UNIVERSAL REGULATORS FOR OPTIMAL TRACKING IN
DISCRETE-TIME SYSTEMS AFFECTED BY HARMONIC
DISTURBANCES*

ANDERS LINDQUIST} AND VLADIMIR A. YAKUBOVICH{

ABSTRACT. We consider the problem of controlling a discrete-time linear system by
output feedback so as to have a second output z; track an observed reference signal
r¢. First, as a preliminary, we consider the problem of asymptotic tracking. i.e., to
design a regulator such that |z; — ;| — 0. This problem has been studied intensely
in the literature, mainly in the continuous-time case. It is known that only under
very special conditions does there exist a linear regulator which achieves this design
goal and which is universal in the sense that it works for all reference signals and
does not depend on them. On the other hand, if r; is a harmonic signal with known
frequencies but with unknown amplitudes and phases, there exist such regulators
under mild conditions, provided the dimension of r; is no larger than the number of
controls. This is true even if the plant itself is corrupted by an unobserved additive
harmonic disturbance w; of the same type as ry, if the dimension of w; is no larger
than the number of outputs available for feedback control.

However, if the first dimensionality condition is not satisfied, asymptotic track-
ing is not possible, but a steady state tracking error remains. Therefore we turn to
another approach to the tracking problem, which also allows for damping of other
system and control variables, and this is our main result. The measure of perfor-
mance is given by a natural quadratic cost function. The object is to design an
optimal regulator which is universal in the sense that it does not depend on the
unknown amplitudes and phases of r; and w; and is optimal for all choices of r; and
wy. We prove that an optimal universal regulator exists in a wide class of stabilizing
and possibly nonlinear regulators under natural technical conditions and that this
regulator is in fact linear, provided that the second dimensionality condition above
is satisfied. On the other hand, if it is not satisfied, the existence of an optimal uni-
versal regulator is not a generic property, so as a rule no optimal universal regulator
exists.

We provide complete solutions of all the problems described above.

1. Introduction

Consider a discrete-time linear control system

$t+1 = Axt + But + Ewt (11&)
Zt = th -+ J’LLt (11C)
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with a state z; € R", two vector outputs y; € R™ and z; € R*, and two vector inputs,
namely a control u; € R¥ and an unobserved disturbance w, € R which we shall take
to be harmonic with known frequencies but unknown amplitudes and phases. More
precisely,

N
wy = Zw(j)ewﬂ't (1.2)
=1
where the frequencies
—T<bh<b<---<Oy<m (1.3)
are known, but the complex vector amplitudes w®, w®, ... w®™) in which the phases

have been absorbed, are either completely unknown or zero. Consequently, some
frequencies (1.3) may not be represented in w; and have been included for notational
purposes to be explained shortly.

In this paper we consider the problem to control the system (1.1) by feedback
from the output y; so as to have the output z; track an observed p-dimensional real
reference signal

N
=S re, (1.4)
j=1

which is harmonic with the known frequencies (1.3) but with complex vector ampli-
tudes 7™M, @ rV) which are either completely unknown or zero so that certain
frequencies (1.3) may not occur in ;. The feedback configuration of this problem is
described in the following flow diagram.

/\/\/ — Y z — Z-T
Plant -

Regulator | ~ r /\/\/

Figure 1.1: Feedback configuration

Many important engineering problems could be modeled in this way. Some exam-
ples are connected to industrial machines and helicopters [9, 10, 11, 12, 2, 28, 27],
control of aircraft in the presence of wind shear [19, 23, 31|, and control of the roll
motion of a ship [14].

For notational convenience we use a common set of frequencies (1.3) for w; and
ry, forcing us to set certain complex vector amplitudes equal to zero. To formalize
this we introduce the index sets J,,J, C {1,2,..., N} of j for which w") and ()
respectively are nonzero and arbitrary. Then

Wy = Z wWeit  and 1, = Zr(j)ew]’t. (1.5)

Jj€dw Jj€I,
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Without loss of generality we assume that
JwUJ, ={1,2,...,N}.

Accordingly, we define the class W of disturbances and the class R of reference signals
consisting of all signals w; and r; respectively obtained by letting {w(‘j)}jejw and
{r()},eq, vary arbitrarily subject to the constraint that the signals (1.5) are real.

We assume that A, B,C, E/, H, J are constant real matrices of appropriate dimen-
sions such that (A, B) is stabilizable and (C, A) is detectable. Without loss of gener-
ality we may also assume that

rank C =m and rank F = /. (1.6)

In fact, if the first condition is not satisfied, some components of ¥, could be elim-
inated. Moreover, if F has linearly dependent columns, these could be combined
without restriction. Clearly, (1.6) implies that m <n and ¢ < n.

Now, a possible criterion of performance for the tracking problem described above
is given by

T—o00

T
) 1
D zhmsupTZﬂzt—rtF}, (1.7)
t=0

but, to allow for damping of internal system variables and the energy of control, we
shall also consider a more general criterion of the type

T
) 1
¢ = limsup T g{/\o(ift, wp) + |2 — e}, (1.8)

T—o0

where Ag(x,u) is a real quadratic form

Aoz, u) = (z) (gg fzi) (2) (1.9)

with properties to be specified in Section 5. (To insure that the infimum of ® is not
—o00, we must of course introduce some condition on the quadratic form (1.9).) We
note that the second functional (1.8) becomes a measure not only of the tracking
accuracy but also of the forced oscillations in the closed-loop system. For the classes
of admissible regulators to be defined next, these cost functions do not depend on
initial conditions.

The object is to find, for suitable p, q € Z, a regulator

U = SOt(yt7 Yg—1, - - - 7yt—q7 Tty Te—1y .- 7Tt—p)7 (11())
which is

(i) stabilizing in the sense that any process (z, u;) satisfying the closed-loop sys-
tem equations (1.1), (1.10) also satisfies the weak stability condition

1
— x| = 0 ast— oo (1.11)
Vit

(ii) optimal in the sense that the cost function (1.8) is minimized; and
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(iii) wniversal in the sense that it simultaneously solves the complete family of
optimization problems corresponding to different values of the complex vec-
tor amplitudes {w};c5, and {rV},c5 and thus does not depend on these
amplitudes.

Such a regulator will be referred to as an optimal universal regulator (OUR), and
the class of regulators (1.10) satisfying conditions (i) and (ii) will be denoted N. The
stability condition (1.11) may at first sight seem somewhat unnatural, but, as we shall
see in Section 6, it is the natural mathematical condition defining the largest class N
for which statements of necessity and sufficiency can be made.

Removing the last term of (1.8) related to tracking we obtain some special cases
of this problem which were studied in [21] and in [22] for the cases of complete and
incomplete state information respectively.

In this paper we show that, under suitable technical conditions and provided ¢ < m,
the problem stated above has a solution in N, and this solution happens to be a linear
stabilizing regulator of type

M(o)uy = N(o)y + L(o)ry, (1.12)

where o is the backward shift oy, = y.y1 and M(X), N(A) and L()\) are real matrix
polynomials, of dimensions k X k, k x m and k x u respectively, with the property
that det M(\) # 0 and M~'N and M 'L are proper rational functions so that the
regulator is nonanticipatory in the sense that w; does not depend on future values
of y; and 7y, in harmony with (1.10). We shall denote by L the subclass of such
linear regulators. Existence of an OUR in the subclass L itself can be established
under somewhat milder technical conditions. The dimensionality condition ¢ < m
is important. As in [22], it can be shown that if it fails then the existence of an
optimal universal regulator becomes a nongeneric property. It means that no optimal
universal regulator exists from a practical point of view if £ > m.

The cost function (1.7) would of course be minimized if we could control (1.1a) so
that

|zt —r] =0 as t— oo. (1.13)

In fact, it would be zero. Therefore, asymptotic tracking appears as a special case
in our analysis. This problem has been studied intensely in the literature at least
in the continuous-time case; see, e.g., [1, 4, 5, 6, 7, 8, 13, 16] and references therein.
The connection to this earlier work, developed in continuous time, is made evident by
noting that the disturbance and reference signals (1.5) can be modeled as the output
of a critically stable system

Si11 = Fsy
wy

= Gst
T

with F' having all its eigenvalues on the unit circle.

Therefore, we begin by developing our optimization procedure in this well-known
setting of asymptotic tracking, thereby obtaining alternative formulations in the
discrete-time case. Using a very short and simple proof, we are able to give a complete
solution to the problem of finding all universal tracking requlators, i.e., all regulators
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which achieve asymptotic tracking (1.13) for all values of the complex vector ampli-
tudes {w(j)}jejw and {r(j)}jeg” and which do not not depend on these amplitudes.
This will be done in Section 4. As a preliminary for this, and to set up notations,
in Section 3 we first consider an undisturbed system (w; = 0), and we characterize
all regulators (1.12) achieving the design objective (1.13) for all reference signals r,
not only harmonic ones, and all initial conditions; we shall refer to this property as
T-universal. The solution of this problem is certainly known, but we include it for
conceptual reasons.

