
2. A BASIC SISO DESIGN EXAMPLE USING QSYN

In this chapter, a basic Single Input Single Output (SISO) design example will be solved
using Qsyn. The user will be invited to try variations of the problem with respect to the
definition of the plant, the specifications, and algorithms used for computing the templates
and the bounds.

Example 2.1 A basic SISO design example

Given the uncertain plant, defined in real factored form with parametric uncertainty

P s k
s a

s s
k a

n n
n� � = ⋅

+

+ +
∈ ∈ ∈ ∈

1 2
2 5 1 3 01 0 6 4 82 2ς ω ω

ς ω, , , , , . , . , , . (2.1)

Close the loop with a feedback compensator G s� � , and a prefilter F s� � such that the
following specifications are satisfied:

M

t

S j L j

s

≤

≤

≤

�

�
��

�
�
�

10%

15

1 1+

 (2.2a)

 seconds (2.2b)

= 6 dB (2.2c)

.

ω ω� � � �� 	

where M stands for the reference step response overshoot, t s is the reference step response

time for convergence within 5 % of the output steady state value, S jω� � is the sensitivity

function (1.4), where L jω� �= G jω� �P jω� � is the open loop frequency function whereby P jω� �
stands for any of the plant cases defined in (2.1). Moreover it is demanded that the reference
step response steady state error be zero, which implies that one integrator must be included
in G s� � since there is none in P s� �, and that the complementary sensitivity function

L s L s� � � �� 	1+ have minimum bandwidth, in order to attenuate the effect of sensor noise and

to reduce the effect of unmodelled plant dynamics (see Theorem 1.2).
•

2.1 Plant description

In Qsyn, the easiest way to describe the plant is with an editable m-file. Issue the command

plnt ex2_1a

and a default editor (that you may choose as the Editor Preference in the Matlab Command
Window Options menu)1 is invoked with the file ex2_1.m if it exists, or otherwise with a
standard plant file "template" (that is present as the file plant.m in the Qsyn library), see
Figure 2.1. After editing, the file will be saved as ex2_1a.m in your default directory.

1 In Unix systems, copy the file plant.m to ex2_1.m and use the editor of your choice.

2 : 1

function [Par,w_tpl,w_nom,method,P_num,P_den, ...
 n_dif,Uns_Par] = Plant_name

%PLANT model of plant description file to be copied and edited by the user
%
% plant % evaluate the output variables
%
% plnt new_plant % If new_plant.m does not exist in your current directory:
% % invokes default editor with this file as a model. The file
% % will be saved in your current directory under the name
% % new_plant.m
% % If new_plant.m exists in your current directory:
% % invokes default editor with new_plant.m.
%
% edit plant % invokes default editor. Do not forget to save the edited
% % file under a new name in your current directory
%--

% Plant_name : Plant description

% Definition of the parameters
% =====================
 Par = [
 'p1=[p1min,p1max,p1nom,number of cases]' , ... % uncertain parameters
 'p2=[p2min,p2max,p2nom]', ...
 'p3=[p3min,p3max,p3nom]', ...
 'c1=[c1value]',... % constant parameters
 'c2=[c2value]',...
];

% Multiplicative unstructured uncertainty:
% uncertainty circle radius m(w), in [0,1), as a function of frequency w [rad/s]
% =============
 Uns_Par=[]; % Uns_Par is either
 % (1) empty --> no unstructured uncertainty;
 % (2) one real number, m, in the range [0,1)
 % --> m(w) = m for all w;
 % (3) a matrix with two rows and at least two columns,
 % where the upper row contains the frequencies
 % w [rad/s], and the lower row m(w), in [0,1),
 %`the unstructured uncertainties,
 % --> m(w_tpl) is computed by linear interpolation

% Definition of the frequency vectors [rad/sec]
% ======================================
 w_tpl=[wmin ... wmax]; % Template frequency vector.

 w_nom=[wmin ... wmax]; % Nominal frequency vector.
 % w_nom will automatically include all points in w_tpl

% Definition of the template computation method
% ===
 method = 'rff_[1,1]';
 % (1) grid_dist = Grid.
 % (2) rgrid_dist = Random Grid.
 % (3) adgrid_dist = Recursive Grid.
 % (4) aedgrid_dist = Recursive Edge Grid.
 % (5) rff_dist = Real Factored Form.

 % dist=[Max phase_distance [deg], max magnitude_distance [dB]]; maximum
 % resolution of template computation, 2-norm, in the Nichols chart for
 % adgrid, aedgrid, rff methods
 % grid, rgrid: resolution is given by parameter grid, while dist gives the
 % Unstructured Uncertainty resolution only, if Uns Uncertainty is present.
 %In RFF, the Max phase distance must be chosen such that 360 is a multiple integer
 % of dist(1). Example: dist(1) = 1,2,5,8,0.8,4/3,etc are OK but not 7,0.33, etc
 % WARNING: IF RFF STRUCTURE IS USED BELOW, THEN method MUST BE 'rff', EVEN
 % THOUGH OTHER METHODS MAY BE REQUESTED IN THE ctpl COMMAND.

% Plant definition
% ================

% Polynomial Structure
% ================
 P_num ='p1..'; % numerator
 P_den='(s)*(s+p2)*((s^2)/(wn^2)+2*zet*s/wn + 1)*(s+c1)..'; % denominator
 % PLEASE INCLUDE THE CERTAIN INTEGRATORS IN P_den

%%%%%%% The description of plant.m continues on the next page %%%%

2 : 2

%%%%%%% Cont'd form the previous page %%%%

% Real Factored Form Structure
% ============================
% WARNING: AT LEAST ONE UNCERTAIN PARAMETER MUST BE PRESENT IN THE PLANT DEFINITION.
% NUMERATOR AND DENOMINATOR MUST EACH HOLD >= ONE PARAMETER (CERTAIN OR UNCERTAIN)
% IF THE PLANT IS CERTAIN, DEFINE E.G. AN UNCERTAIN GAIN 'k=[1,1+eps,1,1]' IN Par

 P_num='(gain,p1)(delay,p3)..';
 P_den='(hf,p2)[1 c1 0]..';
 %Certain polynomial factors: [] with Matlab syntax, incl integrators
 % Uncertain rff factors: ()
 % (gain,k)=k (dc,a)=(1+s/a) (hf,a)=(s+a)
 % (delay,tau)=exp(-s*tau)
 % (dc,wn,zet)=(1 + 2*zet*s/wn + s^2/wn^2)
 % (hf,wn,zet)=(s^2 + 2*zet*wn*s + wn^2)
 % Note that the uncertainty in each factor will be treated as
 % independent even if the same parameter is used.
 % PLEASE INCLUDE THE CERTAIN INTEGRATORS IN P_den AS [1 0], etc

% number of additional uncertain differentiators
% ========================
 n_dif=[0 0]; % n_dif = []; or n_dif not given <==> n_dif=0 ,
 % the nominal case is 0, and
 % there are no uncertain differentiators in the templates.
 % In all other cases, n_dif has at least two elements. The
 % last element of n_dif denotes the number of differentiators
 % in the nominal case which may be outside the templates.
 % The other elements of n_dif denote the uncertain differentiator
 % cases of the templates.
 % Examples:

% n_dif = [d1 d2 d3];
% the nominal case has d3 differentiators, while a template is
% the union of T*s^d2 and T*s^d3, where T is the template without
% uncertain differentiators defined above.
% n_dif = [-2 -2]
% the nominal case has 2 integrators, while the templates
% also have two integrators, so indeed we have a case of a
% certain number of integrators, that could have been treated
% in P_den above, with n_dif = [0 0];

% Note: negative numbers denote integrators

Figure 2.1. Plant description template invoked when issuing the command plnt ex2_1a
when the file ex2_1a.m does not exist previously.

