
    

OPTIMAL DAMPING OF FORCED OSCILLATIONS IN
DISCRETE-TIME SYSTEMS BY OUTPUT FEEDBACK*

ANDERS LINDQUIST† AND VLADIMIR A. YAKUBOVICH‡

Abstract. In this paper we consider optimal control by output feedback of a lin-
ear discrete-time system corrupted by an additive harmonic vector disturbance with
known frequencies but unknown amplitudes and phases. We consider both a deter-
ministic and a stochastic version of the problem. The object is to design a robust
optimal regulator which is universal in the sense that it does not depend on the
unknown amplitudes and phases and is optimal for all choices of these values. We
show that, under certain natural technical conditions, an optimal universal regulator
(OUR) exists in a suitable class of stabilizing and realizable linear regulators, pro-
vided the dimension of the output is no smaller than the dimension of the harmonic
disturbance. When this dimensionality condition is not satisfied, the existence of
an OUR is not a generic property, and consequently it does not exist from a practi-
cal point of view. For the deterministic problem we also show that, under slightly
stronger technical conditions, any linear OUR is also optimal in a very wide class
of nonlinear regulators. In the stochastic case we are only able to show optimality
in the linear class of regulators.

1. Introduction

Many important engineering problems can be formulated mathematically as a linear-
quadratic regulator problem with the added complication of an unobserved harmonic
additive disturbance, for which only the frequencies are known. Some examples,
among many others, are vibration damping in industrial machines and helicopters
[5, 6, 8, 9, 2, 19], noise reduction in vehicles and transformers [18], control of aircraft
in the presence of wind shear [14, 17, 21], and control of the roll motion of a ship [10].
Such a harmonic disturbance adds critically stable dynamics which is unobservable
and unstabilizable, and therefore traditional linear-quadratic methods cannot be used.
Nor can one in general use a discrete-time version of the methods proposed in [3, 4].
In [16] this problem was solved in the case of complete state information. In the
present paper, the same methodology is extended to take care of the case of output
feedback.
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Specifically, we consider a discrete-time linear system

xt+1 = Axt + But + Ewt (1.1a)

yt = Cxt (1.1b)

(t = 0, 1, 2, . . . ) with state xt ∈ Rn, output yt ∈ Rm and two vector inputs, namely a
control ut ∈ Rk an unobserved disturbance wt ∈ R� which we shall take to be harmonic
with known frequencies but unknown amplitudes and phases. More precisely,

wt =
N∑
j=1

w(j)eiθjt, (1.2)

where the frequencies

− π < θ1 < θ2 < · · · < θN ≤ π (1.3)

are known, but the complex vector amplitudes w(1), w(2), . . . , w(N), in which the phases
have been absorbed, are not. Moreover, A,B,C,E are constant real matrices of
appropriate dimensions such that (A,B) is stabilizable and (C,A) is detectable, and
without loss of generality

rank C = m and rank E = �. (1.4)

In fact, if the first condition is not satisfied, some components of yt could be elimi-

nated. Moreover, if �̂ := rank E < �, Ewt may be exchanged by Êŵt, where ŵt ∈ R�̂

by an obvious reformulation. Of course, (1.4) implies that m ≤ n and that � ≤ n.
The deterministic problem to be considered in this paper is to damp the forced

oscillation in the system (1.1) by output feedback. This is to be done so as to minimize
a cost functional

Φ = lim sup
T→∞

1

T

T∑
t=0

Λ(xt, ut), (1.5)

where Λ(x, u) is a real quadratic form

Λ(x, u) =

(
x
u

)∗ (
Q S
S∗ R

) (
x
u

)
(1.6)

with properties to be specified in Section 2. This functional is a measure of the forced
oscillations in the closed-loop system and, for the classes of admissible regulators to
be defined next, it does not depend on initial conditions.

What we want to construct is a regulator which is optimal in some suitable class and
which does not depend on the unknown complex vector amplitudes w(1), w(2), . . . , w(N)

and consequently is universal in the sense that it simultaneously solves the complete
family of optimization problems corresponding to different choices of these complex
amplitudes. Such a regulator will be referred to as an optimal universal regulator
(OUR). Moreover, this optimal regulator must be robust with respect to possible
estimation errors in the known frequencies θ1, θ2, . . . , θN in the sense that the cost Φ
is continuous in the estimation errors and tends to its true optimal value as the errors
tend to zero. It is not hard to see that there are optimal regulators which depend on
w(1), w(2), . . . , w(N), but that there actually exist universal ones is perhaps surprising.
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At first sight it might be tempting to try to apply standard linear-quadratic regula-
tor theory to an extended control system obtained by amending to (1.1) the critically
stable autonomous system {

zt+1 = Fzt
wt = Hzt

(1.7)

where F and H are matrices of dimensions N�×N� and �×N� respectively given by

F =



eiθ1I� 0 . . . 0

0 eiθ2I� . . . 0
...

...
. . .

...
0 0 . . . eiθN I�


 H =

[
I� I� . . . I�

]
(1.8)

and z0 := col(w(1), w(2), . . . , w(N)) ∈ CN�. In this context, universality of a regulator
would imply that it does not depend on z0 and that it is optimal for all z0. However,
since this would add uncontollable, critically stable modes to the system, standard
linear-quadratic regulator theory does not apply.

If we were to consider the simple optimization problem to find a process (xt, ut)
minimizing Φ subject to the constraints (1.1a), it would, as pointed out in [16], be
necessary to assume that

1√
t
|xt| → 0 as t → ∞, (1.9)

in order to insure that the cost is finite. We shall denote by A the class of all processes
(xt, ut) satisfying (1.1a) and this stability condition. (To insure that the infimum of
Φ over it is not −∞, we must of course introduce some condition on the quadratic
form (1.6). This will be done in Section 2.)

However, this class of admissible processes is much too large since we would like
to optimize by feedback and in such a way that the optimal regulator is universal.
Therefore we shall consider two classes of regulators, one that is linear and one that
allows for nonlinear regulators.

