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Modeling Uncertainty:

Probability Distributions
Data represented as random variables with
known distributions
o Stochastic/Dynamic Programming approach

o Information required

Sample space (all possible outcomes, usually
exponential or infinite)

Distributions (probability of outcome)

o Advantages
A widely accepted method in math/statistics

Able to quantify expectations such as evaluating
probability of outcomes
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Modeling Uncertainty:

Probability Distributions
Decision based on taking expectations

E(u(z, 2))



Modeling Uncertainty:

Probability Distributions

o Disadvantages
Quantifying expectation is computationally intractable

NP-hard to evaluate accurately
P(#'z > 1)

where 7 is iid uniformly distributed in [—1,1].

0 Shown by Nemirovski and Shapiro 2004, based on a result
of Khachiyan in computing volume of polytope
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Modeling Uncertainty:
Probability Distributions

Practically prohibitive to obtained exact distributions
0 Absence or limited historical data

0 Reliability of historical data in predicting outcomes; non-
stationary

0 Difficulty of describing multivariate random variable

How about using empirical distributions or data driven
approaches?
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Modeling Uncertainty:
Probability Distributions

A Portfolio Optimization Case Study

0 24 small cap stocks from different industry
categories

o Historical returns from April 17 1998 to June 1,
2006

o Return and Covariance estimated from initial 80%
of the data. Evaluate performance on last 20%.



Modeling Uncertainty:

Proba

bility Distributions

o Mar

o T

Kowitz model
Vector of stock returns. Mean u, Co-

varience Y. (Estimated)

min x'Yx
s.t. px=p'1/n
'l =1,
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Modeling Uncertainty:

Probability Distributions

o Optimizing over unreliable historical data can be
catastrophic!!!
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Modeling Uncertainty:
Uncertainty Set

Data represented as uncertainty set
o Robust Optimization approach

o Information required

Convex hull of data realization described in tractable
forms:

0 Polyhedral

o Conic quadratic, etc
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Modeling Uncertainty:

Uncertainty Set
Decision based on worst-case value
over the uncertainty set

MiNn u(x. z
zc )V ( ’ )



Modeling Uncertainty:

Uncertainty Set

Ellsberg Paradox
o Box 1: 50 red balls and 50 blue balls

o Box 2: 100 red and blue balls with unknown
proportions

Payoffs: $1,000,000 for choosing a red ball.
Which box will you choose?
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Modeling Uncertainty:

Uncertainty Set

Ellsberg Paradox
o Box 1: 50 red balls and 50 blue balls

o Box 2: 100 red and blue balls with unknown
proportions

Payoffs: $1,000,000 for choosing a blue ball.
Which box will you choose?

Decision Maker is Ambiguity Averse!!

First Singapore Conference on Quantitative
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Modeling Uncertainty:
Uncertainty Set

o Advantages

Less information is required

o Convex hull versus Sample space

0 Distribution free

Computational tractable for many important classes of
optimization.

Quantifiable approximation exists for some hard ones

Natural way of describing uncertainty in certain
applications

0 Engineering applications
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Modeling Uncertainty:
Uncertainty Set

o Disadvantages

Unable to evaluate expectations including probability
measure

How do we choose the right uncertainty set?
0 Requires domain knowledge
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Modeling Uncertainty:
Descriptive Statistics

= Data represented as random variable over a family of
distributions characterized by its descriptive statistics

o Distributionally Robust Optimization approach

o Information required

= Convex hull of support

= Descriptive statistics: means, standard deviations, directional
deviations, independence etc.
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Modeling Uncertainty:
Descriptive Statistics

o Advantages
Descriptive statistics can be derived from data
Solutions are robust to distributional assumptions
Moderate information needed
Tractable approximations available
Compute bounds on expectations
Far less conservative than worst case
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Modeling Uncertainty:

Descriptive Statistics

Decision based on worst-case value
expectation over the family of
distributions

inf Ep(u(x, 2))
Pl

IF: Family of distibutions that contains the true
distribution.
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Distributionally Robust Optimization

= A typical linear optimization problem:

min c'x
st. ax<b;, ie{l,...,m}=M
x e R,

a;,b;: Potentially uncertain data
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Distributionally Robust Optimization

