
5. MORE ABOUT SPECIFICATIONS AND BOUNDS

In Section 2.3 two examples of how specifications are introduced into Qsyn were given: a
reference step response specification using the command rsrs that approximately
translates a desired step response envelope to a frequency domain envelope from which the
tolerance specification emanates, and a constant 6 dB sensitivity specification that was
entered manually inte the odsrs_w variable of the specification file, so that the fodsrs.m
criterion file which computes the sensitivity function would automatically be used during the
bound computation.

In Section 3.3 the structure and variables of the specification files were explained, and the
commands that operate on specification files were listed. We introduced the criterion function
m-file which is the function that operates with the appropriate transfer function on a
specification for the benefit of the bound computation algorthm. In particular, we showed that
the user may define her own criterion function.

Bound computation was illustrated in Section 2.4, and the structure, variables and
commands belonging to bound files were explained in Section 3.4.

In this chapter more examples of the definition and computation of specifications and bounds
will be given. In particular it will demonstrate how bounds are refined by the elegant
interactive command bndupd.

But first we will first show one more example of how a standard specification is created
(output disturbance step response specification, odsrs). We will compare this specification
with the sensitivity specification in Section 2.3.2, and show how these two specifications are
combined into one dominant odsrs-specification.

The user may insert her own specifications, and write her own criteria functions. Here
examples will be given how error coefficients and stiffness coefficients enter naturally into
QFT in the Qsyn framework.

An arbitrary specification in the frequency domain can be used with an arbitrary criterion
function in the cbnd command. This holds for those three specifications (rsrs, odsrs,
idsrs) for which Qsyn includes commands that aid the user to translate time domain
specifications to the frequency domain, and for user defined criteria functions.

Most often a disturbance is not a step, but can often be characterized as a filtered step. We
will show how a specification is modified when one knows the gain part of the frequency
function of the filter. Sometimes the Power Spectral Density (PSD) of the disturbance is
known. A signal with a given PSD can however always be created by letting an impulse
through a filter whose magnitude Bode plot is the same as the PSD. And since an impulse is
filtered step, we are back in the first case.

When both the disturbance and the desired outputs have limits given as PSD it is trivial to
construct the specification by simply dividing the two PSDs. One example shows how that is
done. A particular case is when a disturbance is concentrated to a narrow frequency range,
and the desired attenuation is specified.

In many cases one may achieve the same modification by either changing the specification
variable or by changing the equation in a criterion function. It should be emphasized very
strongly that the criterion function is evalued for each template point for each nominal open
loop candidate that the bound computation algorithm tests for compliance with the
specification. The number of criterion function evaluations is thus very large, typically
hundreds of thousands of times to get a set of bounds. Therefore it is essential to keep the
code of the criterion function as short as possible. So, when possible, modify the
specification variable!

5 : 1

5.1 Combination of specifications to get a dominant
specification

Consider Example 2.1 in Chapter 2. Assume that, in addition to the 6 dB sensitivity
specification in the specification file ex2_1a.spc of Section 2.3.2, a time domain output
disturbance step response specification is required as defined in the lower part of Figure 5.1
as displayed by the command

odsrs('ex5_1','odsrs',[0.3 0.1 50],50,1.5,[],logspace(-1,2),2);

5.1.1 Combination by matrix manipulation

Clearly, the resulting frequency domain specification (upper part of Figure 5.1) supercedes 6
dB for some frequencies, see Figure 5.2. In order to minimize the bound computation effort,
it would be reasonable to combine the odsrs specifications of ex2_1a.spc and
ex5_1.spc. Proceed as follows:

Figure 5.1. Time and frequency domain specifications resulting from the command
odsrs('ex5_1','odsrs',[0.3 0.1 50],50,1.5,[],logspace(-1,2),2);

5 : 2

Figure 5.2. The odsrs_w specifications from the files ex2_1a.spc and ex5_1.spc, shown
with the commands
showspc('ex2_1a','odsrs','freq'); hold on, ...
showspc('ex5_1','odsrs','freq','g',gcf); hold on, ...
axis([0.1 100 -30 10])

odsrs2=getfrom('ex2_1a.spc','odsrs_w');
odsrs5=getfrom('ex5_1.spc','odsrs_w');
max(abs(odsrs2(:,1)-odsrs5(:,1))) % check that frequencies are
 ans = % the same
 0
odsrs_new=[odsrs2(:,1) min(odsrs2(:,2),odsrs5(:,2))]; % new spec
!copy ex2_1a.spc ex5_1a.spc % new spec file
insert('ex5_1a.spc',odsrs_new,'odsrs_w','r'); % add2spc could also

 % have been used
showspc('ex5_1a','odsrs','freq') % Figure 5.3

Figure 5.3. Composite odsrs specification found as the minimum of the specifications in
Figure 5.2.

