorem 8.3, the following two theorems, relating σ and
σ̄ to the operators G and Ḡ, show what happens.
Theorem 8.5. Let X ∈ X. Then

(σX) ∩X+ = Ḡ+(X ∩X+) = Ḡ(X ∩X+) (8.8)

and

(σ̄X) ∩X− = G−(X ∩X−) = G(X ∩X−). (8.9)

Proof. We prove only (8.8). Then a symmetric argument yields (8.9). First we
show that

σX ⊂ {y(−1)} ∨ U−1X. (8.10)

To this end, observe that H− ∨ U−1S = {y(−1)} ∨ U−1S, which in view of the fact
that {y(−1)} ⊂ U−1H+ ⊂ U−1S̄, equals ({y(−1)} ∨ U−1X) ⊕ U−1S̄⊥. However,
X ⊥ S̄⊥ ⊃ U−1S̄⊥, and consequently (8.10) follows from the definition (3.1). Now,
consider ζ ∈ (σX) ∩X+. In view of (8.10), we have the representation

ζ = η + U−1ξ,

where η ∈ {y(−1)} and ξ ∈ X. On the other hand, since U−1ξ = ζ − η ∈ U−1H+, we
see that ξ ∈ H+ ∩X = X ∩X+. From the definition of the operator Ḡ+, we have

ζ = Ḡ+ξ where ξ ∈ X ∩X+.

Conversely, if ξ ∈ X ∩ X+, Ḡ+ξ ∈ X+ and Ḡ+ξ − U−1ξ ∈ {y(−1)} implying that
Ḡ+ξ ∈ H− ∨ U−1S = S(−1). Hence,

Ḡ+ξ ∈ (σX) ∩X+,

which together with (8.6) concludes the proof of the theorem.
Theorem 8.6. Let X ∈ X. Then

(σX) ∩X− = {ξ ∈ X− | G−ξ ∈ X ∩X−} (8.11)

and

(σ̄X) ∩X+ = {ξ ∈ X+ | Ḡ+ξ ∈ X ∩X+}. (8.12)

Proof. We prove (8.11); then (8.12) follows by symmetry. Let ξ ∈ X−. Since
EH−X = X− [18, Lemma 4.6 and Theorem 4.10] and ker EH− |X = X ∩ (H−)⊥ = 0
(see §2), there is a unique ζ ∈ X such that ξ = EH−ζ. By the definition of G−,

Uξ = G−ξ + η,

where η ∈ {y(0)}, and therefore

U(ζ − ξ) = Uζ − η −G−ξ.
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Since G−ξ ∈ X− ⊂ S, Uζ ∈ US̄ ⊂ S̄ and η ∈ H+ ⊂ S̄, the splitting property (2.8)
yields

ESU(ζ − ξ) = EX(Uζ − η) −G−ξ. (8.13)

Now, suppose ξ ∈ (σX)∩X−. Then by definition (3.1), ξ = EH−∨U−1Sλ for some
λ ∈ X. But then, since ξ ∈ H−, ξ = EH−λ, so by uniqueness we must have λ = ζ.
Consequently, ζ − ξ ⊥ H− ∨ U−1S, which in particular implies that U(ζ − ξ) ⊥ S.
Hence, it follows from (8.13) that G−ξ ∈ X, proving that G−ξ ∈ X ∩X−.

Conversely, suppose that G−ξ ∈ X ∩X−. Then, by (8.13),

ESU(ζ − ξ) ∈ X. (8.14)

But, since ξ = EH−
ζ,

U(ζ − ξ) ⊥ UH− ⊃ H−. (8.15)

Therefore, since S = H− ⊕ S ∩ (H−)⊥ by (4.20), we have

ESU(ζ − ξ) = ES∩(H−)⊥U(ζ − ξ) ∈ S ∩ (H−)⊥. (8.16)

Since X ∩ S ∩ (H−)⊥ = X ∩ (H−)⊥ = 0 (see §2), it follows from (8.14) and (8.16)
that ESU(ζ − ξ) = 0, and hence

U(ζ − ξ) ⊥ S,

which together with (8.15) yields

ζ − ξ ⊥ H− ∨ U−1S.