However, if u > k, i.e., the dimension of r; is larger than the number of outputs
available for feedback, no universal tracking regulator exists, so a nonzero tracking
error remains. To damp this error we turn to our main problem, namely to charac-
terize all optimal universal regulators, as defined above. Also, we may want to use
a criterion (1.8) even if asymptotic tracing is possible, if it is desirable to damp the
control energy and/or some particular internal system variables. This is the topic of
Section 5, where optimality in the linear class L is studied. In Section 6 we show that
these linear universal regulators are optimal also in the wider class of nonlinear reg-
ulators satisfying (1.11), provided slightly stronger technical conditions are satisfied.
The complete solution is given. We note that a similar but different optimization
problem, over a finite horizon, is considered in [26].

Obviously there is no a priori guarantee that a regulator which minimizes (1.8)
will also satisfy other design specifications, and hence we look for complete solutions
with many free parameters which then can be tuned by loop shaping. In fact, all our
results are based on a parameterization derived in Section 2, which is akin to that of
Youla and Kucera and which generalizes some parameterizations previously presented
in [21, 22].

Finally, in Section 7, we give some simple numerical examples.

2. Linear stabilizing and realizable regulators

In order to design universal regulators we need a parameterization of all linear regu-
lators

M(o)u; = N(o)y; + L(o)r: (2.1)

which stabilize the control system (1.1) and which are realizable in a sense to be
defined shortly. As before, ¢ is the backward shift oy, = 3,11, and M(A), N(\) and
L(\) are real matrix polynomials of dimensions k x k, k x m and k X u respectively.

Let us consider a bit closer the meaning of (2.1) being stabilizing. To this end,
note that the transfer functions ¥,, ¥,, ¥, from Ew, to ;, u; and y; respectively in
the closed-loop system (1.1), (2.1) satisfy

(A, — AT, = BU, + I, (2.2a)
MM\, = N(\)T, (2.2b)
v, =CV, (2.2¢)

so, in particular,

woft]-[3)
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where Z(A) is the (n + k) X (n + k) matrix polynomial

A, —A —B]

=) = [—N(A)C MV (2:4)

Similarly, the transfer functions \Tfm, \ifu from r; to x; and wu, respectively are given by

v 0
ZA) (L7 = 2.5
™ [57] = |oty] 25)
which together with (2.3) yields

= E ﬂ — =\ [% L?A)} . (2.6)

We shall say that the regulator (2.1) is stabilizing if the matrix polynomial Z(\) is
stable i.e., det =(\) # 0 for |A| > 1.

Next we consider the condition that the regulator be realizable. Clearly (2.1) must
be nonanticipatory in the sense that u; does not depend on future values of y; and r,.
To insure this, we must assume that

M(X)"'N(X) and M(X)"'L()\) are proper, (2.7)

requiring in particular that det M (\) % 0.
Let us investigate what properties ¥ must have for (2.7) to be satisfied. To this
end, let us introduce the rational transfer functions

W,(\) = C(\, —A)'B, W,(\)=H\,—A)"'B+J (2.8)

from the control signal u; to the outputs y; and z; respectively. Then it is easy to see
that

U, = (M - NW,)"'NC(\I, — A)~', ¥, = (M- NW,) 'L (2.9)
and that
U, = (M, —A)Y(BY, +1,), U,=(\,—A)"'BY,. (2.10)
Writing (2.9) in the alternative form
U, = (I, - M'NW,)*MINC\\IL, — AL, W, = (I, - MINW,)*M'L,

we see that (2.7) implies that W, is strictly proper and T, is proper. In fact, M~*NW,
is strictly proper, making I, — M~ NW, as well as its inverse proper. Then, it follows

from (2.10) that ¥, and U, are strictly proper also. Consequently,

U(oc0) = [8 \ifu?oo)l where W, (00) is finite (2.11)

so that x; and u; depend on w, for s < ¢ only and on r, for s < ¢ only. We shall
say that the regulator (2.1) is realizable if condition (2.11) is satisfied. In the end of
this section we shall demonstrate that any stabilizing and realizable regulator satisfies
(2.7) so that the nonanticipatory property is implied (Corollary 2.3).

We say that two regulators

M, (o)uy = Ni(o)y; + L1(o)r; and Msy(o)uy = No(o)yy + La(o)ry
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are equivalent if there are stable £ x k matrix polynomials ©; and ©5 such that
[My, Ny, Ly] = ©,07 ' [My, Ny, Ly]. (2.12)

Hence we allow the systems matrices M, N, L to have stable common factors, as
coprimeness is not required. Clearly, as can be seen from (2.9) and (2.10), ¥,, ¥,,
¥, and U, are invariant under this equivalence, and so are the regulator transfer
functions (2.7).

From now on, we assume that A is a stable matrix, i.e., det(Al, — A) # 0 for all
|A| > 1. Since (A, B) is stabilizable and (C, A) is detectable, this is no restriction. In
fact, it is well-known that the system (1.1) can be replaced by a similar system having
a stable A-matrix but, in general, a larger dimension. (See any standard text, such
as [1, 18].) Only under special conditions [15], including the case of complete state
observation, is it possible to do this by constant feedback, but the system can always
be stabilized by a dynamic observer. Then, extending the state space by including
this observer, a system with stable A-matrix is obtained. For these reasons we shall
from now on, without loss of generality, assume that A in (1.1) is a stable matrix.

The following theorem, generalizing a similar result in [22], provides a parameter-
ization akin to the well-known Youla-Kucera parameterization. (We note that, if A
is not stable, also the latter parameterization requires an observer-based prestabiliza-
tion, increasing the dimension of the regulator; see, e.g., [32, p. 226].)

Theorem 2.1. Let A be a stable matriz with x(X\) := det(\,, — A) being its charac-
teristic polynomial, and let G(X\) and V() be the matriz polynomials

GO\ = XN — AL, V() = CG(\)B. (2.13)

Moreover, let p(\) be an arbitrary stable scalar polynomial and let R(\) and L(\) be
arbitrary matriz polynomaials, of dimensions k x m and k X p respectively, such that

deg(RCG) < degp, degL < degp. (2.14)
Then the requlator
M(o)uy = N(o)y: + L(o)ry (2.15)
with
M) = p(M I + RNV,(A),  N(A) = xR, (2.16)
is stabilizing and realizable, and for this regulator
T, (\) = %CG()\), T, (\) = % (2.17)
and
det E(A) = x(A) [p(\)]* (2.18)

where Z is given by (2.4). Conversely, any stabilizing and realizable regulator (2.15)
18 equivalent to one constructed in this way.
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Before turning to the proof of this parameterization, let us briefly explain the nature
of relation (2.18). Although x(\) is a factor in det =(\) for the regulator defined via
(2.16), this is in general not the case for an arbitrary regulator belonging the same
equivalence class. In fact, while the closed-loop transfer function ¥ and the regulator
transfer functions M~'N and ML are invariant under the equivalence (2.12), Z is
not. Taking the Schur complement, it immediately follows from (2.4) that

det Z(A) = det(A,, — A) det[M(\) — N(A)W,(\)], (2.19)

where W, is given by (2.8). Since, in general, the second factor is not a polynomial, x
is of course not a factor in det = in general. Nevertheless, it will turn out to be useful
to represent each equivalence class by a regulator that has this property.

Proof of Theorem 2.1. In view of (2.16), we have
M) = NOYW, () = p(\) (2.20)

and consequently (2.17) follows from (2.9) and (2.18) follows from (2.19). By construc-
tion, therefore, Z(\) is a stable matrix polynomial, establishing that the regulator is
stabilizing. Moreover, in view of (2.14), ¥, is strictly proper and U, is proper, i.e.,
T, (c0) = 0 and U, (c0) is finite. It then follows from (2.10) that U, and U, are
strictly proper, and hence the regulator is realizable.

To prove the converse statement, suppose that [My, Ny, Lg] is an arbitrary stabiliz-
ing and realizable regulator. Then (2.19) may be written

det Z(\) = x(\) " det P(N),
where P()) is the k x k matrix polynomial
P = xMy — NoV, = x(Mo — NoW,), (2.21)

which is stable and full rank, since det P = x*~!det = is stable and nontrivial. It
follows from (2.9) that

PV, = NoCG, PV, = xLo, (2.22)

where ¥, and V,, are the closed-loop transfer functions corresponding to the regulator
[My, No, Lo]. Therefore, setting

p:=detP, R:=P,Ny=pP'Ny, and L :=xP,Ly= xpP 'Ly,

where P, := P~!'det P is the adjoint matrix polynomial of P, (2.22) shows that ¥,
and U, are given by (2.17). Since [My, Ny, L] is a realizable regulator, it follows from
(2.11) that the the degree conditions (2.14) hold. Consequently, defining M and N
via (2.16), it follows from the first part of the theorem that [M, N, L] is a stabilizing
and and realizable regulator with the same closed-loop transfer functions ¥, and \TJU
as [Mo, No, Lo]. It remains to show that [M, N, L] and [My, Ny, Lo| are equivalent. To
this end, note that
N = xR = xpP™'N,.
Also it follows from (2.21) that

xpP ' My = pI, + pP~'NoV,, = pl,, + RV, = M.
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Consequently,
[Ma N7 L] = XpP_l[MO7 No, L0]7

i.e., [M,N, L] and [My, Ny, Lo| are equivalent as required. [

It ¢ = I, so that y, = x;, the representation of stabilizing regulators can be
simplified considerably, since p and R can be chosen so that cancellations occur.
Since this formulation has a different form and, moreover, will be used later, we state
it as a corollary. Note that, in view of the converse statement, this corollary is strictly
speaking not a special case of Theorem 2.1. It is in fact a generalization of Lemma
4.3 in [21], but the proof here is new.

