## TECHNION Israel Institute of Technology Robust Control with Classical Methods – OFT

Per-Olof Gutman

- Review of the classical Bode-Nichols control problem
- QFT in the basic Single Input Single Output (SISO) case
- Uncertainty and Fundamental Design Limitations
- · QFT for non-minimum phase and computer controlled systems
- · QFT for cascaded systems, and for a class of non-linear plants
- QFT for Multi-Input Multi-Output (MIMO) plants
- · A comparison between QFT and other robust and adaptive control

Qsyn - the toolbox for robust control systems design























| TECHNION<br>Israel Institute of Technology<br>Recall: Design in the open loop                          |                                                                                                 |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| <ul> <li>Plant with disturbances</li> <li>Closed loop servo and disturbance rejection specs</li> </ul> | $\begin{array}{c} u \\ \psi \\$ |
| <b>Translate</b> : closed loop time domain specificationss → open loop frequency domain specifications |                                                                                                 |
| <ol> <li>Plant P(s)</li> <li>Open loop specifications</li> </ol>                                       | $\varphi_{m}, A_{m}, \omega_{c}, e_{0}, e_{1}, \dots, e_{0}, e_{1}, \dots$                      |
| Find: Regulator $G(s)$ such that $G(s)P(s)$ satisfies the open loo                                     | the open loop<br>p specifications $G(s)$ $u$ $P(s)$ $y$                                         |
| m - the toolbox for robust control systems design                                                      | P-O Gut                                                                                         |



## **Translation of specifications**

P-O Gu

- Test signals in the time domain: step, ramp, sinus, ...
- Specification envelopes
- Transient

oox for ro

• Steady state

ust control systems design













































## TECHNION Israel Institute of Technology The robust control problem

• Given a set of plants,  $P(s) \in \{P_i(s)\}$ 

Qsyn - the toolbox for robust control systems design

- Design **one** feedback compensator *G*(*s*) (and **one** prefilter *F*(*s*)) such that the specifications are satisfied for each *P<sub>i</sub>*(*s*).
- Difficult if individual transfer functions are retained in design calculations.

P-0 G