2.1.1 Plant description file head

The plant description file is a Matlab function file that is called by other Qsyn functions, e.g.
the template computation function ctpl. The left hand side of the head of ex2_1a.m must
not be changed by the user. The user may, however, freely change the name of plant
definition file, the right hand side of the head (which does not necessarily have to be equal to
the file name), and the values of the parameters defined in the file, following the rules given
here and in the file. Comments may be inserted freely, thus enabling a complete, readable
description of the plant. Let us go through the plant description line by line, ending up with an
edited file ex2_1a.m that describes the plant (2.1) together with some design choices.

The line "% Plant_name : Design description" is a good place to put the plant
description comments, see Figure 2.2.

2.1.2 Definition of the parameters

The vector Par defines the uncertain and certain parameters, in exactly the way given. All
parameters defined in Par must be used in the plant transfer function (numerator or
denominator) below. All uncertain parameters to be used in the plant transfer function must
be defined in Par, while constant paramaters need not be defined in Par, see below. Of
course, the names of the parameters may be chosen by the user, i.e. p1, p2, ..., c1,
... can be exchanged for other names. p1min, p1max, and p1nom stand for the
minimum, maximum, and nominal values, respectively, of the parameter p1.

2 : 3

For the grid or random grid template computation methods (see below), the positive integer
number of cases must be assigned in order to define to how many (equidistant) cases
between (and including) p1min and p1max are to be considered. It is advisable always to
assign number of cases, even if it has no significance for some template computation
methods. The uncertain parameters of (2.1) are defined e.g. with the following names.
Notice that there are no constant parameters.

 Par = [%'p1=[p1min,p1max,p1nom,number of cases]'
 'k=[2, 5, 2, 8]' , ... % uncertain gain
 'a=[1, 3, 3, 8]', ... % uncertian zero: s+a
 'z=[0.3, 0.6, 0.6, 8]', ... % uncertain complex pole
 'wn=[4, 8, 4, 8]',...
];

Somewhat arbitrarily we selected to partition each parameter into 8 cases, thus having 84

plant cases to compute, if the grid method would be selected for the template computation.
The user is invited to change the number of cases. Notice that we use comments liberally to
explain the significance of the parameters.

Since there is no multiplicative unstructured uncertainty in Example 2.1 we leave its
parameter empty (Uns_Par=[];) and delete the comments.

2.1.3 Definition of the frequency vectors

The user defines two frequency vectors [rad/s], the template frequency vector, w_tpl, and the
nominal frequency vector, w_nom. As mentioned in Chapter 1, w_tpl has to be chosen
"wisely". It is wise to include frequencies over all the relevant frequency range, frequencies
at and near plant resonances, and frequencies at and around the bandwidths of the different
specifications. The penalty of including extra frequencies is a longer time to compute the
plant templates and Horowitz bounds which may prove to be unnecessary to display. Note
that Qsyn allows for the computation of templates and Horowitz bounds for additional
frequencies, and their inclusion in already existing templates and bounds files.

Often it is sufficient to compute templates and Horowitz bounds for 8 to 10 frequencies, only.
Therefore, to get a quick cut at a preliminary design, and estimate the difficulty of the design
problem, we recommend to start with template frequency vector w_tpl of 8 to 10
frequencies, and complement the list later, if necessary.

The nominal frequency vector, , for which the nominal plant, open loop, and closed loops are
computed should be sufficiently dense over the relevant frequency range such that the Bode
and Nichols curves are "smooth". Twenty to forty logarithmically spaced points per decade is
suitable.

In Example 2.1, the specifications seem indicate a bandwidth of not more than about 10
rad/s while the plant resonance resides between 4 and 8 rad/s. The relevant frequency range
seems to be beween 0.1 and 100 rad/s. We therefore choose, somewhat arbitrarily,

 w_tpl = [0.2 0.5 1 2 5 10 20 50]; %template frequencies [rad/s]
 w_nom = logspace(-1,2); %nominal frequencies [rad/s]

2.1.4 Selection of the template computation method

Qsyn offers several template computation methods, listed in Figure 2.1, and briefly described
here. Further examples of their use are found in Chapter 3.

Grid Method

The Grid method is the most general method. Each uncertain parameter is equidistantly
partitioned between its minimum and maximum value in a user assigned number of cases,
see subsection 2.1.2. All possible parameter combinations form the plant uncertainty set

2 : 4

(1.2) from which the templates for are easily computed. With a sufficiently dense parameter
grid, an arbitrarily good approximation of the true template may be achieved at the forbidding
"curse of dimensionality" price of an immense number of frequency function evaluations.

In some texts on QFT such as Horowitz (1993) or Yaniv and Horowitz (1987) it is claimed
that it suffices to partition each parameter range in a few values only. Such a grid method is
also proposed in some other QFT programs. It is however easy to show simple cases when a
sparse parameter grid yields a severe underestimate of the true template, see Bailey (1987)
or Gutman et al (1994). We therefore want to specifically warn for the use of a sparse
parameter grid without a meticulous check that the computed templates are satisfactory.

In fact, it is wise to compute the templates by different methods. To alleviate the curse of
dimensionality, it is also wise to decompose the computation of a template into parameter
independent parts (Ackermann, 1992), using seperate plant description files, and then
combine the partial templates with the Qsyn command tplfop. Such a decomposition is
automatic in the Qsyn Real Factored Form method, see below.

Random Grid Method

The Random Grid method differs from the Grid method in that each parameter range is
partitioned randomly. We recommend that this method is always used as a complement to
the other grid methods.

Recursive Grid Method

The Recursive Grid method is described in Cohen et al (1995). The parameter gridding is
adapted recursively during the computation in such a way that a freshly computed template
point lies within a given Nichols chart 2-norm distance dist = [deg, dB] from some
previously computed template point in the same subgrid. When the template is large relative
to dist, or the number of uncertain parameters is large, the Recursive Grid method may
become forbiddingly slow.