Let L be the class of all linear realizable and stabilizing regulators

L : D(σ)ut = N(σ)yt, (1.10)

where D(λ) and N(λ) are real matrix polynomials of dimensions k × k and k ×
m respectively, and σ is the forward shift σyt = yt+1. Here realizable means that
the leading coefficient matrix of D(λ) is nonsingular and degN ≤ degD so that
D(λ)−1N(λ) is a proper rational matrix function. By stabilizing we mean that the
coefficient matrix of the closed-loop system is asymptotically stable, i.e., the matrix
polynomial

Ξ(λ) =

[
λIn − A −B
−N(λ)C D(λ)

]
(1.11)

is such that det Ξ(λ) = 1 for |λ| ≥ 1. (Here, of course, In is the n×n identity matrix.)
Secondly, we consider a class N of in general nonlinear regulators

N : ut = ft(yt, yt−1, . . . , y0, ut−1, . . . , u0), (1.12)
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which are stabilizing in the sense that the processes (xt, ut), generated by such feed-
back controls all belong to A. Clearly, L ⊂ N. It is trivial but useful for the subse-
quent analysis to note that, if AL and AN are the classes of processes (xt, ut) which
are generated by the regulators in L and N respectively, then

AL ⊂ AN ⊂ A. (1.13)

In this paper we show that, under suitable technical conditions, there exists an
optimal universal regulator in the linear class L, provided � ≤ m, and that this
regulator is also OUR in the class N under slightly stronger conditions. The optimal
universal regulator is not unique so a general description of all such regulators is
obtained. If � > m, an OUR will exist only when the system parameters satisfy
certain equations, making the existence of an OUR a nongeneric property. From a
practical point of view this implies that there is no OUR if � > m. Nonuniversal
optimal regulators are given in Section 6 in the case of nonexistence of an OUR.

We stress that our solutions are optimal in the sense stated in this paper only,
and that other desirable design specifications may not be satisfied for an arbitrary
universal optimal regulator. Therefore it is an important property of our procedure
that it allows for a considerable degree of design freedom.

Next, let us consider a stochastic version of this problem. Merely replacing the
amplitudes w(1), w(2), . . . , w(N) by (jointly distributed) random vectors and the cost
function (1.5) by

Φ = lim
T→∞

E{ 1

T

T∑
t=0

Λ(xt, ut)}, (1.14)

where E{·} denotes mathematical expectation, would, as explained in Section 8,
amount to a trivial extension of the deterministic problem formulation described
above. It turns out that the appropriate stochastic problem is obtained by replacing
(1.7) by the stochastic system {

zt+1 = Fzt + Gvt
wt = Hzt + Kvt

(1.15)

where z0 a random vector and where v0, v1, v2, . . . is a white noise process with an in-
tensity Vt tending sufficiently quickly to zero to insure that E{|wt|2} remains bounded.
An optimal regulator is universal for this problem if it does not depend on z0, G, K
and Vt, and it is optimal for all values of these quantities. In Section 8 we show that
any optimal universal regulator for the deterministic control problem is an optimal
universal regulator for the stochastic problem, at least in the class L. Whether it is
also optimal in the class N is still an open question.

The outline of our paper is as follows. Section 2 is a preliminary section in which we
introduce some technical conditions to be used in different contexts later. Sections
3–5 are devoted to the underlying optimization problem over AL. This is done in
a simpler way, but somewhat more limited context, than in [16], and therefore we
shall need the more general result of [16] later in Section 7 for the case of nonlinear
regulators. In Section 4 a parameterization of all regulators in L, akin to that of Youla
but especially adapted to our present problem, is introduced. Section 5 presents the
design of the OUR in L in the case that � ≤ m, and Section 6 considers the case
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� > m. In Section 7 the existence of optimal universal regulators in the class N is
studied. The theorems stated there could be regarded as our main result. Finally,
Section 8 is devoted to the stochastic case.

2. Assumptions and definitions

In this section we introduce some technical conditions to be referred to later in this
paper.

First we need to specify required properties of the quadratic form (1.6). It could be
indefinite, but in order to insure that the cost function (1.5) is bounded from below
we must introduce some positivity condition.

Strong frequency domain condition (SFDC). There is a δ > 0 such that

Λ(x̃, ũ) ≥ δ(|x̃|2 + |ũ|2) (2.1)

for all x̃ ∈ Cn, ũ ∈ Ck, λ ∈ C such that |λ| = 1 and

λx̃ = Ax̃ + Bũ. (2.2)

Since x̃ and ũ are complex, ∗ in (1.6) will of course have to be taken as Hermitian
conjugation instead of merely transposition.

For the linear case the following weaker condition will suffice.

Weak frequency domain condition (WFDC). There is a δ > 0 such that (2.1)
holds for all x̃ ∈ Cn, ũ ∈ Ck and

λ = eiθj j = 1, 2, . . . , N (2.3)

satisfying (2.2).

Note that both of these conditions are invariant under the action of the feedback
group

(A,B) → (TAT−1 + TBK, TB), (2.4)

where T is a nonsingular matrix and K is an arbitrary matrix of appropriate di-
mensions. Moreover, if A does not have any eigenvalues on the unit circle, SFDC is
equivalent to

Λ(x̃, ũ) > 0 for all ũ = 0, x̃ = (λI − A)−1Bũ (2.5)

and λ on the unit circle, and WFDC is equivalent to (2.5) for all λ = eiθj , j =
1, 2, . . . , N . Therefore, writing

Λ(x̃, ũ) = ũ∗Π(λ)ũ where x̃ = (λI − A)−1Bũ (2.6)

and where the Hermitian k × k matrix function

Π(λ) = B∗(λ̄I − A∗)−1Q(λI − A)−1B + B∗(λ̄I − A∗)−1S + S∗(λI − A)−1B + R,
(2.7)

SFDC may be written

Π(λ) > 0 for all λ on the unit circle (2.8)
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and WFDC as

Π(eiθj) > 0 for j = 1, 2, . . . , N . (2.9)

Secondly, without loss of generality, we also assume that the matrix A is stable,
i.e.,

det(λI − A) = 0 for |λ| ≥ 1. (2.10)

In fact, if it is not, we can always stabilize by dynamic feedback, in general at the
price of increased dimension of the system. Under very special conditions (see, for
example, [11]), there is a matrix K such that Γ := A + BKC is a stable matrix, and
then the feedback law

ut = KCxt + vt (2.11)

allows us to exchange (1.1a) for a similar system where A and ut are exchanged for
A + BKC and vt respectively. In general, however, an observer must be used. As is
well-known, one can always use the controller{

x̂t+1 = Ax̂t + But + L(yt − Cx̂t)

ut = Kx̂t + vt
(2.12)

leading to a closed-loop system[
xt+1

x̂t+1

]
=

[
A BK
LC A + BK − LC

] [
xt

x̂t

]
+

[
B
B

]
vt +

[
E
0

]
wt (2.13a)

yt =
[
C 0

] [
xt

x̂t

]
(2.13b)

which has precisely the form (1.1). Pre- and postmultiplying the new “A-matrix”

with

[
I 0
I −I

]
we see that it has the characteristic polynomial

det(λI − A−BK) det(λI − A + LC), (2.14)

as is well-known. Due to stabilizability of (A,B) and detectability of (C,A), by the
Pole Assignment Theorem, K and L can be chosen so that (2.14) has all its roots
in the open unit disc as required. The dynamic regulator (2.12) is, however, never
minimal, and observers of lower dimension can be found in any standard textbook on
the subject (see, e.g., [1, 13]).