WLOG, we assume data is affinely

dependent on a set of N primitive
Y N ~

uncertainties: 2 = (zZ1,...,2Zn).

o Provision for linear correlations among data

AN 0 N ’
a;, =a;(2) = a; + > alz
J=1

1D

N
by + > bZ;

j=1

b; = b;(Z)
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Distributionally Robust Optimization

For notational convenience, ignore subscript ¢

N
a(2)xz —b(2) = g,ofzc — 0+ M gajlaz — b)) Z;
:};0 J=1 :Ej

a(2)x <b(2)
(x
0 /=
v +yz<0
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Distributionally Robust Optimization

Robust Optimization approach

o Find solutions that remains feasible for all data in
uncertainty sets, a.k.a Robust Counterpart

WO+ 9’2 <0 Vz elU
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Distributionally Robust Optimization

Stochastic Programming approach

o Chance constraint (Charnce, Cooper and
Symonds 58)

P(y° +y'2<0)>1—e

S~

z:. A multivariate random variable with known

distribribution.
o Typically intractable problem
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Distributionally Robust Optimization

Assume z is a multivariate random variable
with distribution P from a family of distribu-
tions F.

For all P € F, the random variable z has the
same descriptive statistics such as same mean,
support, covariance, deviation measures, and
so forth.
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Distributionally Robust Optimization

Robust chance constrained problem

inf P(0° + 4’2 <0)>1—¢
PelF

o Generally intractable

o Tractable formulation for family of distribution with
infinite support, known mean and covariance,
(Bertsimas and Pospescu, 2004, El Ghaoui et al,
2003)
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Distributionally Robust Optimization

Should we choose an uncertainty set large
enough to contain most of the samples?

Choose U such that

P(zeld) >1—c¢
so that

0+ 4’z <0 Vzel

|
P(y° + 4’2 <0)>1—¢
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Distributionally Robust Optimization

Suppose ,%?j Iid two point symmetrically dis-
tributed taking values in {—1,1}. Choose el-
lipsoidal uncertainty set

Er={z : ||z|]2 <7}

It is well-known that

yo+y'z<0 Vz € &4

J
P(yo + 4’z <0) > 1 —exp(—42/2) ~ 0.99966
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Distributionally Robust Optimization

yo+y'z<0 Vz € &y

)
P(yo + 3’z < 0) > 0.99966

However, if dimension of z is greater than 16,

[P(E & 54) = Q!
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Distributionally Robust Optimization

Key ldea: Convexification of chance
constrained problem.

P(yo+y'2<0)>1-e¢

0

E(u(-yo —y'2)) > 1 —¢

w(x)!
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Distributionally Robust Optimization

Step utility function is not concave!!

u(z)]

Consider concave approximation
| f(z) = min{z,1}
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Distributionally Robust Optimization

f(ax) = min{ax, 1}

da >0 : E(min{—ayg —ay’z,1}) > 1 —¢
Y
E(u(-yo—¥y'2)) 21—

)

Plyo+9y'2<0)>1—¢
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Distributionally Robust Optimization

da >0 : E(min{—ayg —ay’z,1}) > 1 —¢

)
C(min{—ayg —ay’2 —1,0})) +1>1—¢
)
~E((ayo + ay'z — 1)) /e > ~1
)

~E((yo+y'2+ 1/a)T)/e > —1/a

3rd Nordic Optimization Symposium



Distributionally Robust Optimization

—E((yo+y'Z 4 1/a) ) /e > —1/a

)
38>0 © —E((yo Ey’% +B)T) /e > -0
B+ E((yo + yE +B)T)/e <0

infg{-B+E((yo+y'z+8)1)/c} <0




Distributionally Robust Optimization

Conditional Value-at-Risk (CVaR)

o Popularized by Rockafellar and Uryasev

o Best possible convex approximation of chance
constrained problems. (Foellmer and Scheid 2004,
Nemirovski and Shapiro 20006)

p1-e(7) 2 inf {8 +E(F ) /c}

where r IS a random variable.
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Distributionally Robust Optimization

p1_(yP +1y'2) <0
4
P(y° +9y'2<0)>1—¢



Distributionally Robust Optimization

1
pp1_(yP+y'2) = inf {6 + ;EP((?JO +y'z - B)+)}

Convex in (y°,v)... but how to compute

Ep((y° +y'2 — 3)T)7

How about using only descriptive statistics?