Recursive Edge Grid Method

With Recursive Edge Grid method the template points are computed along the edges of the
hyberbox in the parameter space: All parameters except one are kept at an extreme value
and the remaining one is recurively partitioned in such a way that the computed template
points lie within a given Nichols chart 2-norm distance dist = [dB, deg] from its
nearest neighbour from the same edge. The Recursive Edge Grid method is guaranteed to
give a correct approximation of the true template only when the Edge Theorem holds
(Ackermann, 1992), and unfortunately it is not always easy to show that it does hold for a
given uncertain transfer function. It is easy to give examples when the Recursive Edge Grid
method underestimates the true template, see e.g. Ackermann (1992) or Gutman et al
(1994).

RFF Method

For uncertain transfer functions in Real Factored Form (Gutman et al 1994),

P s

ke s b s b s s s s

s s a s a s s s s
M s

s
l

l
m

m
q q q

q
r r r

r

n
u

u
v

v
w w w

w
i i i

i

() =

+ +

+ +
+

− ∏ ∏ ∏ ∏
∏ ∏ ∏ ∏

τ ς ω ω ς ω ω

ς ω ω ς ω ω

1+ + 1+ +

1+ + 1+ +

� � � � � � � �

� � � � � � � �
� �� �

2 2

2 2
1

2 2 2 2

2 2 2 2

 (2.3)
where k b b n a al m q q r r u v w w i i, , , , , , , , , , , , , ,τ ς ω ς ω ς ω ς ωand are uncertain parameters, and

M s� � denotes the multiplicative unstructured uncertainty. First and second order factors

2 : 5

whose gain equals 1 for s=0 are said to be given in direct current or dc-form, and the
remaining first and second order factors are said to be in high frequency or hf-form.

In Gutman et al (1994) it is described how the real factored form makes it possible to
compute, in a very fast way, approximate templates with an arbitrary small phase and gain
extent error. In Qsyn, the method is implemented under the name rff. The goodness of
approximation is controlled by the user selected distance dist = [deg, dB]. Note that for
the rff-method, deg is the phase resolution of the template computation, as well as the
maximum phase extent error contribution of each factor (except the gain and integrator
factors whose phase error is zero). This means that for m error contributing factors, the
phase extent error of the computed template will not exceed m deg. The gain extent error
depends in a complicated way on the phase extent error, with a smaller phase extent error in
general leading to a smaller gain extent error. Note that the second element of dist does
not signify the gain error. Instead, when two neighbouring rff-computed points have a 2-norm
distance larger than [deg, dB], then points inbetween are inserted by linearly interpolation
in the Nichols chart to get that maximum distance. This is in particular for template points
along the constant maximum phase and minimum phase template border segments.

A clever way to exploit the computational swiftness of the rff-method, but still have good
accuracy and not too many template points burdening the Horowitz bound computation, is to
compute the templates with a very high phase accuracy, say method = 'rff_[0.1,1]';
followed by a reduction of of the number of points using the Qsyn command tplfop with
the tplreduc option. An basic example is given in Section 2.2.3 below.

Since, in Example 2.1, the plant (2.1) is given in real factored form, we chose the rff-method,
with dist = [1, 1], which means that the total phase extent error will not exceed 2
degrees, since (2.1) contains two phase error contributing factors. The user is invited to test
other values for dist.

method = 'rff_[1,1]';

This selection may be overridden when computing the templates with the command ctpl,
see Section 2.2. Note however the restriction concerning the plant transfer function
description in subsection 2.1.5.

2.1.5 Definition of the plant transfer function

The real factored form structure can be used for the rff template computation method, as
well as for the other template computation methods. The polynomial structure is used
exclusively for the other template computations methods, and not for rff. The rff structure
must be used exactly as stated, and the uncertainty of each factor is independent of the
other factors.

In the polynomial structure arbitrary order polynomial factors may be defined as well as e.g.
uncertain delay in the form exp −τs� � . The coefficients may be functions of the uncertain
parameters. Dependent uncertainty is allowed in the sense that the polynomial coefficients
may depend on the same uncertain parameters. Note that each non-gain factor, including
(s) must be surrounded by brackets.

For Example 2.1, the plant descriptions are then, respectively, whereby we will use only the
rff structure.

P_num='(gain,k)(hf,a)'; % rff structure
P_den='(dc,wn,z)';

P_num='k*(s+a)'; % polynomial structure,
P_den='((s^2)/(wn^2)+2*z*s/wn + 1)';

2 : 6

function [Par,w_tpl,w_nom,method,P_num,P_den, ...
 n_dif,Uns_Par] = ex2_1a

% Plant_name : Example 2.1. Rff method

% Definition of the parameters
% ============================

 Par = [%'p1=[p1min,p1max,p1nom,number of cases]'
 'k=[2, 5, 2, 8]' , ... % uncertain gain
 'a=[1, 3, 3, 8]', ... % zero: s+a
 'z=[0.3, 0.6, 0.6, 8]', ... % complex pole
 'wn=[4, 8, 4, 8]',...
];

% Multiplicative unstructured uncertainty:

Uns_Par=[];

% Definition of the frequency vectors [rad/sec]
% ===

w_tpl = [0.2 0.5 1 2 5 10 20 50]; %template frequencies [rad/s]
w_nom = logspace(-1,2); %nominal frequencies [rad/s]

% Definition of the template computation method
% ===

method = 'rff_[1,1]';

% Plant definition: Polynomial Structure
% ======================================
% % not used in this example, for information only %
% P_num='k*(s+a)'; % polynomial structure,
% P_den='((s^2)/(wn^2)+2*z*s/wn + 1)'; %

% Plant definition: Real Factored Form Structure
% ==

P_num='(gain,k)(hf,a)'; % rff structure
P_den='(dc,wn,z)';

% number of differentiators/integrators
% =====================================

n_dif = [0 0];

Figure 2.2. Plant description file ex2_1a.m for Example 2.1.

Note that if the plant has a fixed number of integrators or differentiators, they are included as
factors in the plant description as e.g. '(s)' and '[1 0]' in the denominators of the
polynomial and rff structures, respectively, for one certtain integrator.

In the rare case when the plant is described by an uncertain number differentiators or
integrators, Qsyn offers the optional parameter n_dif. Note that the last element of n_dif
denotes the nominal case which is not included in the template, unless it is repeated among
the preceding elements. Since Example 2.1 contains no integrators, we set

n_dif = [0 0]; %no uncertain plant integrators

2.1.6 Plant description files

As a summary we have a compact plant description files for Example 2.1, ex2_1a.m in
Figure 2.2, for which all template computation methods can be used. Examples where the
plant transfer function cannot be written in rff form (and hence the rff method cannot be
used) are given in Chapter 3.

2 : 7

Before computing the templates we will display the Bode diagrams for a number of plant
cases. All plant cases are plotted (after a lengthy computation) as Figure 2.3 with the
command whose syntax is explained in the Qsyn Reference Guide.

 T=cases('ex2_1a','all',[],1);

The nominal and two other plant cases are shown in Figure 2.4 as a result of the command

cases('ex2_1a',[2 5; 1 3; .3 .3; 8 4],[],1);

Figure 2.3. Bode diagram of all plant cases defined in ex2_1a.m. Nominal is black.

Figure 2.4. Bode diagram of two plant cases defined in ex2_1a.m. Nominal is black.