3. The auxiliary optimization problem

We now consider the problem of minimizing the cost function (1.5) subject to (1.1)
over the class AL of admissible processes (xt, ut) corresponding to regulators (1.10)
in the linear class L.

To this end, let Ψx, Ψu and Ψy be the transfer functions from the harmonic in-
put Ewt to xt, ut and yt respectively. Clearly, these rational matrix functions are
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determined by

(λI − A)Ψx = BΨu + I (3.1a)

D(λ)Ψu = N(λ)Ψy (3.1b)

Ψy = CΨx (3.1c)

Since a regulator in L is realizable by definition, W (λ) := D(λ)−1N(λ) is a proper
rational matrix function, i.e., W (∞) is finite. But it follows from (3.1) that

[I − λ−1A− λ−1BW (λ)C]Ψx(λ) = λ−1I,

and consequently Ψx(∞) = 0. i.e., Ψx is strictly proper. Then, by (3.1c) the same is
true for Ψy, and by (3.1b) for Ψu, i.e., Ψy(∞) = 0 and Ψu(∞) = 0.

Due to the stability of (1.11), the process (xt, ut, yt) tends asymptotically to the
unique harmonic solution

xt =
N∑
j=1

x(j)eiθjt, ut =
N∑
j=1

u(j)eiθjt, yt =
N∑
j=1

y(j)eiθjt, (3.2)

where

x(j) = Ψx(λj)Ew(j), u(j) = Ψu(λj)Ew(j), y(j) = Ψy(λj)Ew(j) (3.3)

and

λj = eiθj , j = 1, 2, . . . , N. (3.4)

Therefore, the usual limit (rather than just limsup) does exist in (1.5), and it is given
by

Φ =
N∑
j=1

Λ(x(j), u(j)). (3.5)

To see this, observe that, if ft and gt are two harmonic sequences

ft =
N∑
j=1

f (j)eiθjt and gt =
N∑
j=1

g(j)eiθjt, (3.6)

and M is an arbitrary matrix of appropriate dimensions, then

lim sup
T→∞

1

T

T∑
j=1

f ∗
t Mgt =

N∑
j=1

N∑
k=1

f (j)∗Mg(k)ϕjk, (3.7)

where

ϕjk = lim
T→∞

1

T

T∑
t=0

ei(θk−θj)t. (3.8)

The limit (3.8) does exist and equals one if j = k and zero otherwise. Consequently,

lim sup
T→∞

1

T

T∑
t=1

f ∗
t Mgt = lim

T→∞

1

T

T∑
t=1

f ∗
t Mgt =

N∑
j=1

f (j)∗Mg(j). (3.9)
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Using this formula (3.5) follows.
Now, in view of the constraint (1.1a),

x(j) = (λjI − A)−1(Bu(j) + Ew(j)), (3.10)

and therefore

Λ(x(j), u(j)) = u(j)∗Π(λj)u
(j) + p∗ju

(j) + u(j)∗pj + qj, (3.11)

where Π is given by (2.7),

pj = [Q(λjI − A)−1B + S]∗(λjI − A)−1Ew(j) (3.12)

and

qj = w(j)∗E∗(λ̄jI − A∗)−1Q(λjI − A)−1Ew(j). (3.13)

Next, consider the auxiliary optimization problem to minimize Φ, given by (3.5)
and (3.11)–(3.13), where u(1), u(2), . . . , u(N) are regarded as independent variables in
C

k. Since A is stable, (λjI − A)−1 does exist, and WFDC implies that

Π(λj) > 0 for j = 1, 2, . . . , N . (3.14)

Therefore

Λ(x(j), u(j)) = (u(j) − û(j))∗Π(λj)(u
(j) − û(j)) + Φ

(j)
min, (3.15)

where

û(j) = −Π(λj)
−1pj and Φ

(j)
min = qj − p∗jΠ(λj)

−1pj, (3.16)

so u(j) = û(j) is the solution of the problem to minimize Λ(x(j), u(j)) given (3.10).
More precisely, û(j) has the form

û(j) = U(λj)w
(j), (3.17)

where

U(λ) = −Π(λ)−1[Q(λI − A)−1B + S]∗(λI − A)−1E. (3.18)

Consequently,

Φ =
N∑
j=1

(u(j) − û(j))∗Π(λj)(u
(j) − û(j)) +

N∑
j=1

Φ
(j)
min, (3.19)

and therefore the solution to the auxiliary optimization problem is given by u(j) =
û(j), j = 1, 2, . . . , N .

However, the variables u(1), u(2), . . . , u(N) are really not independent since the op-
timization should be done over the class AL of admissible processes and hence tied
together via (3.3) and a regulator (1.10) in L which must be universal and thus not
depend on the unknown vector amplitudes w(1), w(2), . . . , w(N). Therefore, we next
proceed to characterizing the class of all regulators in L.
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First, however, let us observe for later reference that, in view of (3.3), (3.17), (3.16),
(3.12) and (3.13), the cost function (3.19) takes the form

Φ = w∗Ωw, where w :=



w(1)

w(2)

...

w(N)


 (3.20)

for some symmetric Hermitian matrix Ω which depends on the choice of regulator in
L.

4. Parameterization of the class L of realizable and stabilizing linear reg-
ulators

Next, we shall present a parameterization of all regulators in L, akin to the Youla
parameterization but more suitable for our purposes. To this end, we first need a
definition of equivalence.

Definition 4.1. Two regulators

D1(σ)ut = N1(σ)yt and D2(σ)ut = N2(σ)yt

are equivalent if there exist matrix polynomials D0 and N0, of dimensions k × k and
k ×m respectively, such that

D1 = M1D0, N1 = M1N0 D2 = M2D0, N2 = M2N0

for some stable k×k matrix polynomials M1 and M2. We recall that a square matrix
polynomial is stable if detM(λ) = 0 for |λ| ≥ 1.

Clearly, as can be seen from (3.1), Ψx, Ψu and Ψy are invariant under this equiva-
lence.

