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Modeling Uncertainty: 

Probability Distributions

! Data represented as random variables with 
known distributions 
" Stochastic/Dynamic Programming approach
" Information required

! Sample space (all possible outcomes, usually 
exponential or infinite)

! Distributions (probability of outcome)

" Advantages
! A widely accepted method in math/statistics
! Able to quantify expectations such as evaluating 

probability of outcomes



Modeling Uncertainty: 

Probability Distributions

! Decision based on taking expectations

First Singapore Conference on Quantitative 

Finance



Modeling Uncertainty: 

Probability Distributions

" Disadvantages
! Quantifying expectation is computationally intractable

" Shown by Nemirovski and Shapiro 2004, based on a result 
of Khachiyan in computing volume of polytope

First Singapore Conference on Quantitative 

Finance



Modeling Uncertainty: 

Probability Distributions

! Practically prohibitive to obtained exact distributions
" Absence or limited historical data
" Reliability of historical data in predicting outcomes; non-

stationary 
" Difficulty of describing multivariate random variable

! How about using empirical distributions or data driven 
approaches?

First Singapore Conference on Quantitative 

Finance



Modeling Uncertainty: 

Probability Distributions

! A Portfolio Optimization Case Study
" 24 small cap stocks from different industry 

categories
" Historical returns from April 17 1998 to June 1, 

2006
" Return and Covariance estimated from initial 80% 

of the data. Evaluate performance on last 20%.

First Singapore Conference on Quantitative 

Finance



" Markowitz model

Modeling Uncertainty: 

Probability Distributions

First Singapore Conference on Quantitative 

Finance



" Optimizing over unreliable historical data can be 
catastrophic!!!

Modeling Uncertainty: 

Probability Distributions

Markowitz

First Singapore Conference on Quantitative 

Finance
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Modeling Uncertainty: 

Uncertainty Set

! Data represented as uncertainty set
" Robust Optimization approach
" Information required

! Convex hull of data realization described in tractable 
forms:
" Polyhedral
" Conic quadratic, etc



Modeling Uncertainty: 

Uncertainty Set

! Decision based on worst-case value 
over the uncertainty set

First Singapore Conference on Quantitative 

Finance



Modeling Uncertainty: 

Uncertainty Set

! Ellsberg Paradox
" Box 1: 50 red balls and 50 blue balls
" Box 2: 100 red and blue balls with unknown 

proportions

Payoffs: $1,000,000 for choosing a red ball. 
Which box will you choose? 

First Singapore Conference on Quantitative 

Finance



Modeling Uncertainty: 

Uncertainty Set

! Ellsberg Paradox
" Box 1: 50 red balls and 50 blue balls
" Box 2: 100 red and blue balls with unknown 

proportions

Payoffs: $1,000,000 for choosing a blue ball. 
Which box will you choose? 

First Singapore Conference on Quantitative 

Finance

Decision Maker is Ambiguity Averse!!
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Modeling Uncertainty: 

Uncertainty Set

" Advantages
! Less information is required

" Convex hull versus Sample space
" Distribution free

! Computational tractable for many important classes of 
optimization. 

! Quantifiable approximation exists for some hard ones
! Natural way of describing uncertainty in certain 

applications
" Engineering applications
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Modeling Uncertainty: 

Uncertainty Set

" Disadvantages
! Unable to evaluate expectations including probability 

measure
! How do we choose the right uncertainty set? 

" Requires domain knowledge
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Modeling Uncertainty: 

Descriptive Statistics

! Data represented as random variable over a family of 
distributions characterized by its descriptive statistics
" Distributionally Robust Optimization approach 
" Information required

! Convex hull of support
! Descriptive statistics: means, standard deviations, directional 

deviations, independence etc.
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Modeling Uncertainty: 

Descriptive Statistics

" Advantages
! Descriptive statistics can be derived from data
! Solutions are robust to distributional assumptions
! Moderate information needed
! Tractable approximations available
! Compute bounds on expectations
! Far less conservative than worst case



Modeling Uncertainty: 

Descriptive Statistics

! Decision based on worst-case value 
expectation over the family of 
distributions

First Singapore Conference on Quantitative 

Finance
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Distributionally Robust Optimization

! A typical linear optimization problem:
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Distributionally Robust Optimization

! WLOG, we assume data is affinely
dependent on a set of N primitive 
uncertainties:
" Provision for linear correlations among data
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Distributionally Robust Optimization
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Distributionally Robust Optimization

! Robust Optimization approach
" Find solutions that remains feasible for all data in 

uncertainty sets, a.k.a Robust Counterpart
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Distributionally Robust Optimization

! Stochastic Programming approach
" Chance constraint (Charnce, Cooper and 

Symonds 58)

" Typically intractable problem
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Distributionally Robust Optimization
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Distributionally Robust Optimization

! Robust chance constrained problem

" Generally intractable
" Tractable formulation for family of distribution with 

infinite support, known mean and covariance, 
(Bertsimas and Pospescu, 2004, El Ghaoui et al, 
2003)
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Distributionally Robust Optimization

! Should we choose an uncertainty set large 
enough to contain most of the samples?
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Distributionally Robust Optimization
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Distributionally Robust Optimization
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! Key Idea: Convexification of chance 
constrained problem.