We notice a considerable spread between the plant cases which seems to make the design
problem non-trivial. However, with reference to the discussion surrounding equations (1.11)
and (1.12), we also notice that if the logarithmic difference between the maximum and
minimum plant gains were less than the tolerance specification emanating from (2.2a,b), see
Example 1.1 and (1.10), no feedback would be needed since without feedback the transfer
function from output disturbance to output, Y s D s� � � �2 = 1, and hence (2.2c) would be
satisfied, see Figure 1.1, (1.4) and (1.5).

2 : 8

2.2 Template computation

In Section 2.1 the available template computation methods were briefly described. In this
section the templates for Example 2.1 will be computed. The result of some of the methods
will be compared, and the user may try other parameters and methods.

With a plant definition file given (Section 2.1), the plant templates are computed with the
Qsyn command ctpl which includes many optional parameters.

In Qsyn, templates from a ctpl-computation are stored in a template file, with suffix tpl,
which is a special Matlab mat-file. The tpl-file structure is elucidated in Chapter 3. The
contents of a tpl-file can be inspected with the command look or getfrom. A variable can
be copied from a tpl-file using the command getfrom, and removed with remove. A
variable can be inserted into or replaced in a tpl-file with the command insert. With
tpl2mat a template file is converted to a Matlab matrix.The command mat2tpl converts a
Matlab matrix to a tpl-file, an operation that is useful when the template is defined by a set of
measured transfer functions, and made easier for the user with the command mffd. The
templates in a tpl-file are displayed in a Nichols chart with showtpl.

The syntax of all commands, with examples, are found in the Qsyn Reference Guide. The
same information is displayed when typing help and the command name, e.g.

help ctpl

2.2.1 Templates computed with the Real Factored Form Method

The basic and simplest way to use ctpl is to simply invoke it with the plant description file:

ctpl('ex2_1a')

whereby all command parameters are set by default from ex2_1a.m, and the resulting
template file stored as ex2_1a.tpl. While computing the following messages appear in the
Matlab command window:

Calculating templates using the Real Factored Form method
--> for w=0.2 [rad/sec]
--> for w=0.5 [rad/sec]
--> for w=1 [rad/sec]
--> for w=2 [rad/sec]
--> for w=5 [rad/sec]
--> for w=10 [rad/sec]
--> for w=20 [rad/sec]
--> for w=50 [rad/sec]
 Computing time : [min] = 0.4752

As shown in Figure 2.5, The templates can be inspected graphically by issuing the command

showtpl('ex2_1a');

The options of showtpl can be exploited to study individual templates, and the command
hzoom can be used to zoom in on indivudual templates.

2 : 9

Figure 2.5. Nichols chart with templates in file ex2_1a.tpl around nominal (solid line).

2.2.2 Templates computed with the edge grid and grid methods

We wish to stress that it is always advisable to compute the templates with different
methods, if possible. For Example 2.1, all methods can be used, and we will show the result
of the Recursive Edge Grid Method and the regular Grid method. The results are placed in
the template files ex2_1b.tpl and ex2_1c.tpl, respectively.

ctpl('ex2_1b','ex2_1a','aedgrid_[1,1]');

Calculating Template using the Recursive Edge grid method
...
 Computing time : [min] = 27.584

ctpl('ex2_1c','ex2_1a','grid',[]);

Calculating templates using the grid method
...
 Computing time : [min] = 6.128

The templates for 5 rad/s are compared in Figure 2.6 which was produced by the following
commands with the exception that Figure 2.6 shows all edges computed by the recursive
edge grid method before pruning (see Section 2.2.3) while aedgrid prunes by default,

showtpl('ex2_1a',5,'nom'); % rff
hold on
showtpl('ex2_1b',5,'point',[],gcf); % rec edge grid placed by mouse

 % click
showtpl('ex2_1c',5,'nom',[],gcf); % grid

For plant (2.1) the Edge Theorem holds, and the outer edge of the Recursive Edge Grid
method is exact. A careful study reveals the the RFF template edge has an error of at most
0.2 degrees and 0.1 dB. It is clearly seen in Figure 2.6 that the Grid template with the chosen
grid misses significant portions of the template.

2 : 10

Figure 2.6. A comparison between three template computation methods for the template at 5
rad/s of (2.1) in a Nichols chart. The nominal plant transfer function, defined in Figure 2.2, is
marked "Nominal". The Recursive Edge Grid template (before pruning) is moved, but not
rotated. The nominal points at 5 rad/s is marked by o.

2.2.3 Pruning and reduction

For the bound computation (Section 1.5, and Chapter 3), only the outer template edge
counts, and interior template points only prolong the computation time. The operation to
eliminate interior points is called pruning (Cohen, Nordin, and Gutman 1995), and is
performed by the Qsyn command prune on individual templates, and with the command
tplprune on one or more templates in a template file. Note that RFF templates need no
pruning. We will prune the Recursive Edge Grid template and Grid template in Figure 2.6
and compare them in Figure 2.7. We notice that the edge of the grid template does not
represent the true edge very well. The command sequence is as follows:

redge5=gettpl('ex2_1b',5); % extract pruned rec edge templ
grid5=gettpl('ex2_1c',5); % extract grid template
Tgrid5=prune(grid5,[2 2]); % prune grid template
plot(redge5,'r'),hold on,plot(Tgrid5,'g')
xlabel('deg'),ylabel('dB')
hzoom % plot and zoom: Fig 2.7

2 : 11

Figure 2.7. The template computed by the Grid method (jagged edge) and the template
computed by the Recursive Edge Grid method (smooth edge) from Figure 2.6 after pruning.

A operation similar to pruning is template reduction by which an edge of an already pruned
template, or rff template, is thinned out to a lower resolution by eliminating superflous
template points. Thus the size of the template vector is reduced (while the template shape is
still retained), causing the bound computation to be faster. This operation is performed on
individual templates with the command tplreduc and on one or more templates in a
template file with the command tplfop with the tplreduc option. Notice that tplreduc
also adds template points by interpolation where the edge is not as dense as the desired
resolution. We illustrate the operation on an rff-computed template, in Figure 2.8:

rff5=gettpl('ex2_1a',5); size(rff5)
 ans =
 709 1
redrff5=tplreduc(rff5,[10 2]); size(redrff5)
 TPLREDUC:size reduction ratio 91.11%
 ans =
 1 63
plot(rff5,'k.'),hold,plot(redrff5,'ko') % Fig. 2.8

Notice that the resolution [10 2] is selected only to clearly show the effect of reduction in the
scales of Figure 2.8; it may be too sparse to yield smooth Horowitz bounds. As usual, the
user is encouraged to try her own options.

-100 -50 0 50
15

20

25

30

35

Figure 2.8. The template computed by the RFF method from Figure 2.6, as originally
computed (.) and after reduction (o).

