
4. MORE ABOUT PLANTS AND TEMPLATES

In Section 2.1 we explained the structure of plant description files using the standard file
plant.m in the Qsyn library.  We  used it to define the plant (2.1) of Example 2.1. In Section
2.2 we computed the desired templates of (2.1) using the real factored form method, the
recursive edge grid method, and the grid method.

We compared the resulting templates, and noticed the considerable differences in computing
time: 0.5 minutes for rff, 28 minutes for the recursive edge grid method, and 6 minutes for
the grid method. A large part of the difference is accounted for by the fact that in the grid
methods, the parameter vector belonging to each saved template point is stored as a column
in the template file variables par_1, par_2, etc, while no parameter vectors are stored in
the rff-method. Another secret behind the speed of the rff-method is the fact that it by
construction uses so called Tree Structured Decomposition (Ackermann, 1993), i.e.
computes the elementary template for each transfer function factor and then multiplies the
factors together (Gutman, Neumann, Baril, 1994). In this chapter we will examplify how tree
structured decompositon can be used with the grid methods, by computing the sub-templates
for plant parts that are parametrically independent from other parts, and then using the
commands tplfop and tplprune or prune to compose the total templates. However the
user must decide if she does not prefer to take a (long) coffee break while the computer
sweats over the calculation of the total templates, instead of manually defining partial plants,
issuing several ctpl commands, composing the total templates, and then inspecting them
before pruning.

This chapter includes examples of the recursive grid computation method and the random
grid method. We also demonstrate a case when the Edge theorem does not hold whence it
follows that the recursive edge grid method gives erroneous templates. Examples with
unstructured uncertainty, uncertain delay, an uncertain number of integrators, plants with
dependent parameters in different transfer function parts, and plants that are unstable for
some parameter combinations, and stable for others are included.

An example how measured frequency function data is transformed to templates is given, on
the basis of which interactive plant modelling gives rise to an uncertain plant description in
form of a plant description file. The model, and the measured templates are joined into a
composite template.

It is also demonstrated how an additional template is inserted into a template file, and how a
dense rff-computation followed by a thinning out of  template points forms a fast and exact
way to compute templates.

4.1 Unstructured uncertainty, delay, and a number of 
integrators.  Tree Structured Decomposition

Consider the plant (2.1). Assume we would like to include unstructured uncertainty, an
uncertain delay, and an uncertain number of integrators: 0 or 1. Then we get the e.g. the
plant description
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where m(s) is given for s j= ω  in Figure 4.1. Since all factors in (4.1) are in real factored
form, a straightforward way to compute the templates is to edit ex2_1a.m in Figure 2.2 to
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include the new factors. The new file, ex4_1a.m, is presented in Figure 4.2. The command
ctpl('ex4_1a') computes, during 1.6 minutes, the templates with the real factored form
method. When studying the templates with showtpl (do that!), one notices that some
templates, e.g. the one for 0.2 rad/s consists of two disjoint sets each due to the two
integrator cases, while in other templates the two distinct sets overlap and form simply
connected set  with interior template points.

Figure 4.1. Magnitude of the unstructured uncertainty m(s) in (4.1).

function   [Par,w_tpl,w_nom,method,P_num,P_den, ...
            n_dif,Uns_Par] = ex4_1a

%  Plant_name :  Example 4.1a. Rff method

% Definition of the parameters
 Par = [           %'p1=[p1min,p1max,p1nom,number of cases]'
         'k=[2, 5, 2, 8]' , ... % uncertain gain
         'a=[1, 3, 3, 8]', ... % zero: s+a
         'zet=[0.3, 0.6, 0.6, 8]', ... % complex pole
         'wn=[4, 8, 4, 8]',...
         'tau=[0, 0.1, 0, 3]',... % delay
         ];

% Multiplicative unstructured uncertainty:
Uns_Par=[0.1 0.2 0.5  1   2   5    10   20   50  100;
         0   0.3 0.3  0.3 0.3 0.35 0.35 0.35 0.5 0.5];

% Definition of the frequency vectors [rad/sec]
w_tpl = [0.2 0.5 1 2 5 10 20 50]; %template frequencies [rad/s]
w_nom = logspace(-1,2);  %nominal frequencies  [rad/s]

% Definition of the template computation method
method = 'rff_[1,1]';

% Plant definition: Real Factored Form Structure
P_num='(gain,k)(delay,tau)(hf,a)';
P_den='(dc,wn,zet)';

% number of differentiators/integrators
n_dif = [-1 0 0]; %one or zero integrators, nominal = zero

Figure 4.2. Plant description file ex4_1a.m for the full description of (4.1).