Consequently, ξ = EH−∨U−1Sζ ∈ σX and so ξ ∈ (σX) ∩X− as claimed.
In particular, Theorems 8.5 and 8.6 show that

(σ̄X) ∩X− ⊂ X ∩X− ⊂ (σX) ∩X−, (8.17)

i.e., stable zeros may be lost as we apply σ̄ and gained as we apply σ. In the same
way,

(σX) ∩X+ ⊂ X ∩X+ ⊂ (σ̄X) ∩X+, (8.18)

showing that antistable zeros may be lost when applying σ and gained when applying
σ̄. This is in agreement with Theorem 3.6 and formulae (6.7) and (6.8).

To determine what zeros are being lost and gained under these operations, we
observe from Theorems 8.5 and 8.6 that the subspaces being added or subtracted
from X ∩X− and X ∩X+ must be contained in the kernel of some G- or Ḡ-operator.
Consequently, by Theorem ??, the corresponding zero directions are invariant direc-
tions.

We may therefore formulate an amplification of statement (8.17), namely that
zeros at zero together with the corresponding predictable directions may be gained
when applying σ and lost when applying σ̄. In the same way, (8.18) and Theorem
?? show that zeros at infinity together with the corresponding smoothable directions
may be lost when applying σ and gained when applying σ̄.

The following corollary is an immediate consequence of Theorems 8.5 and 8.6.
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Corollary 8.7. Let X ∈ X and let Yn and Ȳn be defined as in §7. Then

(σkX) ∩H0 = Yn ∨ {predictable directions in X−}
= Y ∗ + {predictable directions in X−}

and

(σ̄kX) ∩H0 = Ȳn ∨ {smoothable directions in X+}
= Y ∗ + {smoothable directions in X+}

for k = n, n + 1, . . . .
Remark 8.8. Theorem ??, Remark 7.8 and Corollary 8.7 enables us to generalize the
statement in Remark 5.7 to the nonregular case. The same construction that was used
in this remark to reduce the Riccati equations can be applied here with modifications
which take into account that the fact that the internal subspace X(k)∩H0 is no longer
constant along the sequence of splitting subspaces {X(k)} in the nonregular case. In
view of Remark 7.8, the solutions of the Riccati recursions are constant from the start
in the zero directions of Yn, while they become constant only after a finite number
of steps in the remaining predictable directions by Corollary 8.7. Consequently, after
a finite number of steps the size of the reduced Riccati equations is ν × ν where
ν = n − dim(σnX) ∩ H0. In view of Corollary 8.7 and Theorem ??, the backward
Riccati equation can be reduced to the same size.

9. Conclusions. In this paper we discuss the very rich and intricate structure of
discrete-time linear stochastic systems in the context of an interpolation type problem,
namely to reconstruct lost state information on a finite interval using the whole history
of the output process and the remaining state information. We show that, at each
time, the (least-squares) state estimate can be written as a linear combination of
two filter estimates, which are generated by (forward respectively backward) Kalman
filtering type recursions with the initial condition being itself a state. Remarkably,
these Kalman filtering recursions generate sequences of state processes from different
stochastic realizations which are totally ordered. When k → ∞ and when k → −∞,
the sequence of splitting subspaces X(k) converge to limits which are internal splitting
subspaces. These limits are determined by the zero structure of the spectral factor
(1.2).

In the regular case, when there are no zeros at the origin and at infinity, the set
of zeros and zero directions of the spectral factors W (k) corresponding to the splitting
subspaces X(k) remain invariant during these recursions giving a full set of invariants.
We show that in the nonregular case the whole set of zeros is no longer invariant but
the finite zeros with finite reciprocals still are.