2 : 12

2.3 Specifications

In QFT specifications must be given in the frequency domain, as discussed in Section 1.3. In
Example 2.1, (2.2a) and (2.2b) specify a servo specification in form of a reference step
response in the time domain, relating to the closed loop transfer function
F s G s P s G s P s() () () () ()1+� � . Hence (2.2a) and (2.2b) can be approximately translated to the
frequency domain as in Example 1.1. Specification (2.2c) is already given in the frequency
domain.

Qsyn contains three functions that aid the user to formulate the time domain specifications
and translate them to the frequency domain: rsrs (reference step response specification) to
specify the step response from r to y in Figure 1.1; idsrs (input disturbance step response
specification) to specify the transmission from d1 to y in Figure 1.1; and odsrs (output
disturbance step response specification) to specify the transmission from d2 to y in Figure
1.1.

In Qsyn, time domain and frequency domain specifications from a rsrs-, idsrs-, or
odsrs-computation are stored in a specification file, with suffix spc, which is a special
Matlab mat-file. The spc-file and variable structure is elucidated in Chapter 3. The contents
of a spc-file can be inspected with the command look or getfrom. A variable can be
copied from an spc-file using the command getfrom, and removed with remove. A variable
can be inserted into or replaced in an spc-file with the command insert.

The specification variables in an spc-file are plotted with the command showspc, and
graphically updated with spcupd.

The user is not restricted to the above mentioned specifications. The command makespc
enables her to graphically define a frequency domain specification matrix. She may also
produce her own frequency domain specification matrix in any way she wants, and then
insert it (and its underlying time-domain specification, if it exists) into an spc-file with the
command insert. Certain name and format conventions have to be adhered to, see
Chapter 3.

2.3.1 Servo specification

As in Example 1.1, the command rsrs is used to translate (2.2a) and (2.2b) to a frequency
domain servo specification (1.8) and a tolerance specification (1.10):

rsrs('ex2_1a',[],[1.2 0.2],10,1.5,[],logspace(-1,2),2.85,3.1);

where 'ex2_1a' indicates that the specification should be stored in the file ex2_1a.spc;
the next [] means that the standard specification variable names rsrs_t and rsrs_w
should be used, [1.2 0.2] defines maximum and minimum rise times (90%), 10 stands
for allowed overshoot, 1.5 denotes the maximum settling time, logspace(-1,2) gives
the frequency range [rad/s], 2.85 rad/s is demanded cut-off frequency for the lower
frequency domain specification in rsrs_w(:,3), and 3.1 is an instruction that both 2nd
and 3rd order approximants of the closed loop transfer function are to be used in a way
defined in Horowitz (1993), page 48. More about rsrs is found in the Qsyn Reference
Guide, or by typing help rsrs. Note that all input arguments have default values.

During the computation, the command rsrs draws Figure 2.9, and includes the frequency
domain envelopes a ω� � and b ω� �, from which the tolerance specifiation b aω ω� � � � is taken
during the bound computation. Note that the cut-off frequency is not marked in Figure 2.9,
but it is stored in ex2_1a.spc. The frequencies for which rsrs_w is computed do not
necessarily have to coincide with w_tpl in the plant description file ex2_1a.m in Figure
2.2., since the bound computation algorithm will interpolate between the frequencies in the
spc-file to produce tolerances for the requested template frequencies. The user may change

2 : 13

the command line parameters, the frequency list, and the order and number of the
approximants and study the effect.

A look into the specification file ex2_1a.spc shows the following:

look('ex2_1a.spc')

Your variables are:

filename rsrs_t rsrs_tab rsrs_w

The variable rsrs_tab contains the demanded time domain specification, rsrs_t
contains the time domain specification envelope and rsrs_w contains the frequency domain
specification in a format revealed by:

[rsrst,rsrsw] = getfrom('ex2_1a.spc','rsrs_t','rsrs_w');
[rsrstab] = getfrom('ex2_1a.spc','rsrs_tab');

Figure 2.9. The graphical output during computation of the command

rsrs('ex2_1a',[],[1.2 0.2],10,1.5,[],[],2.85,3.1);

The heavy grey lines, A t� �, B t� �, and a ω� � , b ω� �, denote the time domain and frequency
domain envelopes, respectively, of the tested 2nd and 3rd order cases. The envelopes
constitute the resulting specifications and are saved in the variables rsrs_t, and rsrs_w,
respectively, in the specification file ex2_1a.spc. The specifications a ω� � and b ω� � are

identified with (1.8) although a ω� � is saved in ex2_1a.spc to include the desired steep roll
off. The tested cases are displayed as thin black lines within the envelopes. The thin grey
lines outside the upper envelope in the time domain plot is a sketch of the user requested
time domain specification of the rsrs input parameters. In addition there are some vertical
grey lines in the time domain plot which denote simulated cases that did not meet the
specifications and which can be neglected.

2 : 14

The variable rsrs_t has 3 columns. With reference to Figure 2.9, the first (leftmost)
column hold the time vector t [seconds], whose increment was defined by the user as an
input argument in rsrs, or set by default; the second holds B t� �, and the third A t� �.
rsrs_w has 3 columns; the first holds the frequency vector ω [rad/s], which was set by the
user in the rsrs command, or set by default; second b ω� � [dB] and the third a ω� � [dB].
The format of rsrs_tab is the same as that of rsrs_t.

Both time and frequency domain specifications in an existing spc-file are plotted with the
command showspc:

showspc('ex2_1a','rsrs'); % Do it!

If only frequency domain specifications are desired for inspection, one proceeds like this

showspc('ex2_1a','rsrs','freq'); hzoom; % and click to zoom

and we notice in the resulting Figure 2.10 that a ω� � includes the desired roll off. If one
wishes to furher change the frequency domain specification, one may do it interactively using
the command spcupd, with manual mouse operations in the figure window, .

Figure 2.10. The frequency domain specification from Figure 2.9 as saved in ex2_1a.spc,
displayed by the command showspc('ex2_1a','rsrs','freq').

Notice that the frequency domain specification can be modified by extracting rsrs_w as a
matrix using getfrom, assing new values to the relevant matrix elements, and insert the
modified matrix into a specification file with the command insert. Alternatively, and better,
the command spcupd enables you to graphically update the frequency domain specification.
To modify rsrs_w, just issue the command

spcupd('test','rsrs');

and follow the instructions in the figure window, click the mouse, and update!

2 : 15

Figure 2.11. The dotted line is the plant nominal gain in ex2_1a.tpl, the gain extents of the
plant templates in ex2_1a.tpl are marked by o, and the servo specification is from
rsrs_w in ex2_1b.spc .

Before continuing the design process, it is instructive to compare the frequency domain
specification in Figure 2.10, with its tolerance, with the plant gain uncertainty given e.g. in the
template file ex2_1a.tpl (Figure 2.5). The following sequence of commands easily enables
the comparison, with the zoomed result in Figure 2.11:

figure, fdesign('ex2_1a.tpl'); % show gain extent of templates
hold on, showspc('ex2_1a','rsrs','freq',[],gcf); % show spec

From Figure 2.11 it is clear that the gain extents of the templates are larger than the
tolerance specification (see equation 1.10) for frequencies below the desired bandwidth of
about 3 rad/s. Hence one cannot solve the control problem in open loop, with feedforward
from the reference. Feedback is needed to reduce the closed loop uncertainty within the
given tolerance for frequencies lower than 3 rad/s. For higher frequencies, feedback is not
needed with respect to the servo specification.