An alternative way to compute the templates for (4.1) is to exploit the fact that the templates
of (2.1) are already computed and stored in ex2_1a.tpl. That would be an example of Tree
Structured Decompositon. What is needed is a plant description file, ex4_1b.m in Figure
4.3,  for
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function   [Par,w_tpl,w_nom,method,P_num,P_den, ...
            n_dif,Uns_Par] = ex4_1b

%  Plant_name :  Example 4.1b. Rff method

% Definition of the parameters
 Par = [           %'p1=[p1min,p1max,p1nom,number of cases]'
         'tau=[0, 0.1, 0, 3]',... % delay
       ];

% Multiplicative unstructured uncertainty:
Uns_Par=[0.1 0.2 0.5  1   2   5    10   20   50  100;
         0   0.3 0.3  0.3 0.3 0.35 0.35 0.35 0.5 0.5];

% Definition of the frequency vectors [rad/sec]
w_tpl = [0.2 0.5 1 2 5 10 20 50]; %template frequencies [rad/s]
w_nom = logspace(-1,2);  %nominal frequencies  [rad/s]

% Definition of the template computation method
method = 'rff_[1,1]';

% Plant definition: Real Factored Form Structure
P_num='(delay,tau)';
P_den='[1]';

% number of differentiators/integrators
n_dif = [-1 0 0]; %one or zero integrators, nominal = zero

Figure 4.2. Plant description file ex4_1b.m for  (4.2).

Figure 4.3. Templates generated by ctpl('ex4_1b'); showtpl('ex4_1b');  The
templated frequencies are printed on the templates where unambiguous. The nominal points
lie all in 1 (0 dB, 0 deg). The template for each frequency ω k  is disjoint: one ellipse-like set
for 0 integrators, and an identical set "moved" by 1/(jω k ). The 0 integrator template parts all
include the nominal point, and are pointed to by the 0 integrators arrow. The 1 integrator
template parts are moved -90 degrees and the appropriate amount of dB, and are indicated
by the 1 integrator mark.
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The template file for (4.2) is produced by  ctpl('ex4_1b') (0.6 min) and the result is
displayed in Figure 4.3 by the command  showtpl('ex4_1b'). The reader may
investigate the templates of the individual factors of (4.2) taking note that the plant
description of the real factored form demands at least one uncertain parameter  in the
transfer function, which may be an infinitesimally uncertain gain, see plant.m.

Alternatively, the template file for (4.2) may be computed by the Recursive Edge Grid
method. When this method is applicable, which is the case here, it is advantageous over the
rff method in two respects: (i) it computes the true template vertex points also when a low
accuracy is used (rff approximates to the nearest phase in a phase grid given by the
accuracy vector dist), and (ii) it stores the parameters  that were used to compute the final
template point, except for unstructured uncertainty and number of integrators.  The second
point is however not particularly important for uncertain delay. So, the command
ctpl('ex4_1br','ex4_1b','aedgrid_[5,5]'); (3 min) is used to get the
template file  ex4_1br.tpl.  The command  showtpl('ex4_1br') reveals the same
templates as in Figure 4.3, but uglier, and with about one third of the number of points in
comparison to ex4_1b.tpl.

We now choose to multiply the templates of ex2_1a.tpl, (2.1), and ex4_1b.tpl, (4.2) to
get a set of  templates for (4.1) to be compared with those of ex4_1a.tpl. (The use of
ex4_1br.tpl is left as an exercise for the reader, see below.) The command to use is
tplfop. This command includes, as an option (prune_op in the input argument list) to have
the resulting template pruned and/or reduced, actions that can be done seperately with the
commands tplprune  and tplreduc, respectively. One has to be careful, though, and only
profit from these options when one is sure that the resulting template is suitable. In our case,
with an uncertain number of  integrators, we cannot be sure which, if any, of the templates
will be simply connected and hence satisfying one condition for prunability. We therefore
choose to multiply the template files with the default option of neither pruning nor reducing.
Afterwards we may use, also for templates that are not simply connected, the interactive
command tplupd (template update) which enables us to inspect the templates, and
selectively prune them.