pr1_(y0+y'z) = ”’If {3 + - ;ED Ep((y° + 92 .5}_'_)}
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Distributionally Robust Optimization

Upper bounds on E( . )*

supEp((3° 4+ 2'y) 1) < 7(4°, y)
PclK

pr1-c(y° +4'2) <m_(° )

where

-0 y) £ nf {B+7° - 8,9)/c}
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Distributionally Robust Optimization

= Approximation idea:
nl—e(yoay) <0

1
pr1_(y° +y'2) <0
1

inf P(y° +9'2<0)>1—¢
PelF
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Distributionally Robust Optimization

Suppose 7(yY,y) is convex, positive homoge-
nous, and satisfies 7(a,0) = a7, then

nl—e(yoa y) <0

IS equivalent to the robust counterpart

yO—I—y"ng Vz € U(e)

for some uncertainty set U(e).

-Chen, Sim, Sun and Teo (2007)

3rd Nordic Optimization Symposium



Distributionally Robust Optimization

Implications: Finding an uncertainty set is the
same as finding a convex, positive homogenous

function, w(yg,y) that is an upper bound of
Ep((yo 4+ vy'2)T) for all P € F.
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Distributionally Robust Optimization

Model of uncertainty: Assume primitive un-
certainty z is a multivariate random variable
with convex hull of sample space given by W =
{z: -2 <2< 2z}. Let F be a family of distri-
butions such that for all P € F:

1. Ep(2) =0

2. Ep(zz') = X, which is positive definite.
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Distributionally Robust Optimization

3. Asubset 7 C {1,...,N}, suchthatz;, jeZ
are stochastically independent.

._<r O'f(F,Ej) if el
Py = | o0 otherwise
o <’ op(F, %)) ifj€T
9= otherwise

\
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Distributionally Robust Optimization

= X. Chen, S.and P. Sun, 2006

Suppose Ep(z) = 0 for all P € F:
Forward Deviation:

or(F,Z) = sup {\/2In(EP(exp(92)))}.

60>0,PcF 62

Backward Deviation:

o(F.5) = sup { \/Qm(Ep(exp(—ez»)}

0>0,PcTF 02
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Distributionally Robust Optimization

Worst case deviations with given support

For a family of distributions F such that z has
zero mean and support [—z,z], 2,z > 0, then

o;(F,z) = g-;zdg (j_?_i_)
and _

oy(F, 2) = —ng(;—)

where _

¢u(s) — ps
= 2
g(u) Tz 5
and

gb,_b(s) —In (68 —|—2€S s




Distributionally Robust Optimization
Unified bound on E( . )*

m(yo,y) = min
s.t.

r+Tre+r3+Tre+7s

Y10 + Z $jz; + Z tjgj <nm
J:zj<oo j:gj-::cc:-

55 =0Vj:Zz = oo, ti =0Vj:z; =00

DETI

s—t=1y,
s, t >0

Y dizi+ ) hiz;<m
JiZj<co j:gj-:‘:c'c:-

d; =0Vj:Zz; =00, hj=0Vj:z; =00

Yoo < T2

d—h=—-y,

d,h >0

530 + 3| (ys0, Ewya)llzz <73

: 400 u

inf >0 £ exp (% + —21”2#“ ) <7y

wj = Piya; V1 pj < 00, Yaj S0Vjip; =00
uj = —qjYaj Vi : q; < 00, Y4 >0Vj:q =00
yso + inf =0 ’EEXIJ ( = % + _E‘”;L”q) <rs5

V; 2 qiYsj V] 1 q; < 00, Ysj = 0Vj:q; =00
vj 2 —PiYsi Vi1 p; < 00, ys; S0Vj:p; =00
Y10 + Y20 + Y30 + Y40 + Ys0 = yD