2.3.2 Sensitivity specification

The easiest way to include the sensitivity specification (2.2c) into the specification file
ex2_1b.spc is the following:

add2spc('ex2_1a','odsrs',logspace(-1,2),6); % create and insert
showspc('ex2_1a','odsrs','freq'); % show

where we note that the standard name for the sensitivity specification in the frequency
domain is odsrs_w since it alse refers to the transmission from d2 to y in Figure 1.1, for
which the command odsrs creates an Output Disturbance Step Response Specification.
Like in the specification variable rsrs_w, the leftmost column of odsrs_w contains the
frequencies [rad/s]. Since in our case only an upper bound for the sensitivity is specified, the
second column holds it [dB]. The plot, a straight line at 6 dB is omitted.

2 : 16

2.4 Bounds computation

In Section 1.4 and 1.5 the Horowitz bounds were described. In Qsyn there is one central
command for the the bound compututation, called cbnd. The bounds are computed with
respect to the nominal open loop, L j P j G jk k knom nom() () ()ω ω ω= , where ω k [rad/s] stands for
the frequencies for which templates and specifications exist. As noted above, the
specifications do not have to be defined precisely for the template frequencies since the
bound computation algorithm interpolates among the specification frequencies. The user
must however make sure that the range of specification frequencies covers the template
frequencies since the bound computation algorithm does not extrapolate.

The bound computation in cbnd is straight-forward: the value of the specification is
computed for all L j knom()ω in a user defined grid in a Nichols chart, and then those complex
numbers L j knom()ω for which the specification is satisfied with equality (e.g. equation 1.5 or
equation 1.10 with an equality sign) are saved in a bounds file, with suffix bnd, which is a
special Matlab mat-file. The command bndupd enables the user to recalculate a bound for a
finer grid in a selected area of the Nichols chart. An example is given in Chapter 5.

The bnd-file structure is elucidated in Chapter 3 The contents of a bnd-file can be inspected
with the command look or getfrom. A variable can be copied from a bnd-file using the
command getfrom or getbnd, and removed with remove. A variable can be inserted into
or replaced in a bnd-file with the command insert. The bounds in a bnd-file are displayed
in a Nichols chart with showbnd.

2.4.1 Tolerance bounds

The tolerance bounds (1.10) emanating from the variable rsrs_w in the specifications file
ex2_1b.spc (Figure 2.10) and the templates in the template file ex2_1a.tpl (Figure 2.5)
are computed by

cbnd('ex2_1a','rsrs');

with plots of the bounds appearing in a figure window as they are computed. The bound
marked by o denotes the strict stability bound, i.e. the bound outside which the compensated
nominal open loop has to be so that no compensated open loop case intersects the instability
point -1. The stability bound always belongs to the forbidden part of the complex, and hence
will not be operative during the design phase. The stability bound is not saved in the bnd-
file, but is shown only as a reference to the user. The following messages appear in the
Matlab Command Window during the computation:

Calculating bounds for rsrs specification, with the templatefile
ex2_1a.tpl
w---> 0.2 [rad/s]
GETFROM: The file ex2_1a.bnd does not exist
INSERT: New datafile ex2_1a.bnd created
w---> 0.5 [rad/s]
w---> 1 [rad/s]
w---> 2 [rad/s]
w---> 5 [rad/s]
MAKEBND: Large problem, divided into 110 subproblems
No bound found, use larger search area, or higher accuracy
w---> 10 [rad/s]
No bound found, use larger search area, or higher accuracy
w---> 20 [rad/s]
No bound found, use larger search area, or higher accuracy
w---> 50 [rad/s]
No bound found, use larger search area, or higher accuracy

2 : 17

Not surprisingly are there no bounds above the default search limit of -50 dB for frequencies
higher than 2 rad/s, since the specification gives a very large tolerance after the cut-off
frequency of 3 rad/s, see Figure 2.11 and the last paragraph of Section 2.2.3. The tolerance
bounds are displayed by the command

figure, hngrid, hold on, showbnd('ex2_1a',gcf,[],'rsrs');

The tolerance bounds should be interpreted such that the compensated nominal open loop
frequency function, for each frequency, must be above its respective bound.

Figure 2.12. Tolerance bounds, BTL k()ω , for Example 2.1, computed by the command
cbnd('ex2_1a','rsrs');. The bounds are parametrized by the frequency ω k .

2.4.2 Sensitivity bounds

The sensitivity specification (2.2c) coded as odsrs_w in the specification file ex2_1b.spc
(Section 2.3.2) and the templates of the template file ex2_1a.tpl give the sensitivity
bounds for Example 2.1,

cbnd('ex2_1a','odsrs');

with the following messages appearing in the command window during the computation,

Calculating bounds for odsrs specification, with the templatefile
ex2_1a.tpl
w---> 0.2 [rad/s]
w---> 0.5 [rad/s]
w---> 1 [rad/s]
w---> 2 [rad/s]
w---> 5 [rad/s]
MAKEBND: Large problem, divided into 110 subproblems
w---> 10 [rad/s]
w---> 20 [rad/s]
w---> 50 [rad/s]

During the computation of BSL 5� � , the sensitivity bound for 5 rad/s relating to the nominal
open loop, the accompanying figure displays three curves; the true bound relative to the
current specification, the stability bound, and a third curve interior to the stability bound. The
third curve is a "dummy bound", emanating from the fact that the only the template edges

2 : 18

are used. It should be neglected, although it is stored in ex2_1a.bnd. It can be removed
with the command bndupd. A look into ex2_1a.bnd, where all the bounds are saved,

look('ex2_1a.bnd')

reveals that your variables are:

ans odsrs_4 odsrs_w rsrs_5
filename odsrs_5 rsrs_1 rsrs_6
odsrs_1 odsrs_6 rsrs_2 rsrs_7
odsrs_2 odsrs_7 rsrs_3 rsrs_8
odsrs_3 odsrs_8 rsrs_4 rsrs_w

The variables can be inspected with the command getfrom or getbnd. The first column of
rsrs_w and odsrs_w hold the frequencies for which, respectively, the tolerance and
sensitivity specifications have been computed. The second columns hold the indeces
referring to the bound variables themselves, rsrs_1, ..., rsrs_8 and odsrs_1, ...,
odsrs_8, respectively. Actually the four last rsrs bound variables are "non-existent" as
stated above in Section 2.4.1: the tolerance after the cut-off frequency of 3 rad/s is so large
that the gain extent of the templates are smaller than the tolerance and the bounds would fall
at −∞ dB, i.e. outside the search area of the bound computation algorithm. Therefore, each
of rsrs_5, rsrs_6, rsrs_7, and rsrs_8 contain each a NaN, as revealed e.g. by the
command

getbnd('ex2_1a','rsrs', 20)
 ans =

 NaN

Quite appropriately, the sensitivity bounds may be displayed in an inverse Nichols chart, i.e.
a Nichols chart with the closed loop loci 1 1+ L� � = constant, and arg 1 1+ L� �� 	=constant.