Note that our example as usual also serves as a warning example.  Template multiplication
means that all points in the first template are multiplied by all points in the second template.
That means that (i)  it would have been wiser to save the inclusion of the one-integrator case
to the very end, which also would have made it possible to use the pruning option of tplfop
(which is much faster than first using tplfop without pruning, and then tplprune); and (ii)
it is wise to choose as low an accuracy of the multiplicands as allowed. If the user chooses to
redo the example, she is advised to recompute ex4_1b.tpl  with lower accuracy than
[1,1] used above (or to use ex4_1br.tpl) and to wait with the uncertain integrator.

tplfop('ex4_1c','*',[],'ex2_1a','ex4_1b');  % 6 Mbytes, ca 15 min!!!
showtpl('ex4_1c'); % another 10 minutes since the templates

% are almost solidly filled: don't do it!
!copy ex4_1c.tpl ex4_1d.tpl % prepare a safety copy
showtpl('ex4_1d',0.2); % Figure 4.4a
tplupd('ex4_1d',[2 2]); % Interactive pruning. Takes one hour

% for the whole template file.
showtpl('ex4_1d',.2) % Fig 4.4b shows the pruned template

% for 0.2 rad/s.
showtpl('ex4_1a',.2,'ro',gcf);% compare with Fig 4.4b, find out that 

% the templates are equal. Do this!
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Figure 4.4. (a) the left figure shows the template for 0.2 rad/s in the template file
ex4_1c.tpl, which was created by multipling the template for (2.1) and for (4.2). (b) the
right figure shows the template to the left after pruning (fromin ex4_1d.tpl), see the code
above. The user should check that the corresponding template in  ex4_1d.tpl is identical.
Also compare with Figure 2.6 where no unstructured uncertainty, no delay and no integrators
are present.

4.1.1 Conclusion

Like many other examples in this manual, this example also demonstrates some pitfalls:

1. If the rff method can be used directly, do it. Note however that the rff method does not
save the parameters of the stored cases, cf. Section 2.8.

2. When multplying templates, chose as low a resolution of the factors as possible,
otherwise the curse of dimensionality will haunt you.

3. Prune in an appropriate way, using prune  to prune individual templates, tplprune to
prune all templates in a template file, and tplupd  for a graphical, interactive interface
to prune, and "clean" , and complement a template.

4. Tree Structured Decomposition (TSD) means that independent parts of a transfer
function have their templates computed seperately, with the total template composed
from the parts. It is essential that the individual templates have as low a resolution as
possible or as few points as possible, either in the original computation, or by pruning
them afterwards. In this example TSD was not necessary, in others it is mandatory. TSD
is often worthwhile when template computation methods other than rff are used. In some
cases TSD is not recommendable e.g. when the plant has a feedback structure with lowly
damped resonances.

5. Factors including an uncertain gain, uncertain delay, or unstructured uncertainty are
often a part of a realistic plant description. Their templates (one or together) are
efficiently and accurately computed with the recursive edge grid method (aedgrid) or
the rff method, for use in Tree Structured Decomposition.  The rff method is much faster
for the same resolution, but the recursive edge grid method gives correct template
vertices even with a low resoluiton. A compromise is to compute the templates with high
resolution rff, and then prune which is rather a fast operation.

6. Uncertain integraors should be saved as the last tplfop operation. It is advisable to
keep the templates simply connected as long as possible and uncertain integrators
usually destroy this property. Multiplication and division with tplfop  can always be
followed by automatic pruning as part of the tplfop command when the templates are
simply connected. This combined operation is usually  much faster than pruning
seperately afterwards with tplprune.
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4.2 The Edge Theorem

Unfortunately there are no necessary and sufficient conditions for when it is sufficient to
compute a template from the edges in the parameter space, only. see Ackermann (1993).
Sufficient conditions exist for certain types of transfer functions, e.g. those having so called
Kharitonov polynomials for numerator and denominator. See Ackermann (1993).