Lemma 4.2. (i) Let A be a stable matrix with characteristic polynomial χ(λ), and
let V (λ) be the matrix polynomial

V (λ) = χ(λ)C(λIn − A)−1. (4.1)

Let ρ(λ) be an arbitrary stable scalar polynomial and let R(λ) be an arbitrary k ×m
polynomial such that

deg(RV ) < deg ρ. (4.2)

Then the regulator

D(σ)ut = N(σ)yt (4.3)

with

D(λ) = ρ(λ)Ik + R(λ)V (λ)B, N(λ) = χ(λ)R(λ) (4.4)

is realizable and stabilizable, and for this regulator

Ψu(λ) =
R(λ)

ρ(λ)
V (λ), det Ξ(λ) = χ(λ) [ρ(λ)]k (4.5)

where Ξ is given by (1.11).
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(ii) Conversely, any realizable and stabilizable regulator (4.3) belongs to the class
of regulators (4.3)–(4.4) in the sense that it is equivalent to one in this class.

This is a overparameterization of L which is an advantage in our application. We
can for example chose ρ = χρ1 for some stable scalar polynomial ρ1 and take the
degree of R to be at most deg ρ1.

Proof. (i) Let D(λ) and N(λ) be defined by (4.4). It is evident that the realizability
condition holds. For stabilizability we need to show that Ξ(λ), as defined by (1.11),
is a stable matrix polynomial. We have

det Ξ(λ) = det(λ− A) det[D −NC(λI − A)−1B]. (4.6)

But, in view of (4.1) and (4.4), D − NC(λI − A)−1B = ρIk, and hence the second
of equations (4.5) follows. To prove the first of equations (4.5), note that, in view of
(3.1) and (4.4),

NΨy = NC(λI − A)−1(BΨu + I)

= RV BΨu + RV

and
DΨu = ρΨu + RV BΨu.

Therefore, the first of equations (4.5) follows from the second of equations (3.1).
(ii) Next, let (4.3) be an arbitrary regulator in L. Then, Ξ, defined by (1.11), is

stable, and, by (4.6),
det Ξ = χ1−k detP,

where P is the k × k matrix polynomial

P = χD −NV B, (4.7)

which is stable and nontrivial since detP = χk−1 det Ξ is stable. In view of (3.1),

DΨu = NC(λI − A)−1(BΨu + I). (4.8)

Solving (4.8), taking (4.1) and (4.7) into account, yields PΨu = NV . Then,

Ψu = P−1NV =
PaNV

detP
, (4.9)

where Pa is the adjoint matrix polynomial Pa := P−1 detP . Now, choose ρ := detP ,
which has just been shown to be stable, and R := PaN . Then the first of equations
(4.5) holds. Since Ψu(∞) = 0 for all regulators in L, this in turn implies that (4.2)
holds. Moreover, Ψx is given by (3.1a), from which it also follows that det Ψx ≡ 0.
Next, define the matrix polynomials

D̂ = ρIk + RV B and N̂ = χR.

Then, by the first part of the lemma, the linear regulator

D̂(σ)ut = N̂(σ)yt (4.10)

belongs to L, and the corresponding transfer functions, Ψ̂u and Ψ̂x, have the properties
Ψ̂u = Ψu and Ψ̂x = Ψx. Consequently, (3.1b) and (3.1c) yield

D−1NC = ΨuΨ
−1
x = Ψ̂uΨ̂

−1
x = D̂−1N̂C. (4.11)
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Since detCC∗ = 0, it follows that

D−1N = D̂−1N̂ . (4.12)

Let the k× k matrix polynomial M̂ be the greatest common left divisor of D̂ and N̂ ,
i.e.

D̂ = M̂D0, N̂ = M̂N0, (4.13)

where D0 and N0 are left coprime matrix polynomials. Since (4.10) belongs to L, M̂

is stable, and, since det D̂ ≡ 0, we see that det M̂ ≡ 0 and detD0 ≡ 0. From (4.11)
we have N = DD−1

0 N0, so setting M := DD−1
0 , we obtain

D = MD0, N = MN0. (4.14)

Since D0 and N0 are left coprime, there exist matrix polynomials Π1 and Π2 such that

D0Π1 + N0Π2 = I.

(See, e.g., [7].) Therefore

M = M(D0Π1 + N0Π2) = DΠ1 + NΠ2

is a matrix polynomial. Since Dyt = Nyt belongs to L, M is stable. From (4.13) and

(4.14) we now see that the regulators Dyt = Nxt and D̂yt = N̂xt are equivalent, as
claimed.

5. Design of a linear optimal universal regulator: The case m ≥ �

Let ρ and R be real polynomials defined as in Lemma 4.2. Then, by (4.5), the
harmonic component of the control ut, as defined in (3.2) and (3.3), is given by

u(j) =
R(λj)

ρ(λj)
V (λj)Ew(j). (5.1)

We recall that the harmonic components of xt and ut are the only parts that contribute
to the cost functional (1.5), and, as explained in Section 3, optimality is achieved if

u(j) = û(j) for j = 1, 2, . . . , N, (5.2)

where û(j) = U(λj)w
(j), as seen from (3.19) and (3.17).

The question now is whether there are real polynomials ρ and R, satisfying the
conditions of Lemma 4.2, such that (5.2) holds for all choices of w(1), w(2), . . . , w(N).
If this is so, there does exist an optimal universal regulator in L, and it is given by
Lemma 4.2 in terms of R and ρ. If not, an optimal universal regulator may not exist,
and we shall see in Section 6 that it does not exist as a rule, but an optimal regulator
which is not universal may exist.

Consequently, an optimal universal regulator does exist, if

R(λj)Fj = ρ(λj)U(λj), j = 1, 2, . . . , N, (5.3)

where F1, F2, . . . , FN are m× � complex matrices defined by

Fj := V (λj)E = χ(λj)C(λjI − A)−1E. (5.4)
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Now, if m ≥ � and

detF ∗
j Fj = 0, j = 1, 2, . . . , N, (5.5)

then it is easy to see that

R(λj) = ρ(λj)U(λj)(F
∗
j Fj)

−1F ∗
j + R̃j, j = 1, 2, . . . , N (5.6)

is a solution of (5.3) for all R̃1, R̃2, . . . , R̃N such that R̃jFj = 0, for j = 1, 2, . . . , N ,
and that these are precisely all solutions to (5.3).

Therefore, for any stable scalar polynomial ρ, of sufficiently large degree, there is an
R satisfying (5.6) such that the corresponding regulator (4.3) is an optimal universal
regulator. In fact, for this regulator, (5.2) holds so that (3.19) implies that

Φ = Φmin :=
N∑
j=1

Φ
(j)
min (5.7)

and that Φ ≥ Φmin for all other regulators in L, proving optimality. Since, in addition,
D and N do not depend on w(1), w(2), . . . , w(N), the optimal regulator is universal.