The new odsrs specification is found as the minimum of the two specifications, after
confirming that the specification frequencies are the same. If the frequencies are not
identical, the minimum can be chosen for the frequencies of one of the specifications, using
interpolated values of the other specification with the help of the Matlab interpolation function
table1.

5 : 3

5.1.2 Combination using the command spcupd

Alternatively one may proceed as follows, using the graphical updating possibility of the
command spcupd, in particular if the frequency vectors are not equal. Update the
specification vector by manually assigning the minimum of the 6 dB and the odsrs
specification in ex5_1.spc.

!copy ex5_1.spc ex5_1b.spc % make safety copy
spcupd('ex5_1b','odsrs',[0.1 100 -30 10]); % follow instructions in

% the graphic window and confirm update when you are satisfied
odsrs_new=getfrom('ex5_1b.spc','odsrs_w');
!copy ex2_1a.spc ex5_1b.spc % copy basic spec file
add2spc('ex5_1b','odsrs',odsrs_new(:,1),odsrs_new(:,2));

% insert could also have been used
showspc('ex5_1b','odsrs','freq');

You will possibly notice a small difference between the odsrs frequency specification in
ex5_1a.spc and ex5_1b.spc, depending on how steady your hand was when handling
the mouse during the spcupd updating. Notice that spcupd and add2spc take 'odsrs' as
the specification name argument, without the extension '_w' , since these commands by
default only work with frequency specifications. The specification name variable within the
specification file ex5_1b.spc is however odsrs_w .

Figure 5.4. The odsrs_w specifications from the files ex2_1a.spc and ex5_1.spc, shown
with the commands
showspc('ex2_1a','odsrs','freq');
showspc('ex5_1','odsrs','freq','g',gcf); hold on,
axis([0.1 100 -30 10])
followed by the command odsrs_new=mspc(1); where o denote the locations of the
mouse clicks to define the new specification odsrs_new.

5.1.3 Combination using the command mspc

A third possibility to change the odsrs specification is the use of the graphical command
mspc, which works with mouse clicks in an existing figure window:

showspc('ex2_1a','odsrs','freq'); ...
hold on, showspc('ex5_1','odsrs','freq','g',gcf); hold on
axis([0.1 100 -30 10])
odsrs_new=mspc(1); % Figure 5.4
!copy ex2_1a.spc ex5_1c.spc % copy basic spec file
add2spc('ex5_1c','odsrs',odsrs_new(:,1),odsrs_new(:,2));
showspc('ex5_1c','odsrs','freq');

5 : 4

Notice that in this case odsrs_new will have the same number of rows as there are mouse
clicks in Figure 5.4, something that does not matter since the bound computation routine
interpolates the specification value with respect to the logarithmic frequency scale.

5.2 Manufacture of other specifications

In Section 2.3.2 the command add2spc was used to create a constant sensitivity
specification. In the above Section 5.1, the use of the commands add2spc, spcupd, and
mspc was demonstrated. In this section we will give examples how other non-predefined
specifications are manufactured.

5.2.1 Graphical definition of a specification using makespc

Example: iosrs specification

An arbitirary specification with one or two specification vectors can be manufactured
graphically with the command makespc, e.g.

makespc('ex5_2a','iosrs',2,[0.01 100 -30 10]); %Fig. 5.5
INSERT: New datafile ex5_2a.spc created

where an input-output step response specification for a one degree-of-freedom system
(referring to the closed loop transfer function PG/(1+PG), see the criterion function
fiosrs.m) was specified by two mouse clicks for each frequency. The sequency of clicks is
concluded by pressing Return. It is important to click in the same order for each frequency,
i.e. first the upper and then the lower specification, since otherwise the two specification
vectors will be mixed up. Check your result with

showspc('ex5_2a','iosrs');

If you wish to be aided by an existing amplitude Bode plot when specifying the new
specificaiton, use the command mspc, see Section 5.1.3 and Figure 5.4.