We have shown that the computational burden of determining the interpolation
estimate depends on the dimension of the internal subspace X ∩ H0, i.e., on the
number of zeros. This leads to the study of output-induced and strictly output-
induced subspaces and zero dynamics operators. In particular, if a′x(0) ∈ X ∩ H0,
then, in the regular case, the solutions of the Riccati equations (4.38) and (4.41) for
the interpolation problem becomes constant in the direction a, allowing for a reduction
in size of the Riccati equations. In fact, if dimX ∩H0 = n− ν, we only need to solve
Riccati equations of dimension ν × ν rather than n × n in the regular case (Remark
5.7). In the nonregular case the reduction may be even larger after a finite number of
steps (Remark 8.8).
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What makes the discrete-time case more complicated than the continuous-time
case is the possibility that the predictable subspace X ∩ {y(−1), . . . , y(−n)} and the
smoothable subspace X ∩ {y(0), . . . , y(n − 1)} are nontrivial. In fact, if these spaces
are zero spaces (the regular case), the structure of the problem is very much like the
continuous-time coercive case, studied in [13], and X ∩ H0 is itself strictly output-
induced. If they are not, the matrix D will loose rank, and the matrix Riccati equa-
tions of forward and backward Kalman filtering will become constant in the directions
a for which a′x(0) is an element of these spaces, thus influencing the implementation
of the filtering algorithms, as explained above. These a are called invariant directions.
Nonregularity, and hence invariant directions, are connected with zeros at zero and
at infinity.

In particular, we have demonstrated that X ∩H0 can be decomposed as a direct
sum of the predictable subspace, the smoothable subspace and the maximal strictly
output-induced subspace, corresponding to the zeros at zero, the zeros at infinity, and
the remaining zeros respectively. The maximal strictly output-induced subspace Y ∗

equals X ∩H0 in the regular case and plays the role of X ∩H0 in the nonregular case.
We have given several geometric characterizations of regularity (Propositions 3.11 and
3.11′ and Corollaries 6.10 and 7.7). We have also shown that Y ∗ can be determined by
algorithms akin to that used in geometric control theory for determining the maximal
output-nulling subspace.

On the maximal strictly output-induced subspace Y ∗ the forward and backward
zero dynamics operators G and Ḡ, respectively, are inverses of each other. The eigen-
values are the finite zeros with finite reciprocals. The operators G and Ḡ can be
separately extended to a larger subspace. On these subspaces (in the nonregular
case) these operators are in general singular and the invariant directions determine
the kernel of these operators.

Appendix A. Proof of Theorem ??.
Let us denote by Ip(X) the predictable directions in X ∈ X under the natural

isomorphism a �→ a′x(0) and by Is(X) the smoothable directions under the same
isomorphism. Then Theorem ?? implies that

Ip(X) = ker(P − P−) ∩ ker(Γ′
−)n and Is(X) = ker(P+ − P ) ∩ kerP−1

+ (Γ̄′
+)nP+.

In particular,

Ip(X−) = ker(Γ′
−)n and Is(X+) = kerP−1

+ (Γ̄′
+)nP+.

As in [28, p. 53], a straight-forward but somewhat tedious calculation yields the
identity

Γ̄+P−1
+ (P+ − P−) = P−1

+ (P+ − P−)Γ′
−. (A.1)

First, we prove that

dim Ip(X−) = dim Is(X+).

To this end, observe that (A.1) implies that

(P+Γ̄n
+P−1

+ )(P+ − P−) = (P+ − P−)(Γ′
−)n. (A.2)

Since it follows from Theorem 8.3 that ker(P+ − P−) ∩ ker Γ′
− = 0, we obtain that if

ξ ∈ ker(Γ′
−)n is nonzero then (P+ − P−)ξ �= 0. Thus

(P+ − P−)Ip(X−) ⊂ kerP−1
+ (Γ̄+)nP+,



OUTPUT-INDUCES SUBSPACES AND INTERPOLATION 43

implying that

dim Ip(X−) ≤ dim Is(X+).