Here we will warn the user to uncritically use the recursive edge grid method by providing a
simple example of its failure. Consider the  uncertain transfer function
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described by the plant description file in Figure 4.5.  Since (4.3) is in real factored form we
use that description although primarily other template computation methods will be used.
Notice that we have to denote  method = 'rff' in oder to give the compiler the correct
information about what transfer function structure is used, even though other template
computation methods will be desired in the ctpl command. The template for 3 rad/s using
each of the available Qsyn method is computed:

ctpl('ex4_2rg','ex4_2a','adgrid_[1 1]');
% recursive grid (1013 points):27 min!

ctpl('ex4_2e','ex4_2a','aedgrid_[1 1]');
% rec edge grid (333 points):  2.8 min.

ctpl('ex4_2g','ex4_2a','grid');% grid (64 points):           0.17 min
ctpl('ex4_2ra','ex4_2a','rgrid');

% random grid (64 points):    0.17 min
ctpl('ex4_2rff','ex4_2a'); % rff (228 points):      0.14 min

function   [Par,w_tpl,w_nom,method,P_num,P_den, ...
            n_dif,Uns_Par] = ex4_2a

%  Plant_name :  Example 4.2.

% Definition of the parameters
 Par = [               %'p1=[p1min,p1max,p1nom,number of cases]'
     'k=[1]', ...        % gain=1
         'a=[1, 10, 10, 8]' , ... % pole: 1/(s+a)
         'b=[1, 10, 10, 8]', ... % pole: 1/(s+b)
         ];

% Multiplicative unstructured uncertainty:
Uns_Par=[];

% Definition of the frequency vectors [rad/sec]
w_tpl = [3]; %template frequencies [rad/s]
w_nom = logspace(0,1);  %nominal frequencies  [rad/s]

% Definition of the template computation method
method = 'rff_[1,1]';

% Plant definition: Real Factored Form Structure
P_num='[k]';
P_den='(hf,a)(hf,b)';

% number of differentiators/integrators
n_dif = [ 0 0]; %

Figure 4.5. Plant description file ex4_2a.m for f (4.3).
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Figure 4.6. The template at 3 rad/s  for (4.3) computed with the five template computation
methods in Qsyn. Notice that the template computed by the recursive edge grid method is
wrong in principle since the Edge Theorem does not hold for (4.3).

Using showtpl with the point option, all templates are displayed in the same diagram, see
Figure 4.6. Clearly the recursive grid method gives an erroneous template. The reason is
that the upper template border is given by a=b in (4.3), i.e. the diagonal in parameter space,
which is not covered by the any edge search.

4.2.1 Conclusions

If real factored form cannot be used, compute templates as follows:

1. Consider Tree Structured Decomposition.
2. For each frequency, compare the templates computed by the recursive edge grid, grid,

and random grid methods. If it seems that the recursive edge grid method correctly
computes the template border, use that method. Otherwise, compute the union of the
templates computed by the recursive edge grid method, and finely gridded grid and
random methods. Prune.

3. When the transfer function form and parameter ranges are finally known, recompute the
templates using the recursive grid method. Use a low accuracy except for critical
frequencies.

4.3 Unstable and non-minimum phase plants

Consider the transfer function
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This is a very ugly plant having two poles that may be either stable or unstable, and two
zeros that may be minimum or non-minimum phase. Moreover, cancellation occurs for some
parameter combinations. A plant description file for (4.4) is found in Figure 4.7. The result of
ctpl('ex4_3'); showtpl('ex4_3') is seen in Figure 4.8. As expected the template
covers the whole complex plane, which is approximated here by the gain band between eps
and 1/eps. The user is invited to change the parameter ranges, and study the effect.
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function   [Par,w_tpl,w_nom,method,P_num,P_den, ...
            n_dif,Uns_Par] = ex4_3

%  Plant_name :  Example 4.3.