Figure 5.5. Creating a specification with two vectors, with the command
makespc('ex5_2a','iosrs',2,[0.01 100 -30 10]);.

5 : 5

Example: error coefficient specification

Assume that we wish to ensure that the error coefficients for the closed loop system satisfy

e e0 10 0 1= ≤, . (5.1)

which imply that the low frequency asymptotes for all open loop cases Li must lie above a
Bode gain line whose slope is -20 dB/dec and whose intersection with the 0 dB axis occurs at
10 rad/s. Such a specification can be included in the file ex5_2a.spc with another use of
makespc:

makespc('ex5_2a','errcoeff',1,[0.1 100 -60 40]);
showspc('ex5_2a','errcoeff'); % Fig. 5.6

Notice in Figure 5.6 that the low frequency asymptote is defined for low frequencies only with
a low, non active specification for higher frequencies, as not to impose an irrelevant
specification for the cross-over and high frequencies. I

One may define the specification for the limited frequency range [0.1, 1] rad/s only, but then
the user must assign the argument w in the cbnd command to be equal to the template
frequencies in that range.

The error coefficient specification errcoeff will be used in Section 5.x with a user written
criterion function to compute error coefficient Horowitz bounds.

Figure 5.6. Error coefficient specification created with the command
makespc('ex5_2a','errcoeff',1,[0.1 100 -60 40]); and displayed with
showspc('ex5_2a','errcoeff');

Example: noise rejection specification

A third, almost identical example is the introduction of a noise rejection specification at the
plant input, referring to the closed loop transfer function -G/(1+PG), see the criterion function
fodsrsc.m. Assume that it is known that measurement noise occurs at frequencies in the
range [40, 60] rad/s, and that an attenuation of -40 dB at the plant input is required. One way
to introduce such a specification is the command

makespc('ex5_2a','odsrsc',1,[40 60 -60 -20]); %click on -40 dB
showspc('ex5_2a','odsrsc'); axis ([1 100 -60 -20])

and another way is

5 : 6

add2spc('ex5_2a','odsrsc',[40 60],-40);
showspc('ex5_2a','odsrsc'); axis ([1 100 -60 -20]).

Notice that a limited frequency range was used, and that the argument w in the cbnd
command must then be assigned.

5.2.2 Filtered specifications

Assume it is known that the output step disturbance (d2 in Figure 1.1) enters the summing
junction in a filtered way that can be modelled with a certain filter H s� � as in Figure 5.7.

Figure 5.7. Two degree-of-freedom system with filtered output disturbance.

Since H s� � takes a part of the filtering burden, the closed loop frequency domain

specification for the transfer function from ′d 2 to y (whose generic Qsyn name is odsrs_w)

may be modified by multiplication with H s−1� �.

Example: filtered odsrs specificaton

As an example, consider the odsrs specification in ex5_1.spc, see Figure 5.1. Assume that
H s s� � � �= +1 1 25 . Then the new odsrs specification can be constructed in the following way:

odsrs51=getfrom('ex5_1.spc','odsrs_w'); % get original odsrs_w
% compute gain (dB) of H(s) for frequencies in original odsrs_w:
add2spc('ex5_2a','odsrs',odsrs51(:,1),[1],[1/25 1]);
showspc('ex5_2a','odsrs'); % check that you got it right
odsrs52=getfrom('ex5_2a.spc','odsrs_w'); % extract |H(jw)| (dB)
% divide original odsrs_w (dB) with |H(jw)|, which is equivalent
% to logarithmic subtraction:
odsrs52(:,2)=odsrs51(:,2)-odsrs52(:,2);
add2spc('ex5_2a','odsrs',odsrs52(:,1),odsrs52(:,2)); % insert
showspc('ex5_2a','odsrs'); % check, Fig. 5.8

5 : 7

Figure 5.8. odsrs frequency domain specification from ex5_2a.spc.

Notice that the odsrs frequency domain specification in ex5_2a.spc should be combined
with a reasonable sensitivity specification (e.g. 6 db) as in Section 5.1, for closed loop
stability reasons.