Y1 7Y+ Ys T Y+ Ys =Y. ,
i, Yo Em,yi,s,t,d,hEE'RN,i:1,._,!5,1;,_1;52'}%“




Distributionally Robust Optimization
Unified bound on CVaR

M-e(Yo,y) =min 71 + 1o +7r3+74+75
s.t. Yo + Z 8;Z; + Z tjz; < T1

Jiz;<oo j:gj.f:oo
5; =0Vj:z; = o0, tj=0Vj:z; =00
s, t =10
s—1t=1y,
y20 + (1/€ — 1) Z d;zZj + Z hjz; | <72
J:Z24 <00 Jiz;<oo
d; =0Vj:Zz; = o0, hj=0Vj:z; =00
d—h = -y,
d,h =0

ys0 + 1/ =5 2y,)l2 < 13

ya0 + v/ —2In(e)[|ull2 < 4

uj > piYaj Vi1 pj < 00, Ya; S0Vj:p; =00
TLj:_}—ijrlj VjZjSDG, ydjEUVj:ij=°G
yso + =<1/—2In(1 — €)||v|2 < 75

Vj 2 qjYsi VI 1 qj < 00, Ysj 2 0Vj:gj =00

Vj = —Piysi VI 1D <00, Ysj <0Vj:ipj =00
Y10 + Y20 + Y30 + Y40 + ys0 = y°

Y, T Yo T Y3 T Yy T Y5 = Y.

ri,yio € Ry, 8,6, dhe RN, i=1,...,5,u,ve RN




Distributionally Robust Optimization

Joint chance constraints

o All constraints must be satisfied with high
probability for all random variables with the same
descriptive statistics.

Much harder to solve than single chance constraint!!!

. @] ] ~ .
InfP(y] +9j2<0,jeM)>1—e
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Distributionally Robust Optimization

= One idea: Union bound

Suppose ) ¢ <e

jeEM
Mm-c;(¥3,y;) <0 jeEM
U
. O —~ ) .
I#E%P(yj—l—yszO)zl—ej jEM
|

. @] ~ . .
InfP(y) +yj2<0,jeM)>1—c
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Distributionally Robust Optimization

Union bound

o Bound is good if constraints are independently
distributed

o Bound is weak if constraints are highly
correlated.

o Need to fix g. Sensible choice g=g/m
How to optimize over g;?
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Distributionally Robust Optimization

= Can we do better than union bound?
a Yes!!' W. Chen, S., J. Sun and Teo (2007)

. 1 1
T1—e(Y,a) = m[f (.3 + E‘FT (SD — 03, 3) + Z Eﬂ (ajy? — SD, a;Yy; — S))

8,573 jeM

where Y = (y?: Yi,---, y}%: ym)
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Distributionally Robust Optimization

Suppose there exists a > 0, such that

Y1—(Y,a) <0

U

. 0 ~ .
IEJ;‘;FP(?JJ' +y;2<0,jEM) >1—c¢
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Distributionally Robust Optimization:
Resource Allocation Example

Network of n cities proximally connected

First stage:

o Decide amount of resouces to place at each city in
anticipation of uncertain demand

Second stage:
o Demand is realized

o Resouces can be transhipped to neighboring nodes at
zero cost

Obijective

o Find the minimum cost allocation of resouces that meets
service requirement
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Distributionally Robust Optimization:

Resource Allocation

Example

X,=10 @

N

d,=180  %,=90

X,=80
‘ d,=100
Q)Q ‘\ X5=50
v
o
1*100

Xg= 100
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Distributionally Robust Optimization:
Resource Allocation Example

Infeasible instance

X,=80

/ ‘\ XE<Ox7=1o

X,=10

1\‘ / =250

d,=200  %,=90

Xg= 100
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Distributionally Robust Optimization:

Resource Allocation Example

= Robust joint chance constrained model

min c'x
i+ Y wi(E)— D) wi(2) >di(2) i=1
JENF (i) FEN— (i)
P - o
s.t. L!Dg‘;— xi 2 | 3 _ w;;(Z) 1 =1,
FEN—(1)
w(z) >0
x> 0,w(z)
where

N=@) 2 {51 (,5) € ).

and

NT@) 2 (G.i) € €}

."'.'-T?"1IIII

>1—c€
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Distributionally Robust Optimization:
Resource Allocation Example

= Need to assume linear decision rule on recourse
variables on transshipment

w(z) = w’ + Z 'ijj

7=1
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Distributionally Robust Optimization:
Resource Allocation Example

Assume demand at each node are indepen-
dently distributed with mean 10 and maximum
demand of 100. That is,