% Definition of the parameters
 Par = [               %'p1=[p1min,p1max,p1nom,number of cases]'
     '
         'zn=[-0.1, 0.1, 0.1, 8]' , ... % complex zero
         'wn=[1, 10, 10, 8]', ... %
         'zd=[-0.1, 0.1, 0.1, 8]' , ... % complex zero
         'wd=[1, 10, 10, 8]', ... % 
         ];

% Multiplicative unstructured uncertainty:
Uns_Par=[];

% Definition of the frequency vectors [rad/sec]
w_tpl = [3]; %template frequencies [rad/s]
w_nom = logspace(0,1);  %nominal frequencies  [rad/s]

% Definition of the template computation method
method = 'rff_[2,5]';

% Plant definition: Real Factored Form Structure
P_num='(dc,wd,zd)';
P_den='(dc,wn,zn)';

% number of differentiators/integrators
n_dif = [ 0 0]; %

Figure 4.7. Plant description file ex4_3.m for  (4.4).

Figure 4.8. The template for 3 rad/s for (4.4).

4.4 Dependent parameters

Consider the following model of a two-mass system connected with a flexible shaft (Cohen,
Nordin and Gutman, 1995), where the input is motor torque and the output is motor speed:
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where Jl ∈ 5 6 8. , kgm2  is the load moment of intertia, d ∈ 30 300,  Nm/(rad/s) is the shaft

damping, k ∈ 5880 5900,  Nm/rad is the shaft elasticity, and Jm  = 0.4 kgm2 is the motor
moment of inertia. Clearly, the rff method cannot be used here since the polynomial
coefficients are dependent. A plant description file for (4.5) is found in Figure 4.9. The
command sequence, using the recursive edge grid and recursive grid methods,

ctpl('ex4_4e','ex4_4','adedge_[5,2]',10*pi); % 0.16 min
tplprune('ex4_4e',[],[10 2]) % to smooth the borders
showtpl('ex4_4e',[],[],'-');
ctpl('ex4_4ag','ex4_4','adgrid_[5,2]',10*pi) % 0.7 min
tplprune('ex4_4ag',[],[10 2])
showtpl('ex4_4ag',[],[],':',gcf);

produces the template of 5 Hz as seen in Figure 4.10. We notice that also in this realistic
example, the edge grid method is unreliable.

function   [Par,w_tpl,w_nom,method,P_num,P_den, ...
            n_dif,Uns_Par] = ex4_4

%  Example 4.4: Two mass system

% Definition of the parameters
% =====================
   Par = [
         'J_m=[0.4,0.4,0.4,1]' , ... % [minvalue,maxvalue, nomvalue]
         'J_l=[5.6,8,5.6,4]', ...
         'd_m=[0,0,0,1]', ...
         'd_l=[1,1,1,1]',...
         'k_s=[5880,5900,5900,2]',...
         'd_s=[30,300,30,8]',...
         ];

% Definition of the frequency vectors [rad/sec]
% ======================================

% Template frequency vector.
 w_tpl=2*pi* ...
 [0.5000;1.0000;1.3800;1.5600;2.0000;2.2700;2.4200;
  3.1000;3.1700;3.3700;3.4400;3.9000;4.0600;4.4100;
  4.8000;4.9000;5.0000;5.2100;5.4300;5.6600;5.7800;
  5.9000;6.2800;6.6800;7.1100;7.4200;7.8900;8.5700;
  8.9400;9.5100;9.9100;10.3000;10.8000;11.5000;12.2000;
  12.7000;13.3000;13.8000;14.4000;15.0000;16.0000;17.0000;
  17.4000;18.1000;19.3000;20.0000;30.0000;40.0000;50.0000];

w_nom=2*pi*5*logspace(-1.5,1,300); % Nominal frequency vector.

% Definition of the template computation method
% =============================================
  method='adgrid_[5,5]';

% Polynomial Structure
% ================
  P_num ='2.5235*(J_l*s^2+(d_s+d_l)*s+k_s)';   
  P_den=['(J_l*J_m*s^2+(J_l*(d_m+d_s)+J_m*(d_l+d_s))*',...
            ' s+k_s*(J_l+J_m))*(s+(d_m+d_l)/(J_m+J_l))'];

  % note the way strings are written over more than one line
  % in Matlab 

% =============
  Uns_Par=[]; 
  n_dif=[];
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Figure 4.9. Plant description file ex4_4.m for (4.5).