A symmetric argument yields the reverse inequality proving the first statement in the
theorem and also that

kerP−1
+ (Γ̄+)nP+ = (P+ − P−)Ip(X−).

Consequently, Y := ImP−1
+ (Γ̄′

+)nP+, the counterpart of the maximal strictly output-
induced subspace Y ∗ of X+ under the natural isomorphism, is the orthogonal com-
plement of (P+ − P−)Ip(X−), i.e.,

Y = {a ∈ Rn | a′(P+ − P−)b = 0 for b ∈ Ip(X−)}.

Thus, again invoking that (P+ − P−) is nonsingular on Ip(X−), we obtain the direct
sum decomposition

Ip(X−) + Y = Rn,

where the two summands are “orthogonal” in the inner product defined by (P+−P−).
In view of the direct sum decomposition

Is(X+) + Y = Rn (A.3)

we see that both the predictable directions and the smoothable directions under the
natural isomorphisms are mapped to subspaces which are complementary to Y .

Now observe that if a ∈ ker(P −P−) and b ∈ ker(P+−P ) then a′(P+−P−)b = 0,
i.e. ker(P −P−) and ker(P+−P ) are also orthogonal in the inner product determined
by (P+ − P−). This inner product is nonsingular on Ip(X−), so we can consider a
(P+ − P−)-orthogonal complement Z of Ip(X) in Ip(X−), i.e.,

Ip(X) + Z = Ip(X−). (A.4)

Then the (P+ − P−)-orthogonal complement of Ip(X) in Rn is Z + Y , the latter
obviously containing ker(P+ − P ). Consequently

Is(X) ⊂ (Z + Y ) ∩ Is(X+). (A.5)

In the internal case we have equality in this inclusion. Now, the identity (A.3) implies
that

dim(Z + Y ) ∩ Is(X+) = dimZ,

which together with (A.4) and (A.5) yields

dim Ip(X) + dim Is(X) ≤ dim Ip(X−) = µ

with equality in the internal case, concluding the proof of the theorem.

Appendix B. Zero direction of σX and σ̄X.
Theorems 8.5 and 8.6 can be reformulated in terms of (generalized) zero directions.



44 A. LINDQUIST AND GY. MICHALETZKY

Theorem B.1. The antistable zero directions of σX are described by

(σX) ∩X+ = {a′x̄+(0) | a = Γ̄′
+b where b ∈ ker(P̄ − P̄+)}. (B.1)

Similarly, the stable zero directions of σ̄X are given by

(σ̄X) ∩X− = {a′x̄−(0) | a = Γ̄′
−b where b ∈ ker(P − P−)}. (B.2)

Theorem B.2. The stable zero directions of σX are described by

(σX) ∩X− = {a′x−(0) | a ∈ Rn,Γ′
−a ∈ ker(P − P−)}. (B.3)

Similarly, the antistable zero directions of σ̄X are given by

(σ̄X) ∩X+ = {a′x̄+(0) | a ∈ Rn, Γ̄′
+a ∈ ker(P̄ − P̄+)}. (B.4)

These theorems follow directly from Theorems 8.5 and 8.6, identifying G− and Ḡ+

with Γ′
− and Γ̄′

+ and X∩X− and X∩X+ with ker(P−P−) and ker(P̄−P̄+) respectively.
(Also see [13].) However, we also have the following independent coordinate-dependent
proofs.

Proof of Theorem B.1. We prove (B.1). Then (B.2) follows by symmetry. The
proof of this theorem runs parallel with that of Theorem 8.6. In view of the definition
(3.1) of σX, we need to characterize all ξ ∈ X such that

EH−∨U−1Sξ = E{y(−1)}∨U−1Xξ ∈ X+,

or, in other words, ξ = d′x̄+(0) such that

E{y(−1)}∨U−1Xd′x̄(0) = c′y(−1) + b′x̄(−1) = a′x̄+(0)

for appropriate vectors a, b, c, d. The equations connecting a, b, c, d are

d′
[
P̄ C̄ ′ P̄A

]
=

[
c′ b′

] [
Λ0 C
C ′ P

]
, (B.5)