Example: PSD based idsrs specification

Assume that a plant input disturbance, d1 in Figure 5.7, has a known Power Spectral Density

(PSD), modelled as 1 1 25+ s� � (dB). It is required that the output y as a result of the input

disturbance should have a PSD not exceeding 01 10 1 20. s s s+ +� �� �� � (dB). This means that

the closed loop system the closed loop transfer function P/(1+PG) (see the criterion function
fidsrs.m) should act as a filter with an upper gain envelope defined by
01 1 25 10 1 20. s s s s+ + +� �� � � �� �� � . Such a specification is easily included, under e.g. the

appropriate standard name idsrs,

add2spc('ex5_2a','idsrs',logspace(-1,2),[.1/25 0.1 0],[1/20 1.5 10]);
showspc('ex5_2a','idsrs'); grid % Figure 5.9

Figure 5.9. idsrs frequency domain specification from ex5_2a.spc.

5 : 8

Other specifications

It should be noted that all specification vectors presented in Chapter 2 and in Sections 5.1
and 5.2 have dB units. Nothing prevents the user to define specifications with respect to
phase, or some combination of phase, gain, and frequency. A specification matrix may have
arbitrary many columns, with the restriction that the first, leftmost column, holds frequency.

The only other requirement is that the user writes a criterion function adapted to her
specification.

function[Tmax]=ferrcoef(tpl_nom,tpl,Lnom,spec,par_nom,par)

% FERRCOEF Error coefficient criterion function
% [Tmax]=ferrcoef(tpl_nom,tpl,Lnom,spec,par_nom,par)
%
% computes the maximum gain value of the open loop G*P = L
%
% Tmax = value of the criterion function for the n instances of
% the nominal open loop candidates to be tested that are
% contained in Lnom. Tmax is a row vector of length n with
% real elements. The Horowitz bound is the locus of
% those Lnom-candidates, for which Tmax = 0.
%
% ALL INPUT VARIABLES ARE GIVEN BY THE CALLING BOUND COMPUTATION FCN
%
% tpl_nom = the nominal template point, a scalar i [deg + j*dB]
% .
% tpl = a m*n matrix where each of the n columns contains the
% same template, i.e. n identical columns (of length m) are
% stacked side by side. Each element is in Nichols form
% [deg + j*dB]. (This means, each of the m rows have equal
% elements. This is done to simplify matrix computation: the
% input variables tpl and Lnom have the same dimension.)
%
% Lnom = A m*n matrix where each column is constant, and each row
% contains the n different nominal open loop candidates
% [deg + j*dB].
%
% spec = the error coefficient specification scalar in [dB].
% It equals the element 2 in one row of the
% specification variable specname that the user used as an
% input in her CBND or BNDUPD command. (The row belongs
% to the frequency for which bounds are now computed).
%
% par_nom = the nominal parameters of the plant (if existing)
%
% par = parameter matrix that produced the template (if existing)
%
% G = (Lnom - tpl_nom); % Each column is constant, and each row
% % contains the n different feedback compensator
% % candidates, deg + j*dB
%
%
% L = Lnom - tpl_nom + tpl % Each column contains an open loop
% % candidate, deg + j*dB
%
 Tmax = min(imag(Lnom - tpl_nom + tpl)) - spec(1);

% Note tham min works columnwise
% spec(1) contains the error coeff criterion
% for low frequencies. The specification is
% satisfied for the k:th value of Lnom iff
% Tmax(k) >= 0.

Figure 5.10. Criterion function ferrcoef.m for the error coefficient specification in Section
5.2.1.

5 : 9

5.3 User defined criteria functions

In Section 3.3.2 the standard criterion function frsrs.m was shown in Figure 3.6a and a
model for user defined criteria functions, fuser.m, in Figure 3.6b. The file fuser.m
contains two examples of user defined criteria functions, one for sensitivity and one for
stiffness coefficients.

Example: criterion function for error coefficients

Here, we will author a criterion function for the error coefficient specification in Section 5.2.1,
given by equation (5.1) translated to the specification on the open loop, errcoeff, in the
file ex5_2a.spc, as shown in Figure 5.6. The file fuser.m is copied into the file name
ferrcoef.m in the working directory, and edited as shown in Figure 5.10. It is essential that
the executable code is kept as compact as possible, since the criterion function is evaluated
so many times. The criterion function is very simple

T Limax min= −� � spec, [dB] (5.2)

where Li� � is the compensated open loop candidate template for some candidate

compensator value G jω� � or equivalently some candidate nominal open loop value

L P G jnom nom= ω� � , and spec is given in Figure 5.6. The criterion is satisfied for

Tmax ≥ 0 (5.3)

for the relevant frequencies that define the low frerquency asymptote in Figure 5.6.