Figure 4.10. The nominal frequency function for (4.5) with its nominal as defined in Figure
4.9, together with the template for 5 Hz, computed with both the recursive edge grid method
and the recursive grid method. The zoomed picture on the right shows in heavy black the part
of the template that the edge grid method overllooked.

4.5 Templates from measured data and interactive plant 
modelling

Qsyn enables the user to measure frequency function data, import them into Matlab, and
reformat them into a matrix with the frequencies as column number 1, the (arbitrary) nominal
case as column number 2, and the other measured cases as the remaining columns. Note
that every frequency value point must be stored as deg + j*dB.

Using the command pmodel, the user can then try to fit different transfer functions, in
controller function m-file form, to the measured data, in a Bode or Nichols chart.

When one has a feeling for the possible transfer function structure and parameter ranges,
the data matrix is translated to a template file  with the help of the command mffd or
mat2tpl. Then the user defines a new  plant description file, computes its template file
(ctpl) and compares it in the Nichols chart with the template file emanating from the
measured data, using showtpl. The comparison can be made in the Bode plot with the help
of the command cases, and a Bode display of the original data matrix.  Clearly the plant
description file parameters will have to be changed a few times until a satisfactory fit is
achieved.

4.5.1 Example

Assume that we have measured 49-frequency frequency function for each of 46 load cases a
two mass system similar to the one  described in Section 4.4.. We have imported the data as
a matrix formatted as mentioned above.  The Bode and Nichols diagrams of the 46 cases,
Figure 4.11, is displayed with the following command sequence, where tpl_meas is the
measured data matrix, with the nominal case in column 2 equalling the case in column 3.

w_meas=tpl_meas(:,1); % freq  vector in first column
tpl_meas=tpl_meas(:,3:48); % measured cases w/o nominal
figure       %  
subplot(211); % Bode diagram in Figure 4.11
semilogx(w_meas,imag(tpl_meas(:,3:48)),'r');
subplot(212);
semilogx(w_meas,real(tpl_meas(:,3:48)),'r');
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plot(tpl_meas(:,3:48)); % Nichols diagram in Figure 4.11

Figure 4.11. Bode and Nichols diagram of 46 measued frequency functions from different
load cases a two-mass system.

Using our deep insight of linear transfer functions and their Bode and Nichols diagram we
immediately believe that a suitable model is the one in Figure 4.12, an m-file called
model.m realised in controller function  form (see Section 3.5).

function [P]=model(s)

% model for example 4.5

  J_m=0.4; J_l=5.8; d_m=0; d_l=1; k_s=5900; d_s=2; delay=0.01;

P_num =2.5235*(J_l*s.^2+(d_s+d_l).*s+k_s).*exp(-s*delay);

P_den=(J_l*J_m.*s.^2+(J_l*(d_m+d_s)+J_m*(d_l+d_s)).*s+k_s*(J_l+J_m)).
*(s+(d_m+d_l)/(J_m+J_l));

P = P_num./P_den;

Figure 4.12. Suggested transfer function model

Figure 4.13. The result of  pmodel('model',tpl_meas,tpl_meas(:,1),1);, where the
measured data in the matrix tpl_meas  is displayed in Figure 4.11, and plant model
model.m  is defined in Figure 4.12. The frequency function of  model.m  is drawn in heavy
black.
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The command

pmodel('model',tpl_meas,tpl_meas(:,1),1);

produces Figure 4.13, and we happily note that our mental identifier worked quite well, since
the model frequency function lies right inside the set of measured frequency functions! After
playing around with the parameters in model.m to get a feeling for the ranges we feel
confident enough to propose an uncertain model, having the same structure as ex4_4.m in
Figure 4.9, but with the parameters given in Figure 4.14. The new plant description file is
called ex4_5.m.

   Par = [
         'J_m=[0.4,0.4,0.4,1]' , ... % [minvalue,maxvalue, nomvalue]
         'J_l=[5.8,5.8,5.8,1]', ...
         'd_m=[0,0,0,1]', ...
         'd_l=[1,1,1,1]',...
         'k_s=[600,7500,5900,8]',...
         'd_s=[2,20,2,8]',...
         'delay=[0.007,0.01,0.01,2]',...
         ];

Figure 4.15. Parameter vector in the plant description file ex4_5.m. The remaining part of
ex4_5.m  is identical to ex4_4.m in Figure 4.9.