Figure 2.13 is generated by the following command:

figure, hngrid([],[],1),, hold on, showbnd('ex2_1a',gcf,[],'odsrs');

The sensitivy bounds are interpreted such that the compensated nominal open loop
frequency function, for each frequency, must be outside its respective bound.

Figure 2.13. Sensitivity bounds, BSL k()ω , for Example 2.1, computed by the command
cbnd('ex2_1a','odsrs');. The bounds are parametrized by the frequency ω k . Notice
the interior dummy bound for 5 rad/s that should be neglected and can be removed with the
help of the command bndupd.

2 : 19

Figure 2.14. Dominant bounds, BL k()ω , for Example 2.1, selected by the user from the
tolerance and sensitivity bounds in Figures 2.12 and 2.13, and generated by the command
hngrid, hold on, showbnd('ex2_1a',gcf,[.2 .5 1 2],'rsrs','r',[5 10 20
50],'odsrs','r');. Notice the interior dummy bound for 5 rad/s that should be neglected.

2.4.3 Dominant bounds

A comparison between Figures 2.11 and 2.12 reveals that the tolerance bounds are
dominant for 0.2, 0.5, 1, and 2 rad/s, while the sensitivity bounds are dominant for the
frequencies 5, 10, 20, and 50 rad/s. We may then display, in Figure 2.14, a user chosen
composite set of bounds which will form the Nichols chart on which we will design the
nominal open loop.

clg,hold off, hngrid, axis([-360 0 -50 50]), mgrid(12,10), hold on
showbnd('ex2_1a',gcf,[0.2 0.5 1 2],'rsrs',[], [5 10 20 50],'odsrs')

For many problems, however, a composite bound for a particular frequency would consist of
segments of bounds from different specifications. For clarity it is then often better to leave
the original bounds. See the example in Chapter 5.

2.5 Feedback compensator design

Referring to Section 1.6, we are now in a position to design the feedback compensator G(s),
such that, for ω k = 0.2, 0.5, 1, 2, 5, 10, 20, and 50 rad/s, the nominal open loop,
L j P j G jk k knom nom() () ()ω ω ω= , lies in the permitted side of the Horowitz bound BL k()ω in
Figure 2.14.

In Qsyn, the user defines her feedback compensator as an m-file with a certain structure. A
fully commented "template" or "model" of a feedback compensator in Real Factored Form is
found in the Qsyn library as fbcomp.m and is given in Figure 2.15 without its help text. In
fbcomp.m, the transfer function G(s)=1 is realized.

2 : 20

The user should copy fbcomp.m into the work directory, change its file name, and edit it to
reflect the desired feedback compensator. Since the loop shaping process is interactive and
developmental, the user may keep a sequence of feedback compensator files in his work
directory, e.g. named g1.m, g2.m, g3.m, ... etc, to trace (fundamental) changes of the
compensator.

It should be noted that the user is allowed to define the frequency function in any form in his
feedback compensator m-file, as long as elementwise vector operation notation is used, e.g.
.*, ./, .^, etc. In the help text of fbcomp.m, it is also suggested how a discrete time
feedback compensator is defined.

function [G] = fbcomp(s)

% fbcomp.m Qsyn feedback compensator model file
% ...
% (help text omitted, to see it, issue the command: help fbcomp)
%%
% User's comment: feedback compensator no. for plant
%
% DC-gain
% =======
 k = 1;

% Number of integrators
% =====================
 n = 0;

% Real Poles
% ==========
 p1 = -1/eps; p2 = -1/eps; p3 = -1/eps; p4 = -1/eps; p5 = -1/eps;

% Real Zeros
% ==========
 z1 = -1/eps; z2 = -1/eps; z3 = -1/eps; z4 = -1/eps; z5 = -1/eps;

% Complex Poles
% =============
 zp1 = 0; zp2 = 0; zp3 = 0; zp4 = 0; zp5 = 0;
 wp1 = 1/eps; wp2 = 1/eps; wp3 = 1/eps; wp4 = 1/eps; wp5 = 1/eps;

% Complex Zeros
% =============
 zz1 = 0; zz2 = 0; zz3 = 0; zz4 = 0; zz5 = 0;
 wz1 = 1/eps; wz2 = 1/eps; wz3 = 1/eps; wz4 = 1/eps; wz5 = 1/eps;
%
% ---
 pole1 = 1./(1-s/p1); pole2 = 1./(1-s/p2); pole3 = 1./(1-s/p3);
 pole4 = 1./(1-s/p4); pole5 = 1./(1-s/p5);

 zero1 = 1-s/z1; zero2 = 1-s/z2; zero3 = 1-s/z3;
 zero4 = 1-s/z4; zero5 = 1-s/z5;

 cpole1 = 1./(1 + (2*zp1 + s/wp1).*s/wp1);
cpole2 = 1./(1 + (2*zp2 + s/wp2).*s/wp2);

 cpole3 = 1./(1 + (2*zp3 + s/wp3).*s/wp3);
cpole4 = 1./(1 + (2*zp4 + s/wp4).*s/wp4);

 cpole5 = 1./(1 + (2*zp5 + s/wp5).*s/wp5);

 czero1 = 1 + (2*zz1 + s/wz1).*s/wz1;
czero2 = 1 + (2*zz2 + s/wz2).*s/wz2;

 czero3 = 1 + (2*zz3 + s/wz3).*s/wz3;
czero4 = 1 + (2*zz4 + s/wz4).*s/wz4;

 czero5 = 1 + (2*zz5 + s/wz5).*s/wz5;

 G = (k./s.^n) ...
.*pole1.*pole2.*pole3.*pole4.*pole5 ...
.*zero1.*zero2.*zero3.*zero4.*zero5 ...

 .*cpole1.*cpole2.*cpole3.*cpole4.*cpole5 ...
.*czero1.*czero2.*czero3.*czero4.*czero5;

Figure 2.15. Feedback compensator template fbcomp.m for the user to copy, rename, and
edit in order to create the appropriate feedback compensator. As it stands, fbcomp.m
realizes the transfer function G(s)=1. Some parameters are pre-set to 1/eps, where eps is
the Matlab machine precision constant, and others to 0, to make their respective factor = 1.
The user should change the parameter values as appropriate, see Figure 2.16 and 2.18. If
needed, the user may add more parameters and factors, such as p6 and pole6, etc.

2 : 21

With a feedback compensator file ready, one first draws a Nichols diagram with appropriate
bounds, using the commands hngrid, hold on, and showbnd. The commands mgrid and
hzoom are also useful. Then cdesign is used to display the current nominal open loop, with
or without a previously designed nominal open loop. The procedure is now illustrated for
Example 2.1.