[
c′ b′

] [
C̄
A′

]
= a′ (B.6)

and

[
c′ b′

] [
Λ0 C
C ′ P

]
= a′P̄+a. (B.7)

Here the first two equations are projection formulas projecting ξ onto {y(−1)}∨U−1X
and c′y(−1) + b′x̄(−1) onto X+ respectively, and the third equation expresses that
in the latter projection the error is zero. Now, insert (B.6) into (B.7) and rearrange
terms to obtain

[
c′ b′

] [
Λ0 − C̄P̄+C̄ ′ C − C̄P̄+A
C ′ −A′P̄+C̄ ′ P̄ −A′P̄+A

] [
c
b

]
= 0.

Using the facts that Λ0 − C̄P̄+C̄ ′ = D̄+D̄′
+, C − C̄P̄+A = D̄+B̄′

+, and also P̄ −
A′P̄+A = B̄+B̄′

+ + (P̄ − P̄+), we obtain

[
c′ b′

] [
D̄+D̄′

+ D̄+B̄′
+

B̄+D̄′
+ B̄+B̄′

+ + (P̄ − P̄+)

] [
c
b

]
= 0.
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Since P̄ ≥ P̄+, this is clearly a positive semidefinite quadratic form, and therefore[
D̄+D̄′

+ D̄+B̄′
+

B̄+D̄′
+ B̄+B̄′

+ + (P̄ − P̄+)

] [
c
b

]
= 0.

The first block equation together with the fact that D̄+D̄′
+ is invertible yields

c = −(D̄+D̄′
+)−1D̄+B̄′

+b. (B.8)

Inserting this into the second block equation we get

(P̄ − P̄+)b = 0.

This shows that, if a′x̄+(0) ∈ (σX) ∩ X+, then there is a b ∈ Rn such that b ∈
ker(P̄ − P̄+) and a = Γ̄′

+b. Conversely, assume that this is satisfied, define c by (B.8)
and set d := a. Now straight-forward calculations show that (B.5), (B.6) and (B.7)
are satisfied.

Proof of Theorem B.2. We prove (B.3); then (B.4) follows by symmetry. Recall
that σX = EH−∨U−1SX. Therefore, if a′x−(0) ∈ (σX) ∩ X−, there exists a ξ ∈ X
such that

EH−∨U−1Sξ = a′x−(0).

Apply EH−
to this to see that EH−

ξ = a′x−(0). Hence, by uniqueness of the uniform
choice of bases, ξ = a′x(0). On the other hand,

H− ∨ U−1S = {y(−1)} ∨ U−1S = ({y(−1)} ∨ U−1X) ⊕ U−1S̄⊥,

since {y(−1)} ∈ U−1H+ ⊂ U−1S̄ ⊥ U−1S̄⊥ and S = X ⊕ S̄⊥. Hence, since ξ ∈ X ⊥
S̄⊥ ⊃ U−1S̄⊥,

EH−∨U−1Sξ = E{y(−1)}∨U−1Xξ.

But a′x(0) − a′x−(0) ⊥ H− ⊃ {y(−1)}, so the space (σX) ∩ X− is completely char-
acterized by the condition

a′x(0) − a′x−(0) ⊥ {x(−1)},

or, in other words,

E{[a′x(0) − a′x−(0)]x(−1)′} = 0. (B.9)

To compute this covariance, note that the error process x(t) − x−(t) satisfies the
forward state equation

x(t + 1) − x−(t + 1) = Γ−[x(t) − x−(t)] + (B −B−D−1
− D)u(t)

so that

E{[x(0) − x−(0)][x(−1) − x−(−1)]′} = Γ−(P − P−).

However, since x−(0) = EH−
x(0) and a′x−(−1) ∈ H−, (B.9) yields a′Γ−(P−P−) = 0

as claimed.
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