—

di =10+ %,
Note that O‘f(F, Ej) = 42.67 and 5‘5(F,§j) = 30.
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Distributionally Robust Optimization:
Resource Allocation Example

= Computation example: € = 0.01

Union Bound Improved Bound
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Distributionally Robust Optimization:

Resource Allocation Example
= Computation example: € = 0.01

# of Nodes | # of Arcs | Z" A ZN 2V — zNyZ2W | (Z2Y — ZzVyZV
15 50 1500 | 1158.1 | 1043.3 30.45% 9.91%
15 60 1500 | 1059.7 | 968.1 35.46% 8.64%
15 70 1500 | 1027.3 | 929.5 38.03% 9.52%
15 80 1500 | 1009.3 | 890.1 40.66% 11.81%
15 90 1500 | 989.1 | 865.7 42.29% 12.48%
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‘ Agenda

= DRO with Recourse
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DRO with Recourse

= Consider a two stage optimization problem

7=
First stage N Second stage
= e - s e
X \/ y(2)

c'x f(x,z) = min d(z)y

st. TE)x+Y(z)y=h(z)
y=>0
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DRO with Recourse

Risk Neutral Objective
o Classical stochastic programming model

Zsroc(P) = min c'z + Ep(d'y(2))
st. Axz=5»>
T(z)x+ Yy(z) = h(z)
y(z) >0,z >0

o Assumes repeatability of experiments under
iIdentical conditions
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DRO with Recourse

Even when distributions are known,
computations can be difficult

(Dyer and Stougie, 2005)

o Two period models are #P-hard

o >2 periods models are PSPACE-hard
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DRO with Recourse

Ambiguity Averse, Risk Neutral model

Zsroc(F) = min 'z + supEp(d'y(2))
PelF
s.t. Ax=5»>

T(z)xr+Yy(z) = h(z)
y(z2) >0,z >0

o Famous example: Worst case Newsvendor of
Scarf.
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DRO with Recourse

o Hard problem as well
Determine a good upper bound
How good is the bound?

Zstoc(F) < ZroBUST
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DRO with Recourse

Linear Decision Rule Again!!!

o Appeared in early Stochastic Optimization but was
abandon soon.
Garstka and Wets, 74

o Resurface in adjustable robust counterpart

N
y(2) =9+ Y 9z,
j=1
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DRO with Recourse

Final Model: Linear Optimization Problem

Zrpr= min cdz+ d'y°
TFz 4+ Y y* = h* vk
yz’O T Zj:l nyj >0 Vze W,V
x>0

Zstoc(F) < ZipR
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DRO with Recourse

Issues with linear decision rule

o Can lead to infeasible solution even when the
problem has complete recourse

min
S.t.

=(y(2))
y(z) >z Vze R
y(z) > —z VzeR

Note: y(z) = |z| is feasible.
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DRO with Recourse

“The rationale behind restricting to affine decision rules is
the belief that in actual applications it is better to pose a
modest and achievable goal rather than an ambitious
goal which we do not know how to achieve.”

- Shapiro and Nemirovski 05

Can we do better than linear decision rule?
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DRO with Recourse

Exploit problem structure of stocastic optimization
model.
o Focus on recourse matrix Y

ZSTOC(IF) = min cz -+ sup Ep(d”y(i))
PelF

st. Az =0b>
TZ2)x+ Yy(z) = h(2)
x>0
y;(Z) > 0 Vi
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DRO with Recourse

Deflected linear decision rule (X. Chen, S., P. Sun
and Zhang 2006)

N . .
y(2) =4+ v+ > 7P -yin)T

j=1 {?,JE<OO}
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DRO with Recourse

where
d; = min dy
st. Yy=0
y; = 1
y > 0,

An optimum solution: 7"
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DRO with Recourse

Final Model: SOCP

o Uses boundon E(.)*

Zprpr= min cdz+dy°+ Y din(—y,—y)
{i:d;<oo}
st. Ax=0»>
T -|- Yyk‘ = h* Vk
—|— Zyjzj>0 Yz € W,Vi:d; = oo

=1
x>0

Zstoc) < Zprpr < ZLDR
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DRO with Recourse