Corollary 2.2. Let A be a stable matriz, and suppose that C = I,,. Let p(\) be an
arbitrary real scalar stable polynomial, and let R(\) and L(X) be arbitrary real matriz
polynomials, of dimensions k X n and k X u respectively, such that

deg R < degp degL < degp. (2.23)
Then the regulator
M(o)uy = N(o)xy + L(o)ry (2.24)
with
M) =pNIy+ R(NB, NA) =R\, —A) (2.25)
18 stabilizing and realizable, and, for this regulator,
T, (\) = %, b, (A) = %, (2.26)

and det = satisfies (2.18). Conversely, any stabilizing and realizable regulator (2.24)
15 equivalent to one constructed in this way.

Proof. Let the polynomials p and R be chosen as in the statement of the corollary,
and take po(A) = p(A)x(A) and Ry(A) := R(AN)(Al, — A) to be the corresponding
polynomials in Theorem 2.1. Then, since C' = I, and (A, — A)G(X\) = x(\)1,, the
degree conditions (2.14) are satisfied for py and R,. Moreover, the corresponding
regulator polynomials matrices (2.16), which we denote M, and Ny, become My =
XM and Ny = xN, where M and N are given by (2.25). Then, setting Ly = xL,
the regulator [My, Ny, Lo| is stabilizing and and realizable by Theorem 2.1. Thanks
to cancellation, therefore, [M, N, L] is a stabilizing and realizable regulator for the
problem of Corollary 2.2, as claimed.

Conversely, by Theorem 2.1, any stabilizing and realizable regulator (2.24) is equiv-
alent to some regulator [M, N, L] of the type described in Theorem 2.1, where we set
C' = I, everywhere. It remains to show that [M, N, L] is also a regulator of the
type described in the corollary. To this end, define R := RG. This implies that
xR = R(M\, — A), and hence the equations of Theorem 2.1 become those of the
corollary with R replaced by R. Hence [M, N, L] is also a regulator in the sense of
the corollary. [

In the beginning of this section we demonstrated that the realizability condition
(2.11) is a consequence of nonanticipatory condition (2.7). Next we show that the
converse is also true, provided C' has full rank as assumed in (1.6).
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Corollary 2.3. Suppose that rank C' = m. Then, for any stabilizing requlator (2.15),
the realizability condition (2.11) and the nonanticipatory condition (2.7) are equiva-
lent.

Proof. The proof is immediate in the special case C' = [,,. In fact, for a regulator
(2.24) with M and N given by (2.25), condition (2.7) is a direct consequence of the
degree condition (2.23). For any other stabilizing regulator (2.24), it follows from the
definition of equivalence.

The general case follows from the fact that (2.15) is a subclass of (2.24). In fact,
writing (2.15) as

M(o)uy = N(o)Cxy + L(o)ry,

it follows from what has already been proved that M ~'NC is proper. Since C' has full
rank, this implies that M !N is proper. That M 'L is proper follows directly. [

3. T-universal regulators

As a preliminary for the analysis in Sections 4 and 5, in this section we consider the
problem of controlling the undisturbed system

L1 — A.Tt + BU/t (31&)
ye = Cuy (3.1b)
2t = H..’Et + JUt (31C>

by feedback from the output y; so that it tracks a given reference signal r; in the sense
that

|ze — 7| = 0 ast— oo. (3.2)

As explained in Section 2 it is no restriction to assume that A is stable if it is assumed
that (A, B) is stabilizable and (C, A) is detectable. The solution of this problem is
simple and certainly known, but we include it for completeness and for conceptual
reasons.

More precisely, we want to find a stabilizing and realizable regulator of the form

M(o)u; = N(o)y; + L(o)r: (3.3)

which is universal for the asymptotic tracking problem in the sense that (3.2) holds
for all solutions of (3.1), (3.3) and all reference signals ;. More specifically we shall
refer to this property as T-universal.

Clearly, for (3.3) to be stabilizing and realizable, the matrix polynomials M (\),
N(X) and L(\) must satisfy the specifications of Theorem 2.1. It remains to inves-
tigate under what conditions the tracking criterion (3.2) is satisfied and under what
conditions this regulator is T-universal.

We begin by deriving a necessary condition for T-universality. Consider a reference
signal of the type

ry = Re{fem}, (3.4)

where 7 € C* and # € R are fixed but arbitrary. Then the closed-loop system (3.1),
(3.3) has solutions

z, = Re{ze}, y, = Re{7e™}, 2 = Re{2e}, w, = Re{ue}  (3.5)
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with
=W, Na, g=W,Na, z=W,(\a, (3.6)
where A = ¢ W, ()\) = (A,,—A)"'B, and W, and W, are defined by (2.8). Moreover,

A

But the tracking condition (3.2) requires that
|z¢ — | = |Re{(Z — f)ewt}| —0 ast— oo,

and, since 0 is arbitrary, this implies that Z = 7. Therefore, it follows from (3.5) and
(3.7) that

W, ()0, ()7 = . (3.8)

Now, in order that the regulator (3.3) be T-universal, (3.8) must hold for all r;, that
is, for all 7 and 6. Consequently, we must have

W)W, (\) = 1, (3.9)
on the unit circle and, by analytic continuation, in the rest of the complex plane.

Lemma 3.1. A stabilizing and realizable requlator (3.3) is T-universal if and only if
the identity (3.9) holds.

Proof. We have already proved that (3.9) is a necessary condition for (3.3) to be T-
universal, so it remains to prove that it is also sufficient. To this end, first assume
that there are positive numbers M, py such that |r,| < Mpf for all ¢. Then r, has a

Z-transform
FA) = ra
=0

which converges for |A| > po. It follows from (3.6) and (3.7) that W,(A)W,()) is
the transfer function from r; to z;, and hence (3.1),(3.3) has a solution z; with a Z-
transform W, (A\)®,(A\)7(\). But, if (3.9) holds, then Z = 7 and hence |z — r¢| = 0 for
all t. Because of stability any other solution z; tends asymptotically to this solution,
and therefore (3.2) holds. If r, increases so fast that it does not have a Z-transform,
set 1V :=r fort =0,1,...,NandrY := 0 fort > N, and let z}¥ be the corresponding
z-solution. Then it is easy to see that z¥ = 2 fort =0,1,..., N. Since N is arbitrary,

the conclusion follows. O

As a corollary we see that W,(co) must be full rank, or else (3.9) will be violated.
This implies that there are no delays between r; and u;. Indeed, the condition (3.9)
for T-universality imposes some rather stringent conditions on the system (3.1). In
particular, since W, is p x k and W, is k x p, (3.9) implies that k& > i, and J = W, (c0)
must have full rank.

Theorem 3.2. Suppose that A is stable. Then there exists a T-universal requlator
for the tracking problem if and only if there is a proper rational k X p matrix function
X (N\) with no poles in the region |\| > 1 which satisfies the equation

W.(NX(A) = 1, (3.10)
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which, in particular, implies that k := dimu; > p := dimry. In this case, let p be a
stable scalar polynomial such that

L(\) = p(NX (V) (3.11)

is a matriz polynomial, and let R(\) be a k x m matriz polynomial satisfying the first
degree constraint (2.14). Then, the regulator (2.15), with M and N given by (2.16), is
a T-universal requlator for the tracking problem, and any other T-universal requlator
15 equivalent to one obtained in this way.

Proof. First, suppose that there exists a T-universal regulator of the form (3.3). Then,
according to Lemma 3.1, there exists a solution X (\) to (3.10) with the prescribed
properties, namely W, ()). In fact, in view of (2.9), (2.19) and the fact that Z()\) is
stable, it follows that \ifu()\) has no poles in the region |A\| > 1. Moreover, since the
regulator is realizable, \i/u()\) is proper.

Next, suppose that (3.10) has a solution X (\) which is proper with no poles in the
region |[A\| > 1, and let p, R and L be defined as in the theorem. (Note that in order
to satisfy the first of degree conditions (2.14) we may need to choose p and L which
are not coprime.) Then, by Theorem 2.1, the regulator (2.15) with M, N given by
(2.16) is stabilizing and realizable and

: L(X)

U, (A) Pk (3.12)
i.e., in view of (3.11), ¥,, = X. Consequently, it follows from (3.10) and Lemma 3.1
that the regulator is T-universal.