Distributionally Robust Optimization
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! Step utility function is not concave!!

! Consider concave approximation

Distributionally Robust Optimization
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Distributionally Robust Optimization
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Distributionally Robust Optimization
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Distributionally Robust Optimization
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Distributionally Robust Optimization

! Conditional Value-at-Risk (CVaR)
" Popularized by Rockafellar and Uryasev 
" Best possible convex approximation of chance 

constrained problems. (Foellmer and Scheid 2004, 
Nemirovski and Shapiro 2006)
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Distributionally Robust Optimization
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Distributionally Robust Optimization
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Distributionally Robust Optimization

! Upper bounds on E( . )+
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Distributionally Robust Optimization

! Approximation idea:
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Distributionally Robust Optimization

-Chen, Sim, Sun and Teo (2007)
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Distributionally Robust Optimization
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Distributionally Robust Optimization
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Distributionally Robust Optimization
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Distributionally Robust Optimization

! X. Chen, S. and P. Sun, 2006
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Distributionally Robust Optimization

! Worst case deviations with given support
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Distributionally Robust Optimization

! Unified bound on E( . )+



3rd Nordic Optimization Symposium

Distributionally Robust Optimization

! Unified bound on CVaR
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Distributionally Robust Optimization

! Joint chance constraints
" All constraints must be satisfied with high 

probability for all random variables with the same 
descriptive statistics. 
! Much harder to solve than single chance constraint!!!
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Distributionally Robust Optimization

! One idea: Union bound
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Distributionally Robust Optimization

! Union bound
" Bound is good if constraints are independently 

distributed
" Bound is weak if constraints are highly 

correlated.
" Need to fix !j. Sensible choice !j=!/m

! How to optimize over !j?
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Distributionally Robust Optimization

! Can we do better than union bound?
" Yes!! W. Chen, S., J. Sun and Teo (2007)
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Distributionally Robust Optimization
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Distributionally Robust Optimization: 

Resource Allocation Example

! Network of n cities proximally connected
! First stage: 

" Decide amount of resouces to place at each city in 
anticipation of uncertain demand

! Second stage: 
" Demand is realized
" Resouces can be transhipped to neighboring nodes at 

zero cost

! Objective
" Find the minimum cost allocation of resouces that meets 

service requirement



3rd Nordic Optimization Symposium

Distributionally Robust Optimization: 

Resource Allocation Example

x1=80

x2=90

x4=10

x3=250

x5=50

x6=10

x8= 100

x7=10

d4=180

d1=100
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Distributionally Robust Optimization: 

Resource Allocation Example

x2=90

x4=10

x3=250

x5=50

x6=10

x8= 100

x7=10

d4=200

Infeasible instance

x1=80
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Distributionally Robust Optimization: 

Resource Allocation Example

! Robust joint chance constrained model



3rd Nordic Optimization Symposium

Distributionally Robust Optimization: 

Resource Allocation Example

! Need to assume linear decision rule on recourse 
variables on transshipment  
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Distributionally Robust Optimization: 

Resource Allocation Example
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Distributionally Robust Optimization: 

Resource Allocation Example

! Computation example: ! = 0.01

Union Bound
Improved  Bound
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Distributionally Robust Optimization: 

Resource Allocation Example

! Computation example: ! = 0.01
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DRO with Recourse

First stage Second stage

! Consider a two stage optimization problem
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DRO with Recourse

! Risk Neutral Objective
" Classical stochastic programming model

" Assumes repeatability of experiments under 
identical conditions
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DRO with Recourse

! Even when distributions are known, 
computations can be difficult
(Dyer and Stougie, 2005)
" Two period models are #P-hard
" >2 periods models are PSPACE-hard
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DRO with Recourse

! Ambiguity Averse, Risk Neutral model

" Famous example: Worst case Newsvendor of 
Scarf.
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DRO with Recourse

" Hard problem as well 
! Determine a good upper bound
! How good is the bound?
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DRO with Recourse

! Linear Decision Rule Again!!!
" Appeared in early Stochastic Optimization but was 

abandon soon. 
! Garstka and Wets, 74

" Resurface in adjustable robust counterpart
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DRO with Recourse 

! Final Model: Linear Optimization Problem
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DRO with Recourse 

! Issues with linear decision rule
" Can lead to infeasible solution even when the 

problem has complete recourse
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DRO with Recourse 

“The rationale behind restricting to affine decision rules is 
the belief that in actual applications it is better to pose a 
modest and achievable goal rather than an ambitious 
goal which we do not know how to achieve.”