Let us summarize the results obtained so far. We consider the problem of find-
ing an optimal universal regulator in the linear class L. This corresponds to the
optimization problem to minimize the cost function Φ, defined by (1.5), over the
class AL of admissible processes, subject to the constraint (1.1), under the condition
that w(1), w(2), . . . , w(N) are unknown and hence must not affect the regulator or the
optimality of it.

Theorem 5.1. Suppose that

(1) m := dim yt ≥ � := dimwt,
(2) A is a stable matrix with characteristic polynomial χ,
(3) detF ∗

j Fj = 0, j = 1, 2, . . . , N ,
(4) WFDC holds, i.e., Π(λj) > 0 for j = 1, 2, . . . , N .

Then:
(i) There exists an optimal universal regulator in the class L, and it is defined by
formulas (4.4) where ρ is a stable scalar polynomial and R is a k×m matrix polynomial
such that deg(RV ) < deg ρ which satisfies the interpolation conditions (5.6).

(ii) Any optimal universal regulator in L is equivalent to one of the type mentioned in
(i).

(iii) The optimal value of the cost function Φ is

Φmin :=
N∑
j=1

Φ
(j)
min, (5.8)

where Φ
(1)
min,Φ

(2)
min, . . . ,Φ

(N)
min are defined by (3.16).

Proof. Statements (i) and (iii) have already been proven above, so it only remains to
prove (ii). To this end, let

D̂(σ)ut = N̂(σ)yt (5.9)
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be an optimal universal regulator. Then (5.9) is optimal for any choice of the vec-
tor amplitudes w(1), w(2), . . . , w(N), for example, for the choice that all these vector
amplitudes are zero except the j:th one so that wt = w(j)eiθjt. Then

min
AL

Φ = Φ
(j)
min,

and the optimal control is u(j) = û(j), where û(j) = U(λj)w
(j). Since this should hold

for all values of w(1), w(2), . . . , w(N), this implies that

Ψu(λj)E = U(λj). (5.10)

Since j is arbitrary, this holds for each j = 1, 2, . . . , N . By Lemma 4.2, the regulator
(5.9) is equivalent to some regulator (4.3) with D and N given by (4.4), and thus it
has the same transfer function Ψu so that (5.10) holds for j = 1, 2, . . . , N . This is
equivalent to the interpolation condition (5.6). This proves statement (ii).

6. Design of linear optimal regulators, universal and nonuniversal: The
case m < �

In this section we show that an optimal universal regulator in L does not in general
exist in the case that

m := dim yt < � := dimwt (6.1)

unless certain algebraic relations on the system parameters are satisfied, and therefore
it does not exist in practice.

Suppose for the moment that w(1), w(2), . . . , w(N) are fixed, and let us determine all
optimal, possibly nonuniversal, regulators in the class L. To this end, recall that the
cost function is

Φ =
N∑
j=1

(u(j) − û(j))∗Π(λj)(u
(j) − û(j)) +

N∑
j=1

Φ
(j)
min, (6.2)

for any regulator in L, where û(j) := U(λj)w
(j) and u(j) = Ψu(λj)Ew(j) are given by

(3.17) and (3.3) respectively. Consider first those regulators in L which are defined
by Lemma 4.2(i) and formulas (4.4) via appropriate polynomials R and ρ. For such
a choice of polynomials

u(j) = XjFjw
(j), (6.3)

where the m× � matrices F1, F2, . . . , FN are given by (5.4) and

Xj =
R(λj)

ρ(λj)
. (6.4)

Let I′ := {j | Fjw
(j) = 0} and I′′ := {j | Fjw

(j) = 0} so that I′ ∪ I′′ = {1, 2, . . . , N}.
Then (6.2) implies that

Φ =
∑
j∈I′

(u(j) − û(j))∗Π(λj)(u
(j) − û(j)) + Φmin, (6.5)
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where

Φmin =
∑
j∈I′′

(û(j))∗Π(λj)û
(j) +

N∑
j=1

Φ
(j)
min. (6.6)

Recall that Π(λj) > 0. It follows from (6.5) that if we find a regulator D(σ)ut =
N(σ)yt with R, ρ such that

u(j) = û(j) for j ∈ I′, (6.7)

then it is optimal. The corresponding polynomials ρ and R must satisfy relations

XjFjw
(j) = U(λj)w

(j), j ∈ I′. (6.8)

In this case the infimum of Φ is attained in L and

inf
L

Φ = Φmin. (6.9)

It is easy to see that all solutions Xj of (6.8) are given by

Xj =
U(λj)w

(j)(w(j))∗F ∗
j

|Fjw(j)|2 + X̃j where X̃jFjw
(j) = 0 and j ∈ I′. (6.10)

Obviously there exist a matrix polynomial R(λ) and a scalar stable polynomial ρ(λ)
such that

R(λj) = ρ(λj)Xj, j ∈ I′ (6.11)

and condition deg(RV ) < deg ρ of Lemma 4.2 holds. Here ρ may be any stable
scalar polynomial of sufficiently high degree. The corresponding regulator is optimal,
and we have also proved relation (6.9). (Note that in the case m ≥ � considered in
Section 5 the conditions Fjw

(j) = 0 imply that w(j) = 0 under the assumption that
detF ∗

j Fj = 0. Therefore û(j) = 0 for j ∈ I′′ and (6.6) coincides with (5.8).)
Now, consider an arbitrary optimal regulator in L obtained via formulas (4.5) of

Lemma 4.2. Then Φ = Φmin, and, because of (6.5), we obtain first (6.7) and then
(6.8), (6.10) and (6.11). Hence the regulator is determined in the way mentioned
above.

Consider next an arbitrary optimal regulator

D̂(σ)ut = N̂(σ)yt

in L, not necessarily obtained via formulas (4.5). By Lemma (4.1) it is equivalent to
a regulator Dut = Nyt determined via formulas (4.5). Since Φ depends only on Ψu,

which is the same for these regulators, and Φ = Φmin for the regulator D̂ut = N̂yt, we
have Φ = Φmin also for the regulator Dut = Nyt. Therefore, Dut = Nyt is optimal
also and consequently it is of the kind discussed above.

Let us formulate the results obtained so far. Suppose m < �, and let the com-
plex amplitudes w(1), w(2), . . . , w(N) be fixed. Then an optimal regulator exists. Any
regulator defined by formulas (4.5) with ρ,R satisfying the conditions of Lemma 4.2
and the interpolation conditions (6.11) is optimal. Conversely, any regulator which is
optimal in L is equivalent to one obtained in this way.
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Now suppose that a universal optimal regulator exists and that it is defined by
formulas (4.5) in Lemma 4.2. Then (6.8) must hold, i.e.,

XjFjw
(j) = U(λj)w

(j) if Fjw
(j) = 0.