It remains to prove the last statement of the theorem. To this end, suppose that
the regulator

My(o)us = No(o)y: + Lo(o)ry (3.13)

is T-universal. Then, in particular, it is stabilizing and realizable, and thus, by
Theorem 2.1, there are some p, R and L with the properties specified in Theorem 2.1
such that the regulator (2.15) with M, N given by (2.16) is equivalent to (3.13). Now,
U, is invariant under this equivalence. Therefore, since (3.9) holds for the regulator
(3.13) by Lemma 3.1, (3.9) also holds for (2.15). However, by Theorem 2.1, (3.12)
holds, and hence there is an X, namely ¥, satisfying (3.10) and (3.11). [

In general, a solution to (3.10) cannot be expected to be unique, but if £k = p, only
one solution is possible, namely

X(N) = W),

z

and this would require that W_!()\) is a stable, proper rational function, implying
that W, must be minimum phase with no zeros at infinity. In particular, J := W, (00)
must be nonsingular.

Corollary 3.3. Suppose that A is stable and the transfer function W, is square, i.e.,
k := dimu; = p := dimr,. Then there is a T-universal regulator for the tracking
problem if and only if W' is proper with no poles in the region |\| > 1. In this case,
let p(N\) be a stable scalar polynomial such that p(\)W1()\) is a matriz polynomial

z
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and R(X) is a k xm matriz polynomial satisfying the degree requirement (2.14). Then,
if M and N are defined by (2.16) and L by

L(Y) = oW () (3.14)

the regulator (2.15) is a T-universal requlator, and any other T-universal requlator is
equivalent to one obtained in this way.

A T-universal regulator exists only under rather special conditions. However, if
we restrict our attention to harmonic reference signals (1.4), these conditions can be
considerably relaxed, and we may also allow for external harmonic disturbances. This
is the topic of the next section.

4. Universal tracking regulators in harmonically disturbed systems

We now return to the situation described in Section 1, where the control system takes
the form (1.1) with a harmonic disturbance (1.2), and where there is a harmonic
reference signal (1.4). Although we may allow the index set J, to be empty, for
tracking we must take J, # ().

The first question to be answered is when it is possible to find a regulator (1.12) in
L such that

|ze — 7] = 0 ast — oo, (4.1)

which is universal in the sense that (4.1) holds for all values of {w)}cg, and {r?¥},cg,
and does not depend on these vector amplitudes. We shall refer to such a regulator
as a universal tracking requlator. For convenience, in the sequel we use the notation

Aj=e% j=1,2... N. (4.2)

Theorem 4.1. Suppose that the matriz A is stable, and let G(X) and V,(X\) be the
matriz polynomials defined by (2.13). Moreover, let W,(\) be the ux k matriz function
defined by (2.8) and F(X) the m X £ matriz polynomial

F(\) :== CG\E = x(\)C(AI, — A)"'E. (4.3)

Then, for a universal tracking requlator to exist in L, it is necessary that the rank
condition

rank W,(\;) = p:=dimr, forallj e, (4.4)
holds, and it is sufficient that both rank conditions (4.4) and
rank F'()\;) = ¢ :=dimw; forallj €7, (4.5)

hold. In particular, (4.4) requires that pn < k := dimwu,, and (4.5) that { < m =
dimy,. More precisely, let p(\) be an arbitrary stable scalar real polynomial, and let
R(\) and L(X) be matriz polynomials, of dimensions k x m and k x p respectively,
satisfying the degree requirements (2.14) and the interpolation conditions

W.(A)RNFN) = —p\H(NL, —A)T'E forj e, (4.6a)
W.(A)L(A)) p(Aj) 1y forj €7,. (4.6b)
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Then, if M and N are given by (2.16), the regulator (2.15) is a universal tracking reg-
ulator, and any other universal tracking regulator (2.15) is equivalent to one obtained
i this way.

Proof. Whenever a linear stabilizing regulator is applied to the system (1.1), the
process (x4, u;) tends exponentially to the harmonic steady-state solution

N N
Ty = Zx(j)eieﬂ't, Uy = Zu(j)ewjt, (4.7)
j=1 J=1
where
29 = W, (\)Ew + U, (\)r?) (4.8)
u = T, (\)Ew? 4 W, (\)r) (4.8b)

v, ¥, \ifm and \i/u being the closed-loop transfer functions defined in Section 2. In
fact, for any regulator in £, Z()), defined by (2.4), is a stable matrix polynomial. In
the same way, in view of (1.1c), 2; tends exponentially to

Z 2Dttt 0 = W, (A + H\I, — A) 7 Bw. (4.9)

Now, the basic idea is that the tracking condition (4.1) is achieved precisely when
the cost function (1.7) is zero. It is easy to see that

N
Do =) [0 —rOP. (4.10)
j=1

To see this, observe that, if f; and ¢, are two harmonic vector sequences

N
_ Z f(j)eint and g = Zg 19 t
=1

with {6,} distinct as in (1.3), and () is an arbitrary matrix of appropriate dimensions,
then

N
h;nsup th Qg = llm — th Qg = Zf(j)*Qg(j). (4.11)
—00 jil
Moreover, in view of (4.8b) and (4.9),
29— O = W, (AW, (N\)E + HN T, — A)TLEJw® 4 [Wo(\) W, () — L)rY)

and consequently (4.10) equals zero for all values of {wW};cg and {r)},cy if and
only if

W)U, \)E = —H(\I,—A)'E forjed, (4.12a)

W.(\)W.(\) = I, for j € J,. (4.12D)

Theorem 2.1 states that the regulator (2.15) is stabilizing if M and N are defined by
(2.16) for some stable scalar real polynomial p(\) and some real matrix polynomials
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R(X\) and L(\) satisfying (2.14) and that any other stabilizing and realizable regulator
(2.15) is equivalent to one obtained in this way. Moreover,
R(\) - L()\)
U,(\) = —=CG(N), V,(\)=—:, (4.13)
p(A) p(N)
which inserted into (4.12), yields precisely (4.6).
If the rank conditions (4.5) and (4.4) hold, the interpolation conditions (4.6) have
a solution, and the general solution is

R(Xj) = W.(u) W)W () T [=p (V) HN T, — A) T E]
X [FOG)EON]TYFO)* + Ry for j €7,
L(X) = pOg) W (A W (A)W. (A7 + Ly for j €7,

where, for j =1,2,..., N, Rj and f/j are arbitrary matrices such that Wz(/\j)*RjF()\j) =
0 and W,(\;)*L; = 0. Here the degree of the stable polynomial p is chosen sufficiently
high to satisfy the degree constraints (2.14). On the other hand, the rank condition

(4.4) is also necessary for the existence of a universal tracking regulator. In fact, since
p(A) is stable, (4.12b) cannot hold if rank W,();) < u for some j =1,2,...,N. [

Remark 4.2. The two rank conditions (4.5) and (4.4) in Theorem 4.1, which of
course can be stated in terms of zeros of certain transfer functions, have different
status. If (4.4) is violated, the interpolation condition (4.6b) cannot hold, so there
could be no universal tracking regulator. On the other hand, if (4.4) holds but (4.5)
does not, interpolation condition (4.6a) could still be valid, as the rank of the right
member could be less than /. However, this is a nongeneric situation, and hence
cannot be expected to occur in practice. In fact, if £ > m and F(\;)F(\;)* > 0, the
following equation must hold:

H(NI, — A) T E{l = FO) [FOGF(G) T F(M\)} =0,
which will occur only on a lower-dimensional algebraic set in the parameter space.

Theorem 4.1 provides a complete solution of a problem studied in various degrees
of generality in [4, 5, 6, 7, 8, 13, 16] and of course consistent with the solutions
given there, although given in a different form and in continuous time. If w; = 0,
rank condition (4.5) becomes void and only (4.4), a considerably weaker version of
condition (3.10) in Section 3, remains. Hence, for universal tracking regulators to
exist the condition p < k is necessary, and if there are external disturbances w;, in
practice, we must also have ¢ < m. Consequently, as also noted in [4, 7, 8, 13, 16],
asymptotic tracking is only possible under certain specific conditions.