- Shapiro and Nemirovski 05

! Can we do better than linear decision rule?
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DRO with Recourse 

! Exploit problem structure of stocastic optimization 
model.
" Focus on recourse matrix Y
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DRO with Recourse

! Deflected linear decision rule (X. Chen, S., P. Sun
and Zhang 2006)
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DRO with Recourse
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DRO with Recourse

! Final Model: SOCP
" Uses bound on E( . )+
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DRO with Recourse

! Primitive uncertainties unfolds in stages

! Scales well with Linear Decsion Rule and Deflected 
Linear Decision Rules
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Robust Inventory Control

! Multiperiod Inventory Control Problem
" Ordering decision to meet uncertain demand so 

that the cost is minimized
" Periodic review, Finite  horizon, backlogging, 

exogenous  demand, no fixed ordering costs
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Robust Inventory Control

! Sequence of events

t+1t
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Robust Inventory Control

! Inventory dynamics
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Robust Inventory Control

! Costs components
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Robust Inventory Control

! Stochastic Optimization Model
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Robust Inventory Control

! Characterize optimum policy using Dynamic Programming 
" Dependent Demand:

! More realistic representation of demand
! Curse of dimensionality

" Independent Demand:
! State independent base-stock policy is optimal
! Does not imply that it is easy to find the base-stock level!!
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Robust Inventory Control

! DRO Inventory Control Model
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Robust Inventory Control

! Factor Demand Model
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Robust Inventory Control

! Factor Demand Model
" Handle demand correlations
" Can include exogenous factors such as market 

factors
" Demand forecast models

! E.g: ARMA process
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Robust Inventory Control

! Static Replenishment Policy (Bertsimas and Thiele)
" Inventory position affine in factors
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Robust Inventory Control

! Linear Replenishment Policy
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Robust Inventory Control

" Inventory position affine in factors
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Robust Inventory Control

! Truncated Linear Replenishment Policy (See 
and Sim)



Robust Inventory Control

! Require the following bound on expectation:
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Robust Inventory Control



Modeling Software

" Sample code implementing TLDR

initx =0*ones(L,1);
inity = 0;

Ny=[0 1:T];
Nx = [zeros(1,L) 0:T-L-1];
Nxms = [zeros(1,L) 0:T-L-1];

% Demand information
Z.zlow = Range*ones(N,1);
Z.zupp = Range*ones(N,1);
Z.p = .58*Range*ones(N,1);
Z.q = .58*Range*ones(N,1);
Z.sigma =.58*Range*ones(N,1);



Modeling Software

startmodel
x = linearrule(T,N,Nx);
xms = linearrule(T,N,Nxms);
y = linearrule(T+1,N,Ny);

for i=1:T
addconst(xms(i,:) == x(i,:)-S*ldrdata([0 1],N));

end

hbound=0;
sbound=0;
for t=1:T

if L+1<= t
hbound = hbound+ h*meannestedposbound(Z,y(t+1,0:t),-x(L+1:t,0:t),t);
sbound = sbound + b(t)*meannestedposbound(Z,-y(t+1,0:t),xms(L+1:t,0:t),t);

else
hbound = hbound+h*meanpositivebound(Z,y(t+1,:),1,N);
sbound = sbound + b(t)*meanpositivebound(Z,-y(t+1,:),1,N);

end

end   



Modeling Software

minimize (sbound+hbound + c*sum(meanpositivebound(Z,x(L+1:T,:),T-L,N)))
addconst(x(1:L,0)==initx);
addconst(y(1,0)==inity); 
for i=1:T

addconst(y(i+1,:)==y(i,:)+x(i,:)-ldrdata([0 MeanD(i);(1:N)' zcoef(:,i)],N));
end

m=endmodel;
s = m.solve('CPLEX');
xsol=s.eval(x);
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Robust Inventory Control

- Computations
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Robust Inventory Control

- Computations

! Compare with 
" State independent based-stock policy 

! Ignores dependency of previous demands
! Policy is optimal if " = 0
! Use sampling approximation to determine reorder point

" Myopic Policy
! Ignores future costs
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Robust Inventory Control

- Computations

" Truncated Linear Decision Rule
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Robust Inventory Control

- Computations

" Empirical performance (100,000 samples)
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Conclusions

! Robust optimization is a computationally 
attractive approach for addressing data 
uncertainty in optimization problems

! Many applications
! Many open issues:

" Quantify level of conservativeness
" Address non affine disturbances
" Address general recourse problems
" Address integral recourse problems
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