A template file ex4_5.tpl is created from  the matrix  tpl_meas  with the command

mat2tpl('ex4_5',tpl_meas,'data 960214');

whereby we also included a comment variable in the template file.  The template file for
ex4_5.m should be computed  the same way as the templates for ex4_4.m in Section 4.4.
Here we compute the modelled template for frequency number 35 and display it together
with the measured template for the same frequency in Figure 4.16 :

w35 = tpl_meas(35,1);
ctpl('ex4_5ag','ex4_5','adgrid_[5,2]',w35)
 % pruning included in adgrid
showtpl('ex4_5ag'); showtpl('ex4_5',w35,[],'o',gcf); % Figure 4.16

Figure 4.16. Nominals for plant model ex4_5.m  and in the measured template file
ex4_5.tpl. The border of the template for 76.65 rad/s in ex4_5ag.tpl emanating from
ex4_5.m  is shown dotted. The measured template for the same frequency is shown as o.
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In Figure 4.16 and corresponding figures for other frequencies we notice that the
correspondence between the measured templates and the model templates is good but not
perfect. In particular it seems as if some model parameter combinations are not encountered
in the measured plant.

The Bode plots of the modelled transfer functions (for all cases in ex4_5.m) are produced as
follows, and shown in Figure 4.17. Compare with Figure 4.11 and 4.13  that contain the
measured cases and our first modelling attempt!

cases('ex4_5','all',[],1);

Figure 4.17. Bode plots for the cases defined in the plant definition file ex4_5.m.

4.6 Adding a  template into  an existing template file

Qsyn offers the opportunity to add an extra template into a template file. Consider the
example in Chapter 2 with its plant definition file ex2_1a.m and its template file
ex2_1a.tpl. We noticed that we need an extra template for 7 rad/s. Let us first see what
templates are included in ex2_1a.tpl. The command

tplinf('ex2_1a')

prints the following useful information on screen (notice that the space after w in the template
name is spurious and due to Matlab's string formatting)

 QPlant file :  ex2_1a   Method : rff_[1,1]
+-----------+----------------+---------+
|   Freq    |    template    |   size  |
+-----------+----------------+---------+
|   0.200   |    t_w 1       |    51x1 |
|   0.500   |    t_w 2       |    77x1 |
|   1.000   |    t_w 3       |   113x1 |
|   2.000   |    t_w 4       |   147x1 |
|   5.000   |    t_w 5       |   326x1 |
|  10.000   |    t_w 6       |   181x1 |
|  20.000   |    t_w 7       |    99x1 |
|  50.000   |    t_w 8       |    60x1 |
+-----------+----------------+---------+
Number of Differentiators : 0
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To compute the template for 7 rad/s (with the default template computation method and
accuracy) the following command is issued:

ctpl('ex2_1a',[],[],7);

which as usual gives calculation information on screen

Calculating templates using the Real Factored Form method

--> for w=7 [rad/sec]

 Computing time  :  [min]  =  0.1793

Notice that we did not have to set the ctpl argument option, since there was no previous
template at 7 rad/s in the template file  ex2_1a.tpl. If  there had existed such a template,
we could either choose to have it replaced (option='r'), which is the default, or keeping
the union of the old and new template (option='u'). The new contents of the template file
is revealed by

tplinf('ex2_1a')

giving the answer

QPlant file :  ex2_1a   Method : rff_[1,1]
+-----------+----------------+---------+
|   Freq    |    template    |   size  |
+-----------+----------------+---------+
|   0.200   |    t_w 1       |    51x1 |
|   0.500   |    t_w 2       |    77x1 |
|   1.000   |    t_w 3       |   113x1 |
|   2.000   |    t_w 4       |   147x1 |
|   5.000   |    t_w 5       |   326x1 |
|   7.000   |    t_w 9       |   287x1 |
|  10.000   |    t_w 6       |   181x1 |
|  20.000   |    t_w 7       |    99x1 |
|  50.000   |    t_w 8       |    60x1 |
+-----------+----------------+---------+
Number of Differentiators : 0

Note that if one has a template as a vector in the workspace, e.g. after having extracted it
from some template file with the command gettpl, then one may add that template to
some other template file with the command add2tpl, which also has the replace/union
option. The command add2tpl  should be used rather than  insert. The user should make
sure that w_tpl, the template frequency vector, correctly reflects the templates in the
template file, by  e.g. using the command tplinf. Notice that inserting a new template by
insert does not update w_tpl, which then has to be done with  gettpl, vector editing,
and inserting the new w_tpl. The command  add2tpl updates w_tpl and w_nom,
however.