Remark 4.3. (Internal Model Principle.) The situation most often studied in the
literature is when 2z, = y, i.e., H = C, J = 0 and ¢ = m, and when the regulator
(2.15) takes the form
uy = M(0) "N (0)(ye — 1v),

obtained by setting L(A) = —N(X). We assume that the rank conditions (4.4) and
(4.5) are satisfied so that ¢ < m < k. For robustness it is desirable to include a model
of the disturbance dynamics in the regulator. This is the internal model principle.
Following [3], we replace the matrix fraction representation M !N by the (reachable)
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matrix fraction representation PD~! so that ND = MP. The harmonic dynamics
is then included in the regulator dynamics by setting D(A\) = ¢(A)Dg(\), where
P(N) = I (A — A;) and Dy(]) is a stable matrix polynomial. Then, by (2.16),

0=N(X)D(X;) = M(A)P(X) = [p(Aj) Ik + ROG)Vy(A)]IP(), 5 =1,2,...,N,

which, in view of the fact that V,, = xW, yields

p(A)) o
R(\) = =35 POV PO, 5 =12, N,
X(A5)
where we have assumed that W, P has no zeros in the points A, ..., Ay. (Otherwise

we include a simple feedback loop to move the zeros.) These R();) clearly satisfy the
interpolation conditions (4.6). In fact, since H = C, J = 0 and L(\) = —N(A), by
(2.16), these can be written

W.ONRODFO,) = ~Z38F0) forj €3,
o pN) ,
W.ODRM) = —T550 forjed,

Consequently we see that the internal-model-principle regulators form a subclass of
the ones considered above.

The rank condition (4.5) becomes void if rank C' = n, which is equivalent to the
case with complete state information, i.e., the case when 3; = ;. Then the formulas
for the regulator also simplify considerably.

Theorem 4.4. Suppose that C' = I, so that y; = x;. Moreover, suppose that A is
stable and that condition (1.6) holds. Then, there exists a universal tracking regulator
(2.24) in L if and only if the rank condition (4.4) holds. In fact, let p(\) be a stable
scalar real polynomial, and let R(\) and L(X\) be matriz polynomials satisfying the
degree constraints (2.23) and the interpolation conditions

W.ARME = —pM\HNL, — A)T'E  for j €Iy (4.14a)
W (L) = p(A) L forjed,. (4.14b)

Then, if M and N are given by (2.25), the regulator (2.24) is a universal tracking
requlator, any other universal tracking regulator (2.24) is equivalent to one obtained
i this way.

Proof. The proof follows the same lines as that of Theorem 4.1, except that (2.26)
from Corollary 2.2 is used in lieu of (4.13). Since rank E = ¢ < n, (E*E)~! exists
and (4.14a) can be solved. O

When p > k, there are no universal tracking regulators, and in order to damp the
steady state tracking error we shall therefore next turn to an optimization procedure.
This is the topic of the next section.
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5. Linear-quadratic optimization for tracking and damping

We now return to the optimization problem stated in the introduction. In this section
we consider only linear regulators. Later, in Section 6, we demonstrate that under
slightly stronger technical conditions the optimal universal regulators presented here
are actually optimal in the much larger class N, which includes nonlinear regulators.

Let us recall that the problem under consideration is to control the disturbed system
(1.1) by feedback from the output ¥ so as to minimize the cost function

T
) 1
¢ = limsup T Z{A0<1’t, u) + |2 — ), (5.1)

T—o0 —0

where Ag(z,u) is the quadratic form defined by (1.9). Hence we may not only want
to damp the tracking error, but also some internal systems variables. As before, both
the disturbance w; and the reference signal r; are harmonic and given by (1.5), where
only the frequencies are known. The optimization is performed over the class £ of
stabilizing and realizable linear regulators (1.12). The problem under consideration is
(i) to find the conditions under which there are optimal regulators which are universal
in the sense that they are optimal for all choices of the amplitudes of (1.5) and
independent of these and (ii) to characterize the class of all such universal optimal
regulators.

To address this problem, let us first take a closer look at the cost function (5.1). A
straight-forward reformulation taking (1.1c) into consideration yields

T
1
® = limsup T Z{A(zt, up) —ryHey — xf Hry — rfJuy — uf JJ'ry +rre o (5.2)
=0

T—o00

where A(x,u) is the real quadratic form

- () (¢ 0

with the real matrices ), S and R given by
Q=Qo+HH, S=S+H"J R=Ry+JJ (5.4)

The quadratic form (5.3) need not be nonnegative definite but must of course satisfy
some condition insuring that inf ® £ —oo. As we shall see, a sufficient condition for
this is the strong frequency domain condition, i.e., that there is a 6 > 0 such that

A(@,a) = 6(|2)* + |al*) (5.5)
for all # € C", @ € C* satisfying
A\t = At + Bu (5.6)

for all A € C such that |A\| = 1. It can be shown [21] that if this condition fails in
a strong way, i.e. there are Z, @ and A, |A\| = 1, such that A(Z,4) < 0, then there
is an external disturbance w; such that inf & = —oo. In this section, however, we

shall only need the weak frequency domain condition that (5.5) and (5.6) hold for
A= A1, Ag, ..., Ay, defined as in (4.2).
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Both of these conditions are invariant under the action of the feedback group
(A,B) — (TAT '+ TBK,TB),

where T is a nonsingular matrix and K is an arbitrary matrix of appropriate dimen-
sions. Moreover, since A has no eigenvalues on the unit circle, the inverse

Ay = (A, — A)! (5.7)

exists for all A on the unit circle, and hence & = A, Bu so that A(Z,a) = a*II(\)w,
where II(\) is the Hermitian k& x k& matrix function

=[5 18 A [ 63
In this notation the strong frequency domain condition may be written
II(A) > 0 for all A on the unit circle (5.9)
and the weak one as
II(A;) >0 forj=1,2,...,N. (5.10)

We now state the main result of this section. It will be strengthened in Section 6,
where we show that, under mild technical conditions, the optimal universal regulator
in L is also optimal in the wider class N.

Theorem 5.1. Let G(\), V() and F(X\) be the matriz polynomials defined by (2.13)
and (4.3). Suppose that the matriz A is stable and that the weak frequency domain
condition (5.10) holds, and suppose that

rank F(\;) =¢ for all j € J,, (5.11)

i.€., in particular that m = dimy, > ¢ := dimw;. Then, there exists an optimal
requlator in L which is universal in the sense that it is optimal for all values of
{wD}eq, and {rV},cq, and does not depend on these vector amplitudes.

More precisely, let p(\) be an arbitrary stable scalar real polynomial, and let R(\)
and L(X\) be matriz polynomials, of dimensions kxm and k x p respectively, satisfying
the degree requirements (2.14) and the interpolation conditions

RONF(Q) = pA)U)  forj €T (5.12a)
L) = p(M)UR)  forjed, (5.12b)

with U and U given by
U\ = —TI(\) HQALB + S|*A\E, U()\) =TI(\) "W, (N, (5.13)

where W,(\) := HA\B + J. Then the regulator (2.15) is an universal regulator,
which is optimal in L, provided M and N are given by (2.16), and any other universal
requlator (2.15), which is optimal in L, is equivalent to one obtained in this way.
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Since, by assumption, F'(A;)*F();) is nonsingular for j € J,, (5.12a) has the solu-
tion

R(A;) = pONUM)IEN) FOGTEFN) + Ry, RiF(N) =0 (5.14)

for j € J,, and these are precisely all solutions of (5.12a). Clearly, there are al-
ways matrix polynomials R(A) and L(\) satisfying (5.14), (5.12b) and the degree
constraints (2.14), provided the degree of the stable scalar polynomial p()) is chosen
sufficiently large.

Remark 5.2. If m < {, there exist optimal regulators, but, as explained in Re-
mark 4.2, universality is not a generic property, and therefore, for all practical pur-
poses, there are no optimal universal regulators if m < /.

Remark 5.3. Before proceeding to the proof of Theorem 5.1, let us make certain
that it is consistent with the results of Section 4. To this end, let us consider a cost
function (1.7), i.e., suppose that Ag = 0. Then

() = W. () W.(0),

where the p X k matrix function W, is given by (2.8). If u < k, the weak frequency
domain condition cannot hold, so Theorem 5.1 does not apply. Instead, Theorem 4.1
should be used. If y = k, the weak frequency domain condition is a consequence of
condition (4.4), and it is easy to check that the optimal cost will be zero, as required
by Theorem 4.1. Moreover, interpolation conditions (5.12) and (4.6) are identical.
Finally, if ¢+ > k, no universal tracking regulator is exists by Theorem 4.1, and the
optimal cost will be nonzero in general.

Remark 5.4. (Generalized Internal Model Principle.) As in Remark 4.3, let us con-
sider the case when 2, = y;, so that H = C, J = 0, p = m and V, = xW,, and

L(A) = —N()) in the regulator (2.15). For simplicity, also assume that J, = J,,. If
Ao =0and m = p > k and m > ¢, the interpolation conditions (5.12) can be written
P Aj * - *
ROVFO) = =28 i oy w ) W,y F )
xX(A5)
R())) - )\j, (W (A W (A7 TWL(N)
X(A)

for j = 1,2,..., N, as can be seen from (2.16), (5.13) and the fact that @ = C*C,
S =0 and R = 0. All of these interpolation conditions are satisfied if the second set
is, and in this case (2.16) implies that

M) =0 j=12,... N,

which could be interpreted as a generalized internal model principle for the the opti-
mization problem.