Primitive uncertainties unfolds in stages

Zstoc(F) = min cdz+ Sup Z Ep(diy: (&)
F/ =
s.t. Az =0

Ti(&)x + Z Yiry (&) = by Vi
=1

y: (&) >0 W
x>0

Scales well with Linear Decsion Rule and Deflected
Linear Decision Rules
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Robust Inventory Control

Multiperiod Inventory Control Problem

o Ordering decision to meet uncertain demand so
that the cost is minimized

o Periodic review, Finite horizon, backlogging,
exogenous demand, no fixed ordering costs
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‘ Robust Inventory Control

= Sequence of events

:Z?tl
yt;‘ _

d

L =20

Yt4+1 — Yt + xi_ g, — Jt

3
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‘ Robust Inventory Control

= Inventory dynamics

e d;: stochastic exogenous demand at period t
. dt a vector of random demands from period 1 to t, that is, {dl, e d’;)
. yt(tit_l): net inventory level at the beginning of the tth time period

. :Et(df 1)' order placed at the beginning of the fth time period after Ub—
serving dy_1. The first period inventory order is denoted by z;(dg) = z9

Inventory control constraint:

0< $t(Jt—1) < 5
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‘ Robust Inventory Control

= Costs components

e ¢;: unit purchase cost of inventory for orders placed at the tth time

e h;: unit inventory overage (holding) cost charged on excess inventory at
the end of the tth time period

e b;: unit underage (backlog) cost charged on backlogged inventory at the
end of the tth time period
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‘ Robust Inventory Control

= Stochastic Optimization Model

Zsroc(P) = min z (Bp (cimi(di-1)) + Ep (he(weg1(d)) ™) + Ep (be(ye41(d)) 7)) -

s.t. yf+1(dt)—yt(df 1)+ p(dip1) —dy t=1,....T
D<.‘I.‘t(dt 1) < S t=1,....T— L
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Robust Inventory Control

Characterize optimum policy using Dynamic Programming
o Dependent Demand:

More realistic representation of demand

Curse of dimensionality
2 Independent Demand:

State independent base-stock policy is optimal

Does not imply that it is easy to find the base-stock levell!!

State independent basestock policy:

zi(di_1) = (gt —ye) T

for some base stock-levels, g;.




‘ Robust Inventory Control

= DRO Inventory Control Model

Zsroc(F) = min supz (Ep (crze(di—1)) + Ep (he(et1(d) ™) + Ep (Be(@et1(d)) 7)) -

s.t. yt+1(df)—yt(d: D4z p(dip 1) —di t=1,....T
D<.I'f{lfi—t 1) < 5 t=1,..., T — L
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Robust Inventory Control

Factor Demand Model
A -~ N
h(Z)Edi=d + Y diz, t=1,...,T
k=1

where

dF =0 Vk > Ny + 1,
and 1 < N < No<...< Np=N.

Random factors, z,, k = 1,..., N are realized
sequentially.
New factors zi, k =N+ 1,...,N;4 1 are made

available from period t to t+ 1.
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Robust Inventory Control

Factor Demand Model

o Handle demand correlations
o Can include exogenous factors such as market
factors

o Demand forecast models
E.g: ARMA process

dt ift<O0
min{q,t—1}

dt(g) = Z szdt ?J(z) + Z _I_ Z 6.z Zt—j otherwise

J=1 J=1
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Robust Inventory Control

Static Replenishment Policy (Bertsimas and Thiele)
o Inventory position affine in factors

foP(Jt_l)zxg t=1,...., T —L

T
Zgpp = Min Z (ct:r:E + (yE_|_1: yt—|—l) + by (—'ya?-|—1= _yt-l-l))
i=1

S.t. y?+1=yP+$E—L_d? tzl}...}T
yir1 =yr —df k=1,....N,t=1,....T
0<zP < S t=1,....T — L,

Zstoc(F) < Zgprp
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Robust Inventory Control

Linear Replenishment Policy

xf’RP(czt_l)zx?—l—azii t=1,..., T — L

in which the vector z; = («f,...,z] ) satisfies
the following non-anticipative constraints,

R Vk > Nj.

3rd Nordic Optimization Symposium



Robust Inventory Control

o Inventory position affine in factors

RP(E =2 falE t=1,..