But universality implies that this must hold for all values of w(1), w(2), . . . , w(N), and
consequently, as seen from a continuity argument, we must have

XjFj = U(λj), j = 1, 2, . . . , N (6.12)

precisely as in Section 5. The difference from the situation in Section 5 is that, in the
case m < �, (6.12) does not in general have a solution since it is an overdetermined
system of k�N linear equations with kmN unknown variables, the components of the
k ×m matrices X1, X2, . . . , XN . Let us find the conditions for the existence of such
a solution.

Suppose that the rows of the m×� matrices F1, F2, . . . , FN are linearly independent,
i.e., that

detFjF
∗
j = 0, j = 1, 2, . . . , N. (6.13)

Then postmultiplying (6.12) by F ∗
j (FjF

∗
j )−1 for j = 1, 2, . . . , N , we obtain

Xj = U(λj)F
∗
j (FjF

∗
j )−1, j = 1, 2, . . . , N. (6.14)

It follows from (6.12) that

U(λj)
[
F ∗
j (FjF

∗
j )−1Fj − I

]
= 0, j = 1, 2, . . . , N. (6.15)

Conversely, (6.14) and (6.15) imply (6.12), and hence (6.15) is equivalent to the exis-
tence of a solution X1, X2, . . . , XN in (6.12). This is of course a very strict condition,
showing that the existence of a universal regulator in the case m < � is nongeneric.
For example, if m = k = 1, this condition implies that the �-dimensional row vectors
Fj and U(λj) are proportional, i.e.,

U(λj) = κjFj, j = 1, 2, . . . , N,

where κ1, κ2, . . . , κN are scalars.
We have thus established that (6.15) is a necessary condition for the existence of

an optimal universal regulator. It is also sufficient, because, under this condition,
equations

R(λj) = ρ(λj)U(λj)F
∗
j (FjF

∗
j )−1, j = 1, 2, . . . , N, (6.16)

i.e., equations (6.14), satisfy (6.8) for all choices of w(1), w(2), . . . , w(N), and conse-
quently appropriate ρ and R do exist so that the corresponding regulator (4.3), de-
termined by (4.4), is an optimal universal regulator. Any other optimal universal
regulator in L is equivalent to one constructed in this way. In fact, by Lemma 4.2(ii),
any regulator in L is equivalent to one constructed via (4.2)–(4.4) and thus has the
same closed-loop transfer functions Ψu,Ψx,Ψy, and hence the same x(j), u(j), y(j) in
(3.1), and consequently the same value of the cost function Φ. Moreover, we just
showed that any optimal universal regulator constructed via (4.2)–(4.4) must satisfy
(6.16).

We summarize the results of this section in the following theorem. First, however,
let us recall the problem under consideration. Find a regulator (1.10) in the class
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L such that the overall closed-loop system consisting of (1.1) and (1.10) generates a
process (xt, ut) minimizing the cost function (1.5). The external harmonic disturbance
(1.2) is such that (1.3) holds. We say that the regulator (1.10) is an optimal universal
regulator (OUR) in L if D and N do not depend on w(1), w(2), . . . , w(N) and it is
optimal for all values of w(1), w(2), . . . , w(N).

Theorem 6.1. Suppose that

(1) m := dim yt < � := dimwt,
(2) A is a stable matrix with characteristic polynomial χ(λ),
(3) WFDC holds, i.e., Π(λj) > 0 for j = 1, 2, . . . , N .

Then:
(i) Let detFjF

∗
j = 0, j = 1, 2, . . . , N . Then there exists an optimal universal

regulator in the class L if and only if conditions (6.15) hold, where U(λ) is defined by
(3.18), λ1, λ2, . . . , λN by (3.4) and F1, F2, . . . , FN by (5.4). In this case, the OUR is
defined by formulas (4.4) where ρ is an arbitrary stable scalar polynomial of sufficiently
high degree, and R is a k × m matrix polynomial such that deg(RV ) < deg ρ which
satisfies the interpolation conditions (6.16). Any other OUR in L is equivalent to some
regulator of this type. The transfer function Ψu from Ewt to ut for the corresponding
optimal closed-loop system is

Ψu(λ) =
R(λ)

ρ(λ)
V (λ). (6.17)

(ii) If (6.15) fails for some j = 1, 2, . . . , N , then there is no OUR. Then there is
an optimal nonuniversal regulator D(σ)ut = N(σ)yt in L defined via (4.4), where ρ
is an arbitrary stable (real) scalar polynomial of sufficiently high degree, and R is a
k ×m matrix polynomial such that deg(RV ) < deg ρ which satisfies the interpolation
conditions

R(λj) =
ρ(λj)

|Fjw(j)|2U(λj)w
(j)(w(j))∗F ∗

j + R̃j where R̃jFjw
(j) = 0, (6.18)

for all j ∈ I
′, i.e., for all j for which Fjw

(j) = 0. Any other optimal regulator is
equivalent to one constructed in this way. The transfer matrix Ψu from Ewt to ut is
given by (6.17).

Consequently, the existence of an optimal universal regulator is a highly nongeneric
property when m < �, so, from a practical point of view, OUR does not exist in this
case.

Remark 6.2. If (6.15) holds and Fjw
(j) = 0 for some j, then we may replace (6.18)

by

R(λj) = ρ(λj)U(λj)F
∗
j (FjF

∗
j )−1. (6.19)

For this j we have uj = ûj for all w(j) ∈ C�.
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7. Main results

In this section we show that an optimal universal regulator in L is also an OUR in the
larger class N, defined in Section 1, under conditions which are only slightly stronger
than those in Theorems 5.1 and 6.1. This fact is a corollary of the following main
lemma.

Lemma 7.1. Suppose that the strong frequency domain condition (SFDC) holds, i.e.,

Π(λ) > 0 for all λ on the unit circle. (7.1)

Let A and AL be the classes of admissible processes (xt, ut) defined in Section 1.
Then, if the problem to minimize the cost function (1.5) over all processes in AL has
an optimal solution satisfying the interpolation condition

u(j) = û(j) for j ∈ I′, (7.2)

this solution is also optimal for the problem to minimize (1.5) over A.

