
      

RECENT PROGRESS ON THE PARTIAL STOCHASTIC
REALIZATION PROBLEM

ANDERS LINDQUIST*

To Paul Fuhrmann on the occasion of his 60th birthday

In view of Paul Fuhrmann’s many important contributions to realization theory,
it seems quite appropriate to devote this lecture to the stochastic partial realization
problem, when today we are honoring him on his 60th birthday. Some ten years ago
Christopher I. Byrnes and I launched a joint research program on this topic, and by
now we have some results which I think might interest this audience [3, 4, 5, 6, 7, 8,
9, 10, 11, 12]. Some of these results we have been obtain in collaboration with S. V.
Gusev in particular, but also A. S. Matveev and H. J Landau. This short write-up
is not a paper in itself but is merely intended to interest the audience in reading the
papers [8, 7, 10, 11, 12] and also [32].

The stochastic partial realization problem has important applications in speech
synthesis [17], spectral estimation [22, 33], stochastic systems theory [23], systems
identification [32], and several other areas of systems and control.

1. The deterministic partial realization problem

Before turning to the main topic, let us consider for a moment the simpler determin-
istic partial realization problem; see, e.g., [24, 25, 21, 18]: Given a sequence of real
numbers

c0, c1, c2, . . . , cn (1.1)

find a partial realization of (1.1), i.e., a matrix F , a column vector g and a row vector
h such that

ck = hF k−1g for k = 1, 2, . . . , n. (1.2)

This then defines an infinite extension

ck = hF k−1g for k = n + 1, n + 2, . . . (1.3)

of (1.1) such that the rational function

v(z) = h(zI − F )−1g + 1
2
c0 (1.4)

has the Laurent expansion

v(z) = 1
2
c0 + c1z

−1 + c2z
−2 + . . .

in the neighborhood of infinity. If the dimension of the matrix is a small as possible,
we say that the partial realization is minimal.
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This problem can be motivated in the following way. Let us assume that we have
a linear system

u−→ w(z)
y−→

and that we would like to find matrices A,B,C,D so that{
x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(1.5)

models its input/output behavior. If we apply a impulse signal

u(t) =

{
1 for t = 0

0 for t = 1, 2, 3, . . .

to the input, the output is

y(t) =

{
1
2
c0 for t = 0

CAt−1B for t = 1, 2, 3, . . . .

Thus, given the finite impulse response

y(0), y(1), . . . , y(n),

determining the matrices A,B,C,D obviously amounts to solving the partial realiza-
tion problem.

We shall call the dimension of a minimal partial realization the algebraic degree of
(1.1). The algebraic degree of (1.1) could be anything between zero and n, but it has
a generic value

[
n
2

]
, and all other values are rare.

The deterministic partial realization problem is equivalent to Padé approximation
and, as shown in [21], the solution can be determined recursively via Lanczos’ algo-
rithm [27]. There is no guarantee that F is Schur stable (all eigenvalues in the open
unit disc). In fact, the property that F is Schur stable is not even generic [2].

From (1.2) it should be clear that a minimal partial realization (1.4) satisfies

Hij :=



c1 c2 · · · cj
c2 c3 · · · cj+1
...
...

. . .
...

ci ci+1 · · · ci+j


 =




h
hF
...

hF i−1


 [

g Fg · · · F j−1g
]

(1.6)

for each i, j such that i + j = n. Hence the maximum rank of these Hankel matrices
is a lower bound for the algebraic degree of (1.1).

2. The stochastic partial realization problem

Now suppose A is a stability matrix. Then, passing (normalized) white noise {u(t)}
through the filter

white noise
u−→ w(z)

y−→
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and letting it come to statistical steady state, we obtain a stationary output process
{y(t)} with spectral density

Φ(z) = w(z)w(z−1) =
∞∑

k=−∞
ckz

−k, (2.1)

where

ck = E{y(t + k)y(t)}. (2.2)

In view of the ergodic property of the process {y(t)}, the covariance lags (2.2) may
also be represented as

ck = lim
T→∞

1

T + 1

T∑
t=0

yt+kyt (2.3)

almost surely, where
y0, y1, y2, y3, . . .

is a realization of the process {y(t)}. In practice, however, we only have access to
finite string of output data

y0, y1, y2, . . . , yN . (2.4)

In general N will be large, and therefore

ck =
1

N + 1 − k

N−k∑
t=0

yt+kyt (2.5)

will be a reasonably good estimate. However, we can only estimate a finite number
of covariance lags

c0, c1, c2, . . . , cn, (2.6)

where n << N . For simplicity we assume that (2.6) is a bona fide partial covariance
sequence in the sense that

Tn =



c0 c1 c2 · · · cn
c1 c0 c1 · · · cn−1
...