T
Zprp = min )~ (ctﬂ:tﬂ + hym (yf_|_1a yt+1) + bem (—-y?+1, _yt‘|‘1))

t=1

S.t. yfq_l:-yf—l—mf'_L—dE k=0,..., Nyt=1,...,T
zf =0 Vk > Ny, t=1,...,T — L
0 <z 4 xjz < S VzeW t=1,...,T—L

Zstroc(F) < Zrrp < Zgprp
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Robust Inventory Control

Truncated Linear Replenishment Policy (See
and Sim)

wp " (dy—1) = min {max{zf + 2,0}, S,

in which the vector x; = (z},...,z;") satisfies
the following non-anticipative constraints,

zf = Vk > N, 1+ 1.
Observe that
0 <z P(d,_1) < S,

Netinventory tevet is not affine im factorst
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Robust Inventory Control

Require the following bound on expectation:

cml |

v +
sup Ep { (yﬂ +y'z+ ) (= + mf’5)+) } <n((¥° ), (2%, 21), - - ., (25, 2p))

Pel i=1
where

n({yn? y]1 (EE_}'.- 3:1)'.- LR (:Ep:- :Bp))
P P p
— min {‘E (yﬂ + z m?:y + Z wi) + Z (ﬂ'{——w?, —w;) + Tr(:c? — U‘szi — wi))} i
i—1 —1

u‘rD .'w!—'! i:]'f'"','p i—:]_

(v’ y), (x5, 21),. .., I[:EE,, x,)) is SOC representable function !




Robust Inventory Control

z! "R (d,_1) = min {max {:r:? T, Z, 0} aSt}?

T L
Zrpgp=min Y cm(al,ze) + Y (hem(y2y 1. Y1) + bem(—ypy 1, —Yep1))+

=1 - t=1
> (hen (W1, veg1), (=29, 1), (—a -z 1)) +
t=1I+1
b‘f?} ((—yfﬂ_l_]_" _yt+1)! (I? — St: :I:]_)., 5o e ('I-?_L — St: :Bf—L}) }
s.t. -yf_|_1=yf—|-$f_L—df k=0,...,N,t=1,...,T
F=0 Vk> Net=1,..., T—L

Zstoc(F) < Zrrrp < Zrrp < ZgRP
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‘ Modeling Software

o Sample code implementing TLDR




‘ Modeling Software




Modeling Sottware




Robust Inventory Control
- Computations
Correlated Demand:

di(Z) =zt +azi_1+azZi_o+ ... +az1 +pu,

di(Z) = di—1(2) — (1 —)Z—1 + Z.

a=0:iid demand
a=1:random walk

T =5, z; ~ U(-20,20)
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Robust Inventory Control

- Computations

Compare with

o State independent based-stock policy

Ignores dependency of previous demands

Policy is optimal if a = 0

Use sampling approximation to determine reorder point
o Myopic Policy

Ignores future costs
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Robust Inventory Control

- Computations
o Truncated Linear Decision Rule

Sample solution: o« = 0.4

:sg 102.5 ) O 0 0 ©
w3 103.0 A 185 0 0 O
o3| = 101.4 zh | =]1024 1.70 0 O
T 107.5 T, 0.19 0.18 142 ©0
:Bé | 105.6 | xy | [ 0.32 0.32 0.38 1.40

eI PRP (2) = min{(z? 4 z!z)T, 140}.
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Robust Inventory Control

- Computations
o Empirical performance (100,000 samples)

a TLPR BSP MP &(TLRP) &(BSP) &(MP) BSP/TLPR MP/TLPR

1 2416 3290 2760 5.5 17.1 14.5 1.36 1.14
0.8 2048 2573 2138 2.3 11.2 8.7 1.26 1.04
0.6 1716 2056 1784 1.0 6.1 4.7 1.20 1.04
0.4 1550 1769 1611 0.5 3.4 2.3 1.14 1.04
0.2 1515 1576 1539 0.5 1.2 0.9 1.04 1.02

0 1512 1513 1526 0.4 0.5 0.5 1.00 1.01
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Conclusions

Robust optimization is a computationally
attractive approach for addressing data
uncertainty in optimization problems

Many applications

Many open issues:

o Quantify level of conservativeness
o Address non affine disturbances

o Address general recourse problems
o Address integral recourse problems
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