Proof. Define L̂ to be the class of all linear stabilizing regulators

L̂ : D̂(σ)ut = N̂(σ)yt,

obtained by setting C := I in the definition of L. Then, any D and N corresponding
to a regulator in L define a regulator in L̂ by setting D̂ = D and N̂ = NC, and
consequently

L ⊂ L̂. (7.3)

Now, the quantities Π(λj), û
(j) and Φ

(j)
min do not depend on C (see (2.7), (3.12), (3.13)

and (3.16)–(3.18)) and therefore Φmin in (6.6) does not depend on C either, although
u(j) does. Consequently, it follows from (6.5) that

Φ ≥ Φmin (7.4)

for all processes (xt, ut) in A
L̂
. But, since a process which is optimal in AL satisfies

(7.2) so that Φ = Φmin, it is optimal also in A
L̂
. Moreover, under the strong frequency

domain condition (SFDC), it was proven in [16, Theorem 5.1 and Remark 5.2] that
a minimum of Φ over all (xt, ut) ∈ A can be obtained by choosing a process in A

L̂
.

Consequently, a process which is optimal in AL is optimal in A also, as claimed.

Consequently, we have established the main result of this paper, namely the follow-
ing extension of Theorem 5.1 to the larger class N of nonlinear regulators. We recall
that L ⊂ N.

Theorem 7.2. Suppose that

(1) m := dim yt ≥ � := dimwt,
(2) A is a stable matrix,
(3) detF ∗

j Fj = 0, j = 1, 2, . . . , N ,
(4) SFDC holds, i.e., Π(λ) > 0 for all λ on the unit circle.

Then there is an optimal universal regulator in the class N, which actually belongs to
L ⊂ N, and it can be determined as in Theorem 5.1.
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Proof. By Theorem 5.1, there exists an optimal universal regulator in L under the
stated conditions, and it follows from the proof of Theorem 5.1 that the interpolation
conditions (5.2), and consequently also (7.2), holds for this regulator. Consequently,
by Lemma 7.1, the corresponding process (xt, ut) is also optimal in A and hence in
the class of all admissible processes generated by N. Therefore the optimal universal
regulator in L is an OUR also in N.

Similarly we also have the following extension of Theorem 6.1.

Theorem 7.3. Suppose that

(1) m := dim yt < � := dimwt,
(2) A is a stable matrix,
(3) detFjF

∗
j = 0, j = 1, 2, . . . , N ,

(4) SFDC holds, i.e., Π(λ) > 0 for all λ on the unit circle.

Then, provided condition (6.15) holds, there is an optimal universal regulator in the
class N, which actually belongs to L ⊂ N, and it can be determined as in point (i) of
Theorem 6.1. If condition (6.15) fails, there is a nonuniversal optimal regulator in N
which belongs to L and is given in point (ii) of Theorem 6.1.

The proof of Theorem 7.3 follows the same principles as that of Theorem 7.2.

8. The stochastic case

It is interesting to note that an optimal universal regulator in L for the (deterministic)
control problem discussed in the previous sections is optimal in L for the stochastic
control problem obtained by taking w(1), w(2), . . . , w(N) to be (jointly distributed)
random vectors and replacing the cost function (1.5) by

Φ = lim
T→∞

E{ 1

T

T∑
t=0

Λ(xt, ut)}, (8.1)

where E{·} denotes mathematical expectation. In fact, universality implies that the
same regulator (1.11) is optimal for all values of w(1), w(2), . . . , w(N), so summing with
respect to the appropriate probability measure shows that this regulator is optimal
also for the stochastic problem (Lemma 8.2).

Therefore it is natural to ask whether there is a more nontrivial stochastic version
of the problem previously discussed in this paper for which the optimal universal
regulator is optimal. As pointed out in Section 1, the appropriate stochastic problem
is obtained by replacing (1.7) by the stochastic system{

zt+1 = Fzt + Gvt

wt = Hzt + Kvt
(8.2)

where z0 now is a random N�-vector and where v0, v1, v2, . . . is a zero-mean vector-
valued white noise, independent of z0, i.e.,

E{vsv∗t } = Vtδst, E{vt} = 0, (8.3)
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with {|Vt|}∞t=0 being an �1 sequence, i.e.,

∞∑
t=0

|Vt| < ∞. (8.4)

The condition (8.4) insures that E{wsw
∗
t } is bounded for all s, t ∈ Z+. We say that

an optimal regulator is universal (for the stochastic problem) if it does not depend
on z0, G, K and {Vt}t∈Z+ , and it is optimal for all values of these quantities.

Theorem 8.1. Consider the stochastic control system

xt+1 = Axt + But + Ewt (8.5a)

yt = Cxt (8.5b)

with wt generated by the critically stable stochastic system (8.2). Then any optimal
universal regulator in L for the deterministic problem to control (1.1), with wt given
by (1.2), so as to minimize (1.5) is also an optimal universal regulator in the class L
for the stochastic problem to control (8.5) so as to minimize (8.1).

We first prove the statement of Theorem 8.1 in the special case when vt ≡ 0 so that
all stochastics is generated by the initial condition z0.

Lemma 8.2. Let vt ≡ 0. Then the limit (8.1) exists for all (xt, ut) in AL and

lim
T→∞

E{ 1

T

T∑
t=0

Λ(xt, ut)} = E{ lim
T→∞

1

T

T∑
t=0

Λ(xt, ut)}. (8.6)

Consequently, any optimal regulator in L is an optimal regulator for the stochastic
problem and does not depend on z0.

Proof. Let us first consider the deterministic problem with (xt, ut) ∈ AL. A straight-
forward calculation shows that

1

T

T∑
t=0

Λ(xt, ut) = w∗ΩTw + ω∗
Tw + ηT , (8.7)

where w is defined as in (3.20) and ΩT is a symmetric Hermitian matrix which depends
on the choice of regulator in L. Since the regulator is stabilizing, ωT → 0 and
ηT → 0 as T → ∞, and, as seen from (3.20), (8.7) tends w∗Ωw for any choice of w.
Consequently, ΩT → Ω as T → ∞. Next, let w be the stochastic vector z0 as required
in the present problem. Then

E{ 1

T

T∑
t=0

Λ(xt, ut)} = E{z∗0ΩT z0} + ω∗
TE{z0} + ηT .

Consequently, since ωT → 0 as T → ∞, (8.6) follows if

lim
T→∞

E{z∗0ΩT z0} = E{ lim
T→∞

z∗0ΩT z0}. (8.8)

But, ΩT → Ω, and therefore there is a matrix M > Ω and a T0 > 0 such that ΩT ≤ M
for all T ≥ T0 so that

z∗0ΩT z0 ≤ z∗0Mz0 for T ≥ T0
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and for each value of z0. Consequently, (8.8) follows by dominated convergence; see,
e.g., [12, Theorem 2.4].