...
...

. . .
...

cn cn−1 cn−2 · · · c0


 .

Of course, without loss of generality, we may normalize and take c0 = 1. From now
on we shall do this.

Now, reconstructing the filter w(z) from the partial covariance sequence (2.6) is
precisely the stochastic partial realization problem, first formulated in this context
by Kalman [23]. Just as in the deterministic partial realization problem, we are faced
with the problem of finding a triplet (F, g, h) such that

hF k−1g = ck for k = 1, 2, . . . , n. (2.7)

Then defining the infinite extension

ck = hF k−1g for k = n + 1, n + 2, . . . , (2.8)
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the function

v(z) =
1

2
+ c1z

−1 + c2z
−2 + . . .

is a rational function

v(z) =
1

2

b(z)

a(z)

where a(z) and b(z) are monic polynomials of degree n. However, there is now an
additional requirement, namely that v(z) is strictly positive real, i.e., v(z) is analytic
on and outside the unit circle and

Φ(z) = v(z) + v(z−1) > 0 on the unit circle. (2.9)

Then Φ(z) is a bona fide coercive spectral density, and therefore the spectral factor-
ization problem

w(z)w(z−1) = Φ(z)

can be solved for the required filter, i.e., the minimum-phase, stable spectral factor

w(z) = C(zI − A)−1B + D,

where we may choose coordinates so that A = F and C = h.

Consequently we have a partial realization problem to determine a triplet (F, g, h)
satisfying the interpolation condition (2.7), but with the additional constraint that
v(z) is strictly positive real. In particular this requires that F is Schur stable, but
this is not enough. In fact, we must also have

a(z)b(z−1) + b(z)a(z−1) > 0 on the unit circle.

These constraints make the stochastic partial realization problem considerably more
complicated than the deterministic one. In particular, the infinite extension (2.8) is
such that the Toeplitz matrix Tk > 0 for all k ≥ 0.

Among all strictly positive real rational functions v(z) interpolating the sequence
1, c1, c2, . . . , cn in the sense that

v(z) = 1
2
+ ĉ1z

−1 + ĉ2z
−2 + . . . with ĉk = ck for k = 1, 2, . . . , n,

find one with minimum degree. This a minimum stochastic partial realization, and its
degree p is called the positive degree of the partial covariance sequence 1, c1, c2, . . . , cn
and is greater or equal to the algebraic degree r of the same partial sequence. However,
while r has a generic value, p does not. More precisely, whereas the generic value
of the algebraic degree of (2.6) is [n+1

2
], it was proved in [7] that, for each ν =

[n+1
2

], [n+1
2

]+1, . . . , n there is a nonempty open set of covariance data in Rn for which
the positive degree p is precisely ν. Thus the possibility that p > r is nonrare. The
positive degree can be characterized [7], but there is no easy way to compute it.
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3. What are the solutions of the stochastic partial realization problem?

If we remove the requirement that v(z) be rational of at most degree n and allow
it to be only meromorphic, the stochastic partial realization problem is reduced to
a classical interpolation problem going back to Carathéodory [14, 15], Toeplitz [35]
and Schur [34]. Schur developed a complete parameterization of the class of such
meromorphic and strictly positive real interpolants in terms of what we now know as
the Schur parameters γ0, γ1, γ2, . . . . In fact, to say that v(z) is positive real is to say
that

|γk| < 1 for k = 0, 1, 2, . . . . (3.1)

Moreover, γ0, γ1, . . . , γn−1 are uniquely determined (via, for example, the Levinson
algorithm) by c1, c2, . . . , cn. Therefore, all meromorphic and strictly positive real
interpolants are completely parameterized by the free Schur parameters γn, γn−1, . . .
satisfying (3.1).

Making the very natural choice that γk = 0 for k = n, n + 1, . . . , we do obtain a
rational v(z) of degree n, which is a solution of precisely the type we are looking for.
This is the maximum entropy solution, and the corresponding filter w(z) is

w(z) =
√
rn

zn

ϕn(z)
, (3.2)

where ϕn(z) is the n:th Szegö polynomial and
√
rn is the corresponding normalization

factor, which both can be determined by solving the normal equations, a linear system
of equations.