The basic idea behind the proof of Theorem 5.1 is, as for Theorem 4.1, that,
whenever a linear stabilizing regulator is applied to the system (1.1), the process
(x4, us) tends exponentially to the harmonic steady-state solution (4.7). Therefore,
the cost function (5.1) depends only on the harmonic component (4.7) of (x4, us). In
fact, we have the following lemma. The proof follows from a simple completion-of-
squares argument and is deferred to Appendix A.
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Lemma 5.5. Let (x4, u;) be any solution to the closed loop system (1.1), (1.12), where
(1.12) is a stabilizing and realizable regulator, and suppose that the weak frequency
domain condition (5.10) holds. Then the cost function (5.1) ezists as a usual limit,
and it takes the value

® =" {(u? —ul)) T U — )} + @i, (5.15)

where, for 7 =1,2,..., N,
W = U wD + T()r (5.16)

opt -

with U and U given by (5.13) and @i by

mm Z (I)mzm ¢§”‘I’7L27’L - qj E)jp)t*H(/\ ) (o]p)t’ (517)
where
= [A\,Bw](Q — H* H)[AA Ew]
+ [HAy, BwD — D] [HA\, Ew) — ¢ 0], (5.18)
In the expression (5.15) for the cost function ®, only v, u®, ... u®) depend on

the regulator to be chosen. They are defined by (4.8b), i.e
u =W, (\)Ew? + W, (\)r. (5.19)

Recall that we consider the class W of external disturbances with arbitrary w) for
j€Jy and w) =0 for j G Jw = {1,2,...,N}\J, and the class R of reference signals
with rU) for j € J, and U —OforjEjr:{1,2,...,N}\Jr.

Consequently, if we could find a stabilizing and realizable regulator (1.12) such that

uD u® . u) satisfy the optimality conditions
w9 =) ) =1,2 N (5.20)
0pt7 ..7 Y AR Y *

which, in view of (5.19), is the same as
UM)w + TP = U, (\)Ew® 4+ 0, (A\)r, (5.21)

then this regulator would be optimal. If, in addition, this regulator does not depend
on the amplitudes w®, w® ... w®™ and r® +@ ™) and the conditions (5.21)
hold for all {wW}s, and {r@}y , ie., all disturbances in W and all reference signals
in R, then this optimal regulator is also universal. This condition holds if and only
if

U,(A\)E = U\ forjeld, (5.22a)
U, () = U(\) forjed, (5.22b)
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Proof of Theorem 5.1. Theorem 2.1 states that the regulator (2.15) is stabilizing if M
and N are defined by (2.16) for some stable scalar real polynomial p(A) and some real
matrix polynomial R(\) satisfying (2.14) and that any other stabilizing and realizable
regulator (2.15) is equivalent to one obtained in this way. Moreover,
R(A) : LA

U, (A) ey CG(N), Y, (N ek (5.23)
We have demonstrated above that (5.22) is a necessary condition for the regulator
(2.15) to be an optimal universal regulator, and inserting (5.23) into (5.22) yield
precisely (5.12). Clearly, as we have already discussed, there are always matrix poly-
nomials R(A) and L(\) satisfying these conditions and the degree constraints (2.14)
provided the degree of the stable scalar polynomial p(\) is chosen sufficiently large,
and provided condition (5.11) is satisfied.

It remains to prove the converse statement. For any optimal universal regulator
[M, N, L], the value ® of the cost function (5.1) equals @, defined by (5.17). It
follows from (5.15) and the fact that II(\;) > 0, for j = 1,2,..., N, that (5.20) holds
for all {w};cg,, and {r()};c5 . Therefore (5.22) follows from (5.21). By Theorem
2.1, the regulator [M, N, i] is equivalent to (2.15) with M, N given by (2.16) for some
p, R, L satisfying the requirements of Theorem 5.1. This regulator is also optimal since
equivalent regulators have the same cost ®. It is also universal because [M, N, L] does
not depend on {w@W};cy, and {rV},cq. O

Corollary 5.6. The optimal value of the cost function (5.1) in the class L is @,
defined by (5.17) and (5.16).

Note that, although an optimal universal regulator will not depend on {w(j)}jegw
and {r(},cg , the cost function (5.17) will.

In the special case of complete state information, i.e., y, = x;, condition (5.11) is
always satisfied. In view of Corollary 2.2, Theorem 5.1 can be considerably simplified
in this case, so we state it separately. The proof is the same as for Theorem 5.1,
except that we now use the equations of Corollary 2.2.

Theorem 5.7. Suppose that C' = I,, so that y; = x;. Moreover, suppose that A is
stable and that condition (1.6) holds. Then, if the weak frequency domain condition
(5.10) holds, there exists a universal requlator (2.24), which is optimal in L. In fact,
let p(A\) be a stable scalar real polynomial, and let R(\) and L(X\) be matriz polynomials
satisfying the degree constraints (2.23) and the interpolation conditions

RO\E = p(M)U(N;)  for j €7, (5.24a)
L) = pM)UN)  forj €Ty, (5.24b)

where U and U are defined as in (5.13). Then, if M and N are given by (2.25), the
requlator (2.24) is a universal requlator, which is optimal in L. Conversely, any other
universal requlator (2.24), which is optimal in L, is equivalent to one obtained in this
way. Finally, the optimal value of the cost function (5.1) is given by (5.17).

Since, by assumption, E*E is a nonsingular matrix of dimension ¢ x ¢, (5.24a) has
the solution

R(\) = pONUM)(E*E)'E* + R;, R;E=0 (5.25)
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for j € J,. There are always matrix polynomials R(\) and L(\) satisfying (5.25),
(5.24b) and the degree constraints (2.23) provided the degree of the stable scalar
polynomial p()\) is chosen sufficiently large.

6. Optimality in the class of nonlinear regulators

In this section we show that the universal optimal linear regulators described in
Theorems 5.1 and 5.7 are actually optimal in a wide class of nonlinear regulators. We
now define this class.

Given the control system (1.1), consider the class N of nonlinear regulators

Ut = Ot(Ytr Y153 Yty Tt, Tt—15 -+ > Ttp), (6.1)
which are stabilizing in the sense that any solution (z,u;) of the closed loop system
consisting of (1.1) and (6.1) satisfies the condition

1
\ﬁ]ﬂct\ — 0 ast— oc. (6.2)

This stability condition is quite weak but will suffice for our purposes. Of course, a
weaker condition has the advantage of allowing for a larger class of controls.

We consider the same problem as in Section 5, except that we now optimize over all
regulators in N. Clearly, N D L. The only price we have to pay for this generalization
is that the weak frequency domain condition needs to be replaced by the strong one.

Theorem 6.1. Let A be stable, and suppose that the rank condition (5.11) holds.
Then, if the strong frequency domain condition (5.9) holds, the linear optimal univer-
sal requlators of Theorem 5.1 are optimal in the class N.

It turns out that Theorem 6.1 is a simple consequence of the corresponding result for
complete state information. In fact, the class of stabilizing and realizable regulators

M(U)Ut = N(U)yt + L(O’)Tt with Y = C'a:t
is a subclass of the class of stabilizing and realizable regulators
M(o)u; = N(o)xy + L(o)ry

in that only a special structure of IV is required. But, as seen in Section 5, an optimal
universal regulator in the former class is optimal also in the latter, since the same
optimal value ®,,;, is achieved (Corollary 5.6 and Theorem 5.7). (The only difference
between the cases of complete and incomplete state information is that a higher degree
regulator may be required in the latter case to achieve the optimum.) Consequently,
if we can prove the following theorem, we have also proved Theorem 6.1.

Theorem 6.2. Let A be stable, and suppose that C' = I,, and that rank E = (. Then,
if the strong frequency domain condition (5.9) holds, the linear optimal universal
requlators of Theorem 5.7 are optimal in the class N.

In order to prove this theorem we consider an optimization problem which unlike
that in Section 5 does not require that a linear regulator has been applied. More
precisely, let us first consider the problem of finding a process {(x,u¢)}iez, which
minimizes the cost function (1.8), subject to the constraints (6.2) and

Tyy1 = Axy + Bug + vy, 19 = a, (6.3)
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where now {7}z, and {v;}icz, are arbitrary bounded and complex-valued vector
sequences.

It is well-known (see, e.g., [29, 25, 24, 20, 21]) that, if the strong frequency domain
condition (5.9) holds and (A, B) is stabilizable, then the algebraic Riccati equation

P = A*PA— (A*PB + S)(B*PB + R) (A*PB + 5)* + Q, (6.4)
has a unique symmetric solution P which renders the feedback matrix
['=A+BK where K=—(B*PB+ R) '(A*PB+ S)* (6.5)

stable in the sense that all eigenvalues of I' lie strictly inside the unit circle. We shall
refer to this solution as the stabilizing solution of (6.4). For this solution we also have
that

R=B*PB+R (6.6)

is positive definite.!
Then we have the following result, which should be compared to Theorem 2.3 in
[21], and the proof of which we defer to Appendix B.