Proof of Theorem 8.1. Let us first normalize the white noise sequence v0, v1, v2, . . .
by setting

vt := Ltηt (8.9)

so that ηt is a zero-mean, p-dimensional, normalized white noise, i.e.,

E{ηsη∗t } = Ipδst, E{ηt} = 0, (8.10)

implying that Lt is a matrix-valued function such that LtL
∗
t = Vt. Then

wt = w̄t +

p∑
k=1

t∑
s=0

wt(s, k)(ηs)k, (8.11)

where

wt(s, k) = HF tgsk where gsk =

{
F−s−1GLsek for s < t

KLsek for s = t
(8.12)

ek being the k:th axis unit vector, and where

w̄t = HF tz0. (8.13)

Now, any regulator in L applied to (8.5) yields a closed-loop system (8.2), (8.5),
(1.10), driven by the white noise ηt so that

xt = x̄t +

p∑
k=1

t−1∑
s=0

xt(s, k)(ηs)k (8.14)

ut = ūt +

p∑
k=1

t−1∑
s=0

ut(s, k)(ηs)k, (8.15)

yt = ȳt +

p∑
k=1

t−1∑
s=0

yt(s, k)(ηs)k (8.16)

where x̄t, ūt, ȳt are stochastic vector sequences generated by the initial condition z0,
and thus independent of {ηt}, and xt(s, k), ut(s, k), yt(s, k) are deterministic vector
sequences. All these sequences of course depend on the particular choice of regula-
tor. It follows from (8.14)–(8.16) that x̄t, ūt, ȳt are the conditional expected values of
xt, ut, yt given z0, and therefore

x̄t+1 = Ax̄t + Būt + Ew̄t (8.17a)

ȳt = Cx̄t (8.17b)

Since xt(s, k) = E{xt(ηs)k} for t ≥ k + 1, and the corresponding relations hold for
ut+1(s, k) and yt+1(s, k),

xt+1(s, k) = Axt(s, k) + But(s, k) + Ewt(s, k), xs+1(s, k) = Ews(s, k)(8.18a)

yt(s, k) = Cxt(s, k) (8.18b)
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for t = s+1, s+2, . . . , it follows from (8.12) and (8.13) that wt(s, k) and w̄t satisfy the
autonomous system (1.7), differing only in the initial conditions, which correspond to
w(1), w(2), . . . , w(N) in (1.2), and therefore (8.17) and (8.18) have the same structure
as the deterministic system (1.1)–(1.2).

Next, we show that the cost function can be decomposed accordingly. In fact, it is
easy to check that

E{Λ(xt, ut)} = E{Λ(x̄t, ūt)} +

p∑
k=1

t−1∑
s=0

Λ(xt(s, k), ut(s, k)) (8.19)

so, if we agree to define xt(s, k) and ut(s, k) to be zero for k ≥ t, we have

E{ 1

T

T∑
t=0

Λ(xt, ut)} = E{ 1

T

T∑
t=0

Λ(x̄t, ūt)} +

p∑
k=1

∞∑
s=0

[
1

T

T∑
t=s+1

Λ(xt(s, k), ut(s, k))

]
.

By Lemma 8.2, the limit

Φ̄ = E{ lim
T→∞

1

T

T∑
t=0

Λ(x̄t, ūt)} (8.20)

exists. Therefore, provided the limits

Φsk = lim
T→∞

1

T

T∑
t=s+1

Λ(xt(s, k), ut(s, k)) (8.21)

exist, and provided

lim
T→∞

∞∑
k=0

[
1

T

T∑
t=s+1

Λ(xt(s, k), ut(s, k))

]
=

∞∑
s=0

Φsk, (8.22)

the limit does also exist in the cost function (8.1) and

Φ = Φ̄ +

p∑
k=1

∞∑
s=0

Φsk. (8.23)

Under these condition, which must be verified, the stochastic control problem thus
decomposes into separate decoupled control problems, all having the structure of the
one considered earlier in this paper, namely the problem P̄ of Lemma 8.2 to minimize
Φ̄ given (8.17) and the deterministic problems Psk to minimize Φsk given (8.18). The
latter problems differ only in the vector amplitudes w(1), w(2), . . . , w(N) in (1.2) and
in the initial time (which does not affect the steady-state behavior measured by the
cost function). Consequently, if there is a universal optimal regulator Dut = Nyt in
L for the deterministic problem to control (1.1) so as to minimize (1.5), then

D(σ)ut(s, k) = N(σ)yt(s, k) (8.24)

is optimal in L for Psk, for all s = 0, 1, 2, . . . and k = 1, 2, . . . , p. Moreover, by Lemma
8.2,

D(σ)ūt = N(σ)ȳt (8.25)
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is optimal in L for the problem P̄ . Hence the cost function (8.23) for the stochastic
system is minimized by these control actions. But, in view of (8.24) and (8.25), the
stochastic processes ut and yt, given by (8.15) and (8.16), satisfy

D(σ)ut = N(σ)yt, (8.26)

and therefore the regulator (8.26) is optimal in L for the stochastic problem of The-
orem 8.1. Clearly this regulator does not depend on z0, G, K and {Vt}t∈Z+ , and it is
optimal for all values of these quantities. Hence it is a universal regulator, as claimed.

It remains to show that the limits (8.20) and (8.21) exist and that (8.22) holds
under the feedback conditions (8.25) and (8.24). It was established in Section 3 that
the limits do exist under linear stabilizing feedback, so we only need to verify (8.22).
To this end, recall that, for any regulator in L, the cost function takes the form (3.20)
in the deterministic problem. Moreover, for the problems Psk, it follows from (8.12)

and Vs = LsL
∗
s that the norm of w = col(w(1), w(2), . . . , w(N)) is bounded by κ|Vs|

1
2 for

some positive constant κ which depends on the regulator. Hence (3.20) is bounded
by κ2|Vs| so, in view of (8.4),

∞∑
k=0

Φsk < ∞.

Moreover, ∣∣∣∣∣ 1

T

T∑
t=s+1

Λ(xt(s, k), ut(s, k))

∣∣∣∣∣ < κ2|Vs|,

which is an �1 sequence. Consequently (8.22) follows from the dominated convergence
theorem.

We note that the decomposition (8.17), (8.18) and (8.23) is analogous to the one
used in [15], so a natural question is whether the admissible class of regulators could be
extended to include nonlinear control laws as in [15]. However, this leads to technical
difficulties related to the existence of the limits (8.20) and (8.21) and the validity of
(8.22).
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