Obviously the maximum entropy solution has no nontrivial zeros, since the ones that
are cancel when the spectral density Φ(z) is formed. A natural question, therefore, is
as follows: Given any Schur stable monic polynomial σ(z) of degree n, is it possible
to find a Schur stable polynomial a(z) so that

w(z) =
σ(z)

a(z)
(3.3)

is a solution to the stochastic partial realization problem? In [20, 19] Georgiou proved
that this is possible and conjectured that this choice would be unique.

In [8] we proved an amplified version of this longstanding conjecture, showing not
only that this parameterization is complete but also that the problem is well-posed in a
the strong sense that the bijection is a diffeomorphism. This is proved as corollary of a
more general theorem on the geometric duality between filtering and interpolation. In
fact, we prove that filtering and interpolation induce complementary decompositions
(foliations) of the space of positive real functions of degree less or equal to n. The
leaves of the interpolation foliation are indexed by the partial covariance sequences
and the leaves of filtering foliation by the zero polynomials σ(z). The unique pole
polynomial a(z) is determined via the intersection of the appropriate leaves. (For
details, also see [10].) In passing we mention that the leaves of the filtering foliation
are precisely the stable manifolds of the fast filtering algorithm [28, 29], properly
reformulated as in [13].
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In [10] and [11] we provide alternative, but simpler, proofs of the somewhat weaker
statement that the stochastic partial realization problem is well-posed in the sense of
Hadamard.

However, all these proofs, including the proof of existence due to Georgiou [20], are
non-constructive and thus do not offer any computational procedure. It should be
noted that, although the computation of the maximum entropy solution is a linear
problem, obtaining the solution corresponding to an arbitrary zero polynomial σ(z)
is a nonlinear problem, which explains why it is much more difficult.

The first step toward finding a computational method for solving the stochastic
partial realization problem was presented in [7], where the problem was reduced to
solving a Riccati-type covariance extension equation. Although there is yet no general
method of solving this equation, it provides some additional insight into the issue of
minimality, relating the degree of the modeling filter to the rank of the unique positive
semidefinite solution of the covariance extension equation.

In a recent paper [12], we present a convex optimization problem for solving the
rational covariance extension problem. Given a partial covariance sequence and the
desired zeros of the modeling filter (3.3), the poles are uniquely determined from the
unique minimum of the corresponding optimization problem. In this way we obtain
an algorithm for solving the covariance extension problem, as well as a constructive
proof of Georgiou’s existence result and his conjecture.

4. Why are we interested in this problem?

There are several interesting consequences and applications to what has been discussed
above. We mention just two here and refer the audience to the reference list for further
reading.

The maximum entropy solution is regularly used in speech coding in designing the so
called LPC filter. The speech is typically broken into segments of 20 ms. An unvoiced
segment can be regarded as a realization of a stationary stochastic process obtained by
passing white noise through a modeling filter w(z). (The voiced segments are modeled
in a similar way exchanging the white noise for a periodic “pulse train”.) Now, the
disadvantage with the LPC filter is that the maximum entropy filter produces a rather
“flat” speech, which does not represent nasals and fricative very well. For this we need
to model the notches in the spectrum by placing zeros close to the unit circle. Hence
a nontrivial zero polynomial σ(z) would be desired. The more general solutions of
the stochastic partial realization problem gives us the freedom to choose the zeros
arbitrarily.

Recently there has been quite some interest in a new type of stochastic identification
procedure known as subspace identification [1, 36]. In [32] it was pointed out that
there is no guarantee that these subspace identification algorithms will actually work
for generic data. This is for the reasons mention above. In fact, at least indirectly
these algorithms are based on the assumption that the algebraic and positive degrees
of a partial covariance sequence coincide. Also the geometry of [36] is equivalent to
the splitting geometry of stationary stochastic systems [30, 31], developed for infinite
strings of data, and which strictly speaking requires stronger conditions to hold here.
In the context of this talk, the procedure of [36] is to perform minimal factorization
of a square Hankel matrix Hii, where i = [n/2]; see (1.6). But as pointed out above,
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the rank of Hii only provides a lower bound of the algebraic degree, which in turn
may be smaller than the positive degree, in which case the identification method will
fail. It is easy to generate data for which such failure will occur even for large n; see
[16].
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