Lemma 6.3. Let (A, B) be stabilizable and suppose that the strong frequency domain
condition (5.9) holds so that (6.4) has a stabilizing solution P. Moreover, let

Ty = —ﬁi_l(B*pt_i_l + B*Pvt - J*Tt), (67)
where
pr=Y (D) Py, = > (T HH + JK)*ry. (6.8)
k=t k=t

Then the problem to minimize the cost function (1.8) subject to constraints (6.2) and
(6.3) is solved by a process (x4, u;) such that

Ut = Kl't “+ T+ €¢, (69)

where K is given by (6.5) and {€ }iez, is any vector sequence such that

T
1
limsup — > |&f* =0. 6.10
THOOP T ; €] ( )
The optimal value of the cost function is
1
Din = lim Sup — (_QT+1) > (611)
T—o0 T
where
Q1 = Gt — V; Pvy — i v — U Dp + W:Rﬂ't +riry, g =0. (6.12)

If the limit limp_ %qTH exists, any optimal process (xy,u;) is produced in this way.

INote that there is a misprint on page 788 in [21]: In Theorem 2.1, replace ‘statements hold’ for
‘statements are equivalent’.
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Note that the control (6.9) cannot in general be used in practice, since it depends
on future values of vy and r,. Even in the harmonic case when this dependence can be
resolved, this control law has serious disadvantages [21, Section III]. It is developed
here as an instrument of proof.

Next, let us return to our original problem and take v; := Fw,; and r; to be har-
monic, given by (1.5). Then a simple calculation, using (6.7) and (6.8), yields the
representation

N
T = Zﬂ-(j)ezﬂjt with 7\ = ij(j) + ﬂj?”(j), (6.13)
j=1
where
I, = —R'B*(I-)\I")7'PE,
I, = —RMJ* 4+ \B(I—-\NI)HH+ JK).

We are now in a position to prove Theorem 6.1.

Proof of Theorem 6.1. Clearly, for any regulators in N, (6.11) is a lower bound for
the cost ®. Therefore, if we can demonstrate that there is a regulator in £ which
achieves the same value (6.11) of the cost ®, this regulator must be optimal also in
N, and so must all regulators which are optimal in L.

To this end, let us introduce a new control ; so that

up = Ky + Uy, (6.14)
transforming the system (1.1a) to
i1 = lxy + Buy + Fwy,. (6.15)
We want to find a stabilizing and realizable regulator
M(o)tu, = N(o)xy + L(o)r, (6.16)

so that the closed loop system (6.14), (6.15), (6.16) has a solution (xy, u,;) satisfying
(6.9) for some ¢; with the property (6.10). Then, by Lemma 6.3, the regulator (6.14),
(6.16), i.c.,

M(o)uy = [N (o) + M(0) K]z + L(o)re, (6.17)

is optimal in N. Therefore, the optimal linear regulators of Theorem 2.1 must be
optimal also in N.

Since (6.16) is stabilizing, the solution (x;, ;) of the closed-loop system (6.15),
(6.16) tends exponentially to a harmonic solution

N N
l’? = E :L'(J)elgjt7 'E[/? = E a(])elejt’
J=1 J=1

which of course yields the same value to ® as (2, u;). Now, if we can choose M, N, L
so that

a9 =70 for j=1,2,... N, (6.18)
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and hence @Y = 7, then ¢ := @, — m; has the the property (6.10), and (6.14) becomes
(6.9) as required.

To show that there are M, N, L such that (6.18) holds, we first apply Corollary
2.2 to the system (6.15), where I' takes the place of A and 4; that of u;. In fact, by
Corollary 2.2, there is a stable scalar polynomial p and matrix polynomials R, L such
that deg R < deg p and deg L < deg p so that M, N are given by

M(\) = p(\ I+ R\)B and N()) = R(A)(M, —T)

and
) B R(\) - B LX)
V(A = —p(A) ;o (N = —PO\).

But 4; tends exponentially to the harmonic solution 4?. Since therefore

N
X R(A)) L) ] e
00 — {_JEw(J)+ 7 ,.(0) | pifst
t Z p(A)) p(A;)
and 7, is given by (6.13), the optimality condition (6.18) will be satisfied for all
{w(J)}]EJw and {T(j)}jejr lf

ROVE = pA)I, j €9,

L(Xj) = p(X)Iy, €T,

Since E is full rank, in view of the discussion in Section 5 p, R, L can be chosen to
satisfy these interpolation conditions. [J

j=1

7. Some simple numerical examples

To illustrate the results of this paper, let us consider the system

{Z/t+2 + ayi1 + by = ug + wy (7.1)

2t = Y1 + CUy
where u; is the control, y; and z; are outputs, and the characteristic polynomial
x(A) =N +aX+b
is stable with b # 0. Defining the state
T = |:yt+1:| ’
Yt

the plant equations (7.1) can be written in the state space form (1.1), where

—a —b 1 1
=[5 Bl e=fi]
so that x is the characteristic polynomial of A, and
c=1[0 1], H=[ 0], J=c

The matrix polynomials (2.13) are

G(A):B Ajrba} and V,(\) = 1.
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Let us first take w; = 0 and consider the problem to find a T-universal regulator
M(o)uy = N(o)y: + L(o)ry (7.2)

so that z; tends asymptotically to r;. By Corollary 3.3, a T-universal regulator exists
if and only if

c#0 and 1 stable, (7.3)

where
Y(A) := eA? + (ac + 1)\ + be.

In fact, W.(A) = ¥(A\)/x(N). In this case, (7.2) is a T-universal regulator if and only
if

M =pyp+ R, N=xR, L=px (7.4)

for some polynomials py and R such that p, is stable and deg R < degpg + 1 or is
equivalent to one obtained in this way. This corresponds to the choice p = ppyp. Of
course asymptotic tracking is achieved for all choices of reference signal r;.

If, instead, we consider a reference signal

re = o cos(01t + 1) + ag cos(Oat + p2), (7.5)

where the frequencies 61, 6, are given, but the amplitudes a;, as and the phases 1, ©9
are unknown, the class of regulators (7.2) which achieve asymptotic tracking is much
larger, and condition (7.3) need not be satisfied but can be exchanged for

V() #£0 for j=1,2. (7.6)
In fact, by Theorem 4.1, in this case we may choose any stabilizing regulator
[o(0) + R(0)]us = x(0) R(0)ys + L(o)re, (7.7)
provided p is stable and the degree constraint (2.14) and the interpolation conditions
L(e™) = p(e™)x(e"™) /4 (e"™)  for j = 1,2

are satisfied. The same regulator is obtained by applying Theorem 5.1, now observing
that (7.6) is the weak frequency domain condition; see Remark 5.3. This allows for
more tuning parameters to satisfy other design specifications. Of course, if condition
(7.3) is fulfilled, the T-universal regulator can still be used.

As a numerical example, suppose that a = 0.4, b= 0.7 and ¢ = 1, and let §; = 1.0
and 6 = 0.5. Then condition (7.3) is satisfied, so a T-universal regulator exists. Such
a regulator is obtained by, for example, setting po =1 and R = 0in (7.4). If a; =2
and ay = 1 and the initial conditions are yo = y; = 1, this yields the error depicted
in Figure 6.1. The dashed line in the same figure is the tracking error obtained by
setting u; = 0.

Next, let us take ¢ = 0.75, while a and b remain the same. Then 1) becomes unstable,
so a T-universal regulator fails to exist. Although condition (7.3) fails, we could still
obtain asymptotic tracking by using a universal tracking regulator, constructed as in
Theorem 4.1, provided condition (7.6) holds, and we shall present a simulation for
this case in the end of the section.
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Figure 6.1
We now add an harmonic disturbance
wy = a3 cos(fst + p3) + vy cos(Ost + @) (7.8)

in the system (7.1), where 63, 0, are given, but as, ay and @3, p, are unknown. Suppose
we want determine a optimal universal regulator for the cost function

T
) 1
@:hmsupTZﬂzt—TtF—i-ﬁutz}, ﬂz 0. (79)
t=0

T—o0

Since the matrices @, S and R in (5.4) become
. 10 _|c . 2
Q_|i0 O:|> S_|:0:|7 R—ﬁ—FC,

a simple calculation yields
2

H(A):]% g

for (5.8), and therefore the strong frequency domain condition (5.9) is always satisfied
if 5 > 0, so any optimal universal regulator (7.2) is optimal in the larger class N of
possibly nonlinear regulators described in Section 6. If § = 0, the strong frequency
domain condition will fail if and only if the polynomial ¢ has a root on the unit circle,
while the weak frequency condition (5.10) will still hold provided we avoid choosing
any of the frequencies in (7.5) and (7.8) so that %1, €2 ¢ or ei% is such a root.