5.4 Updating a bound file

In Section 2.4 it was shown how Horowitz bounds are computed, and how one easily inserts
bounds of different types into the same bound file. In this section two other ways of updating
a bound file will be considered: adding a bound for a new frequency to a set of existing
bounds of a given type; and re-computing bounds with a higher accuracy.

Consider the bound file ex2_1a.bnd in Section 2.4. The command

bndinf('ex2_1a')

 ODSRS bound exists for [rad/sec]:
--
 Columns 1 through 7
 0.2000 0.5000 1.0000 2.0000 5.0000 10.0000 20.0000
 Column 8
 50.0000

 RSRS bound exists for [rad/sec]:
--
 Columns 1 through 7
 0.2000 0.5000 1.0000 2.0000 5.0000 10.0000 20.0000
 Column 8
 50.0000

5 : 10

reveals for what frequencies the bounds exist. The column number equals the second
column in odsrs_w and rsrs_w, respectively and indicates the index in the bound variable
name, as explained in Section 2.4.2. Also recall from Section 2.4.2 that the bound variables
rsrs_5, rsrs_6, rsrs_7, and rsrs_8 contain a NaN each.

5.4.1 Adding a bound for a new frequency to a bound file

However we found, in Section 2.5 and 2.8 that we might want to compute bounds also for 7
rad/s. As a preparation we computed, in Section 4.6, the template for 7 rad/s for the plant
ex2_1a.m was computed.

The rsrs and odsrs bounds for 7 rad/s with respect to the specification file ex2_1a.spc are
now easily computed:

cbnd('ex2_1a','rsrs',7);
Calculating bounds for rsrs specification, with the
templatefile ex2_1a.tpl
w---> 7 [rad/s]
No bound found, use larger search area, or higher accuracy

cbnd('ex2_1a','odsrs',7);
Calculating bounds for odsrs specification, with the
templatefile ex2_1a.tpl
w---> 7 [rad/s]

Not surprisingly (see Section 2.4.1) there is no rsrs bound for this frequency. Its value is
found by the following sequence of commands,

bndinf('ex2_1a')

 ODSRS bound exists for [rad/sec]:
--
 Columns 1 through 7
 0.2000 0.5000 1.0000 2.0000 5.0000 10.0000 20.0000
 Columns 8 through 9
 50.0000 7.0000

 RSRS bound exists for [rad/sec]:
--
 Columns 1 through 7
 0.2000 0.5000 1.0000 2.0000 5.0000 10.0000 20.0000
 Columns 8 through 9
 50.0000 7.0000

which reveals that the new bounds for 7 rad/s are called rsrs_9 and odsrs_9, respectively,
and

getbnd('ex2_1a','rsrs', 7)
 ans =
 NaN.

The new odsrs bound is, as usual, displayed by

showbnd('ex2_1a',[],7,'odsrs'); % Figure 5.11

5 : 11

Figure 5.11. The odsrs bound for 7 rad/s, odsrs_9, from ex2_1a.bnd.

5.4.2 Refining a bound with the command bndupd

In Figure 5.11 we notice the annoying dummy bound around the instability point -1, and that
the bound has a gap, due to the accuracy with which it was originally computed. Using the
command bndupd, we may refine this bound, by deleting unwanted portions (right mouse
button), and recalculating appropriate bound segments with a higher accuracy (left mouse
button):

bndupd('ex2_1a','odsrs',7,[],[],[],[],[],[.5 1]);
Recalculating bounds for odsrs specification, with the
templatefile ex2_1a.tpl
w---> 7 [rad/s]

Continue (ENTER) or quit (q):

Letting the frequency argument w of the command bndupd equal [], all bounds of the odsrs
type in ex2_1a.bnd may be updated. The resulting odsrs bound for 7 rad/s is given in
Figure 5.12.

Figure 5.12. The odsrs bound for 7 rad/s, odsrs_9, from ex2_1a.bnd, as displayed by the
command showbnd('ex2_1a',[],7,'odsrs').

5 : 12

5.5 Composite bounds

In Section 2.4.3 it was shown how different bound types were dominant for different
frequencies, and how the dominant bounds were displayed together. Sometimes, however,
bounds of different types interect for a given frequency, and a composite bound would
consist of segments from the original bounds.