4.7 Creating the union of  two template files

Qsyn offers the opportunity to form the union of two template files in the sense that
templates for frequencies occur in in only one of the parent template files are copied
unchanged into the daughter file, while the resulting  template for a common frequency will
become the union of the two parent templates. Consider  the example in Section 4.5. One
template file, ex4_5.tpl, holds the experimental data. Another template file,
ex4_5ag.tpl, holds one template (for 76.6549 rad/s)  generated from the plant description
file ex4_5.m. For design purposes it is clever to let the template be the union of measured
and modelled template points:
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tplunion('ex4_7','ex4_5','ex4_5ag');

If we regard e.g. the template for 76.6549 rad/s (showtpl('ex4_7',76.6549)), see
Figure 4.16, we notice that some of the measured points are outside the border of the model
template. We may leave it that way; an alternative, however, is to manually include the
convex hull of the union of the measured modelled template points, i.e. exactly the templates
in ex4_7.tpl, and then prune the convex hull. This is achieved using the command
tplupd. Since tplupd updates the file it is working on, it is often wise to make  a safety
copy:

!copy ex4_7.tpl ex4_7saf.tpl
% Unix users note: this is the DOS command.

Then we issue the command

tplupd('ex4_7',[10 2]);

which has three mouse clicking options: single left click and holding the button down adds
new template points along the the line the user draws, double left click and holding the button
down  prunes the template within the rectangular area the user marks, and single right click
and holding the button down deletes points within the rectangular area the user marks.

We start by adding points along lines connecting the measured template points and the
model template border. Then, just after adding all new desired points, the figure window
looks like Figure 4.18a, (compare with Figure 4.16). Then we ask for pruning, and after that
the template looks like in Figure 4.18b.

The user is invited to chech the template sizes in the different template files with the
command tplinf, just like in the preceding section.

Figure 4.18. The union of the template files ex4_5.tpl   and ex4_5ag.tpl was computed
with the command tplunion('ex4_7','ex4_5','ex4_5ag');Then the command
tplupd('ex4_7',[10 2]); was issued.  Figure 4.16 shows the union of the  two
templates for  76.6549 rad/s. On the left in this figure (a) the template is shown after adding
points with the tplupd  command, in order to "fill out" the experimental points outside the
model template. On the right, (b), the template is shown after pruning.
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4.8 RFF with accuracy enhancement and reduction

We refer to Section 2.2.3 and Figure 2.8, where a template computed with the real factored
form method was "thinned" using the command tplreduc. For all the templates in a
template file, the same procedure is performed as follows. Consider the plant description
ex2_1a.m in Figure 2.2. Compute the templates with 10 times higher phase accuracy:

ctpl('ex4_8','ex2_1a','rff_[0.1 1]');
...
 Computing time  :  [min]  =  10.17

Then issuing the command tplfop with the template reduction option (op = 3), and a
demanded accuracy of [2 1] by the command

tplfop('ex4_8a','*',[],'ex4_8',[],[],[],3,[2 1]);

results, after about 3 minutes of computing time, in templates whose size is about 1/20 of the
original ones, and with a de facto resolution of about 1 degree and 1 dB. The difference the
templates of ex4_8a.tpl and ex2_1a.tpl of Chapter 2 is that the edge accuracy is 10
times better. The user is invited to check this by the command showtpl, as in Section 2.2.2.

A faster alternative to enhance the accuracy of the extreme template edge points of the
templates is the following: Compute one template file with the real factored form with
moderate resolution, say [1 1], and a second template file with the recursive edge method
with low resolution, say [10 10]. Form the union of these template files, with tplunion, as in
Section 4.7, and possibly reduce the number of template points  with tplfop or tplprune.
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