Next, let us consider the interpolation condition (5.12). Clearly, F'()\) defined by
(4.3), is identically one, and a straight-forward calculation yields

[N+ BIx (M (NP + BlIx(M)]?

for any A on the unit circle. In order to construct an optimal universal regulator we
need to choose a stable polynomial

U\ =

p(/\) = )\5 + pl)\4 + ,02)\5 + p3)\2 + p4)\ + ps,
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of degree at least five. The parameters py, ps, p3, p4, p5 as well as § will be available
for tuning in order to improve the overall design. Then, defining the real numbers
Uy, V1, U2, V2, U3, U3, Uyg, U4 via

p(e®NU (™) = wuj+iv; forj=1,2
p(e)U () = w;+iv; for j =34,
it is easily seen that the polynomials
R(\) = RN+ RoXN*+ R3A+ Ry
LX) = LN+ LoN + LsA + Ly

will satisfy the interpolation conditions (5.12a) if and only if its coefficients satisfy
the linear system of equations

cos30; cos268, cosb, 1| |R; Ly uy Uz
sin 3(91 sin 2(91 sin 91 0 RQ L2 |V s
cos30y cos20y cosBy 1| |Rs La|  |us uy
sin 382 sin 2(92 sin 62 0 R4 L4 Vg Uy

Consequently, by Theorem 5.1, (7.7) is an optimal universal regulator if R(\) and
L(\) are determined in this way.

For an example, take as before a = 0.4, b = 0.7, and ¢ = 0.75. Moreover, we
choose a disturbance (7.8) with frequencies 65 = 0.5 and 6, = 0.3, while the harmonic
reference signal (7.5) has the same frequencies #; = 1.0, §; = 0.5 as in the first
simulation. In Figure 6.2 we illustrate the tracking error of the optimal universal
regulator corresponding to a polynomial p with roots 0.3 £ 0.3¢, 0.3 £ 0.2, 0.5 and
G = 0.75. The amplitudes in (7.5) and (7.8) have been taken tobe a1 = 2, g = a3 = 1
and a4 = 4, and the initial conditions are yy = y; = 1. As before, the dashed line
is the tracking error obtained by setting u; = 0. Remember that, since § # 0,
the control energy is also damped, so there is a certain trade off here. We remark
that it is important to tune the free parameters to obtain good properties of the
regulator. In particular, the transients, which do not affect the cost function, can
change dramatically with different choices of free parameters.
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Now, setting ¢ = 0 and a3 = a4 = = 0 instead, while keeping all the other
parameters the same, we obtain the errors in Figure 6.3. As seen, the error goes
asymptotically to zero, despite the fact that condition (7.3) is not fulfilled so that
a T-universal regulator does not exist. In fact, by Theorem 4.1, this is a universal
tracking regulator, which exists since ¥)(A) = A # 0 on the unit circle. In order to
speed up the convergence, the roots of p have been reset at 0.7 0.1z, 0.3 & 0.2¢ and
0.8. Since now we do not have the disturbance frequencies 63 = 0.5 and 6, = 0.3, we
could choose another R(\) to possibly get a universal tracking regulator with a better
transient.

Figure 6.3

8. Conclusions

In this paper we have given complete characterizations of regulators which satisfy
certain tracking specifications and which are universal in the sense that they are
independent of disturbances and tracking signals and apply regardless of the values
of these.

As a preliminary, we considered a problem of asymptotic tracking of an arbitrary
signal r;, and we characterized all regulators which are universal with respect to the
choice of r;. We showed that such universal regulators exist only under very special
conditions. These condition can be considerably relaxed if the reference signal is
exchanged for a harmonic signal with known frequencies but unknown amplitudes
and phases, and we want the regulator to be universal in the sense that it achieves
asymptotic tracking for all choices of amplitudes and phases. Then, if the dimension
i of the reference signal is no larger than the dimension k& of the control, such a
regulator exist under mild conditions. This is in harmony with other results in the
literature [4, 5, 6, 7, 8, 13, 16], where, however, the continuous-time case is considered.
We provided complete solutions of these problems in discrete time, and our proof is
considerably simpler.

If the system is also corrupted by a harmonic disturbance w;, asymptotic tracking
may still be possible provided the dimension ¢ of the disturbance is no larger than the
dimension m of the output available for feedback. However, if a certain rank condition
fails, which in particular is the case if ;1 > k, asymptotic tracking is not possible, but
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a steady state error will remain. Therefore, we considered next an optimal control
problem to damp the steady-state tracking error, also giving the option to damp
internal system variables. We characterized the class of all optimal regulators which
are universal in the sense that they are optimal for all choices of the amplitudes of r;
and w;. Such regulators were shown to exist if the weak frequency domain condition
holds and ¢ < m. On the other hand, if m < ¢, there are always algebraic conditions
on the system parameters, implying that universality is not a generic property in this
case.

We have also shown that all optimal universal regulators can be chosen as linear
even if the optimization is over a very large class of nonlinear regulators, provided the
strong frequency domain condition holds. We have given complete characterizations of
all linear optimal universal regulators in terms of parameterizations containing many
free parameters. This allows for a considerable amount of design freedom, which
can be used to satisfy other design specifications via loop shaping. Indeed, we stress
that our solutions are optimal in the sense stated in this paper only, and that other
desirable design specifications may not be satisfied for an arbitrary universal optimal
regulator.

Appendix A. Proof of Lemma 5.5

Since z; and u,; tend exponentially to the harmonic components (4.7), only these
contribute to the cost function (5.3), and consequently the usual limit (rather than

just limsup) does exist in (5.2), and it is given by & = Zjvzl ®U) where
B0 = A2, D) — O (H2D) 4+ JuD) — (HzD) 4+ JuD) D) 4 @40 (A1)

for j =1,2,..., N. In fact, this follows from the argument leading to (4.11). Now, in
view of the constraint (1.1a),

20 — AAj(Bu(j) + Ew(j)), (A.2)
and therefore (A.1) takes the form
oW =y TI\)u® + piu® + uD*p; + g5, (A.3)

where II(A;) > 0 if the weak frequency domain condition (5.10) is fulfilled. Here g; is
given by (5.18), and

p; = [QANB + ST Ay Bw") — [HA\B + J'rY). (A4)

Therefore, assuming that the weak frequency domain condition (5.10) holds so that
II(A;) > 0 for j =1,2,..., N, we may complete squares in (A.3) to obtain

OO = (u — ) T (! — ) + B2, (A.5)
where
ugp = ~TI0G) py B = 45— py T 'y (A.6)

From this the equations of the lemma follow readily.
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Appendix B. Proof of Lemma 6.3

The proof is similar, mutatis mutandis, to the one given in [21, Section II|. Recall
from (5.2) that the cost function can be written

® = limsu Qg ug, t), B.1
T—>oop Z oo ) ( )
where

Qz,u,t) = ANz,u) —rfHe — " H ry — r} Ju — u* J*ry + 1y (B.2)

with A(x,u) being the quadratic form (5.3). Next, introduce the Lyapunov function
V(z,t) = 2" Px + px + x"pr + ¢, (B.3)

where P is the unique stabilizing solution of (6.4), {pi}icz, is given by (6.8) and
{@:}iez, satisfies (6.12). Then, along the trajectory of (6.3),

Vg, t+1) = Vi(ag, t) + Qe ug, t) = (u — Koy — m)*R(uy — Kxy — ) (B.4)

where 7 is given by (6.7).

In fact, inserting (6.3) and completing squares in the left member of (B.4) yields
the right member of (B.4) plus a number of terms which are either quadratic in z,
linear in x;, or constant with respect to x;. The quadratic terms cancel due to the fact
that P satisfies the algebraic Riccati equation (6.4), and the constant terms cancel
due to (6.12). Finally the linear terms cancel provided

Pt = F*pt+1 + F*Pvt — (H + JK)*T't,

which has the unique bounded solution (6.8), since I' is a stable matrix.
Now, set V; := V (zy,t) and € := Q(x4, uy, t), where (x4, uy) is an admissible process,
and sum (B.4) from ¢t =0 to t = T to obtain

T T
Vi — Vo) + f Z — Kay —m)" R(uy — Koy — ).

:O

T _(
By virtue of condition (6.2) and the boundedness of py,

1

— (Vrp — W) = = 1

T( T+1 — Vo) T+ +o(1),
where of course the last term tends to zero as T — oo. Consequently, for any
admissible (4, u;), the cost function (B.1) becomes

1

O = hjrﬂn_}sip{ Z u — Koy — m)* R(ut — Kxy—m) — TqTH}’ (B.5)
and therefore, since R > 0,
1
® > limsup — (—qry1) (B.6)
T—o0 T

for any admissible control. Clearly, equality would be achieved if we could take (x;, u;)
to satisfy (6.9) since ¢, does not contribute to ® by virtue of (6.10). Hence it remains
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to prove that such a process satisfies the stability condition (6.2). To this end, insert
(6.9) in (6.3) to obtain

Tyl = FIt + B(ﬂ't + Et) -+ . (B?)

Since {7 }ez, and {v; }4ez, are bounded, {€ }iez, satisfies (6.10) and I is a stability
matrix, {2}z, satisfies the weak stability condition (6.2). The last statement follows
immediately from (B.5) and (B.6).
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