Consider the odsrs specification in ex5_1a.spc, see Figure 5.3. Based on this specification
and on the template file ex2_1a.tpl, compute the odsrs bound for 2 rad/s:

cbnd('ex5_1a','odsrs',2,[],'ex5_1a','ex2_1a')
Calculating bounds for odsrs specification, with the
templatefile ex2_1a.tpl
w---> 2 [rad/s]
GETFROM: The file ex5_1a.bnd does not exist
INSERT: New datafile ex5_1a.bnd created

Display this bound in Figure 5.13, together with the rsrs-bound for 2 rad/s from ex2_1a.bnd
(compare Figure 2.14).

Figure 5.13. The odsrs bound for 2 rad/s from ex5_1a.bnd (solid grey) and the rsrs bound
for 2 rad/s from ex5_1a.bnd (dashed black), displayed with the command sequence
hngrid,showbnd('ex5_1a',gcf,2,'odsrs','m');
showbnd('ex2_1a',gcf,2,'rsrs','b:'); axis([-360 0 -5 15]);

Clearly the dominant composite bound consists of the bound segments that have maximum
gain for a given phase in Figure 5.13. The dominant composite bound cannot easily be
constructed by vector manipulation, since the two original bound row vectors have different
lengths, have been computed for different phases, and consist of different contiguous
segments with an NaN element inbetween. The structure of the bound vectors may be
studied after having extracted them from their bound files:

rsrs2=getbnd('ex2_1a','rsrs',2);
odsrs2=getbnd('ex5_1a','odsrs',2);

It is hence easier to define the composite bound graphically with the Matlab command
ginput by mouse clicking in Figure 5.13, and e.g. inserting it into the new boundfile
ex5_5.bnd under the name bound:

5 : 13

[deg, dB]=ginput; % click on desired points from left to right,
% and finish with Enter

bound2 = deg+j*dB;
add2bnd('ex5_5',2,bound2.','bound'); % IMPORTANT: insert row vector

GETFROM: The file ex5_5.bnd does not exist
INSERT: New datafile ex5_5.bnd created

The new bound is displayed together with its constituents in Figure 5.14.

Figure 5.14. The odsrs bound for 2 rad/s from ex5_1a.bnd (solid grey), the rsrs bound for 2
rad/s from ex5_1a.bnd (dashed black), and the composite bound for 2 rad/s from
ex5_5.bnd (solid black) displayed with the command sequence
hngrid,showbnd('ex5_1a',gcf,2,'odsrs','m');
showbnd('ex2_1a',gcf,2,'rsrs','b:');
showbnd('ex5_5',gcf,2,'bound','r'); axis([-360 0 -5 15]);

It demands some work to create composite bounds in the above way. Moreover, if one is
forced to violate a bound during the feedback design, it is important to know from which
specification it emanates. Therefore the need to use composite bounds should be carefully
assesed, and in any case should the original bounds be kept.

5.6 Bounds from a user defined specification and criterion

Consider the error coefficient specification in Section 5.2.1: equation (5.1), the specification
errcoeff in ex5_2a.spc, and Figure 5.6. For this specification, we wrote a special
criterion function, ferrcoef.m, in Section 5.3. Let us now compute the bounds emanating
from errcoeff and ferrcoef.m for the plant templates in ex2_1a.tpl. Since the
specification is active only for frequencies ≤ 1 rad/s, we restrict the bound computation to the
template frequencies 0.2, 0.5, and 1 rad/s.

cbnd('ex5_6','errcoeff',[0.2 0.5 1], ...
 [],'ex5_2a','ex2_1a',[],'ferrcoef');

Calculating bounds for errcoeff specification, with the
templatefile ex2_1a.tpl
w---> 0.2 [rad/s]
GETFROM: The file ex5_6.bnd does not exist
INSERT: New datafile ex5_6.bnd created
w---> 0.5 [rad/s]
w---> 1 [rad/s]

5 : 14

-350 -300 -250 -200 -150 -100 -50 0
20

25

30

35

40

45

50

0.2

0.5

1

-100

-60

-50

-40

-30

-20

-12

-6

-3

-1

0

0.25

0.5

1

3

6

12

Figure 5.15. Error coefficient bounds from ex5_6.bnd displayed in a Nichols chart with the
command sequence
showbnd('ex5_6',[],[],'errcoeff'); hold on; axis([-360 0 20 50]);
hngrid

The cbnd command demonstrates how one combines different template, specification, and
criteria function files and names. Not surprisingly does the result in Figure 5.15 show that
Horowitz bounds emanating from an error coefficient specification are not phase dependent.

5 : 15