First fbcomp.m is copied into the file g1.m in the workspace. Clearly g1.m realizes G(s)=1,
and hence we will first study the nominal plant transfer function in relation to the bounds.

clg,hold off, hngrid, axis([-360 0 -50 50]), mgrid(12,10), hold on
showbnd('ex2_1a',gcf,[.2 .5 1 2],'rsrs','roll', ...
 [5 10 20 50],'odsrs','roll'); % roll refers to rolling colors
h1=cdesign('ex2_1a.m','g1',[], [],[],[],logspace(-2,3));

The output variable h1 of cdesign is a handle that allows the user to erase or keep old
nominal plots during subsequent design attempts.

Clearly we need to have a PI or PID, and in order to get a straight, nice Nichols plot, we
place the zeros and pole of the PID in such a way as to cancel the nominal plant dynamics.
The controller file g1.m is edited to realize the desired compensator, see Figure 2.16.

In the above command sequence showbnd was issued before cdesign. It is often smarter
to do the opposite, in particular if the nominal open loop spans over several Riemann
surfaces, since showbnd adapts its plot to the existing figure if the option gcf is used.

The command

h2=cdesign('ex2_1a.m','g1',[], [],[],[],logspace(-2,3));

shows both the nominal plant, and the compensated open loop which now equals 2/s. In fact,
it would now be sufficient to adjust the gain, in order satisfy the Horowitz bounds constraints.
That would however constitute a dirty design, with an excess of phase margin and hence of
bandwidth, and lacking a high frequency low pass filter for sensor noise attenuation. So, we
do adjust the gain, but also include a lag, and a high frequency low pass filter, editing g1.m
accordingly. The new nominal open loop is displayed together with the previous two open
loops by the command

h3=cdesign('ex2_1a.m','g1',[], [],[],[],logspace(-2,3));

It turns out, however that the first attempt was not a complete success. One has to tune
the parameters, including the location of the pole at -3. After each iteration one issues the
command

h3=cdesign('ex2_1a.m','g1',h3,logspace(-2,3));

which leaves the first two curves untouched (A and B in Figure 2.17a) but erasing the
previous tuning attempt. The final feedback compensator is recorded in Figure 2.18, and the
final nominal open loop is displayed as curve C in the zoomed Figure 2.17a. We see that for
2, 5, and 10 rad/s the nominal touches or almost touches its bounds.

2 : 22

function [G] = g1(s)

% g1.m Feedback compensator no. 2 for Example 2.1
%%
% DC-gain
% =======
 k = 1;

% Number of integrators
% =====================
 n = 1;

% Real Poles
% ==========
 p1 = -3; p2 = -1/eps; p3 = -1/eps; p4 = -1/eps; p5 = -1/eps;

% Real Zeros
% ==========
 z1 = -1/eps; z2 = -1/eps; z3 = -1/eps; z4 = -1/eps; z5 = -1/eps;

% Complex Poles
% =============
 zp1 = 0; zp2 = 0; zp3 = 0; zp4 = 0; zp5 = 0;
 wp1 = 1/eps; wp2 = 1/eps; wp3 = 1/eps; wp4 = 1/eps; wp5 = 1/eps;

% Complex Zeros
% =============
 zz1 = 0.6; zz2 = 0; zz3 = 0; zz4 = 0; zz5 = 0;
 wz1 = 4; wz2 = 1/eps; wz3 = 1/eps; wz4 = 1/eps; wz5 = 1/eps;
%
% ---
 pole1 = 1./(1-s/p1); pole2 = 1./(1-s/p2); pole3 = 1./(1-s/p3);
 pole4 = 1./(1-s/p4); pole5 = 1./(1-s/p5);

 zero1 = 1-s/z1; zero2 = 1-s/z2; zero3 = 1-s/z3;
 zero4 = 1-s/z4; zero5 = 1-s/z5;

 cpole1 = 1./(1 + (2*zp1 + s/wp1).*s/wp1);
cpole2 = 1./(1 + (2*zp2 + s/wp2).*s/wp2);

 cpole3 = 1./(1 + (2*zp3 + s/wp3).*s/wp3);
cpole4 = 1./(1 + (2*zp4 + s/wp4).*s/wp4);

 cpole5 = 1./(1 + (2*zp5 + s/wp5).*s/wp5);

 czero1 = 1 + (2*zz1 + s/wz1).*s/wz1;
czero2 = 1 + (2*zz2 + s/wz2).*s/wz2;

 czero3 = 1 + (2*zz3 + s/wz3).*s/wz3;
czero4 = 1 + (2*zz4 + s/wz4).*s/wz4;

 czero5 = 1 + (2*zz5 + s/wz5).*s/wz5;

 G = (k./s.^n) ...
.*pole1.*pole2.*pole3.*pole4.*pole5 ...
.*zero1.*zero2.*zero3.*zero4.*zero5 ...

 .*cpole1.*cpole2.*cpole3.*cpole4.*cpole5 ...
.*czero1.*czero2.*czero3.*czero4.*czero5;

Figure 2.16. The edited feedback compensator file g1.m realizing the transfer function

G s
s s

s s
� �

� �
� �

=
+ ⋅ +

+

1 2 0 6 4 16

1 3

2
.

.

2 : 23

A

B

C

Figure 2.17a. Design of the nominal open loop, L s P s G snom nom() () ()= , in a Nichols chart for
Example 2.1. The dominant Horowitz bounds, BL k()ω from Figure 2.14, and L jnom()ω are
parametrized by frequency [rad/s]. The nominal plant is

P s s s snom� � � �
 �= + + ⋅ +2 1 3 1 2 0 6 4 16
2

. . L jnom()ω is displayed with G s()=1 from Figure

2.15 (curve A), with G s sP s() ()= 2 nom� 	 from Figure 2.16 (curve B), and in curve C with the

final compensator from Figure 2.18,

 G s
s s s

s s s s
� �

� �� �
� �� �� �

=
+ + ⋅ +

+ + +

2 5 1 6 1 2 0 6 4 16

1 1 3 2 1 26

2
. .

.
(2.4)

The open loop templates are simply the plant templates multipled by G j k()ω . As an
interesting illustration we proceed to display in an inverse Nichols diagram, in Figure 2.17b,
the final nominal open loop, together with the open loop templates (note that the order
between showtpl and hngrid, hold on could be reversed if the gcf option is showtpl
were used):

tplfop('oex2_1a','*',[],'ex2_1a',1,'g1');%create open loop tpl file
showtpl('oex2_1a',[],[],'-');,hold on, hngrid([],[],1)

It is easy to check in Figure 2.17b that the sensitivity specifications are satisfied for the
template frequencies. However one might suspect that that for some frequency between 5
and 10 rad/s a violation occurs. The way that the Horowitz bounds for these frequencies are
touched by the nominal (Figure 2.17a) also points in this direction. The alternatives for the
user are then either i) to neglect the potential problem since it is deemed to be insignificant,
ii) to redesign the nominal open loop with some spare "air" between the nominal points and
the bounds for 5 and 10 rad/s, or iii) compute an additional template for e.g. 7 rad/s and
check if a violation occurs. In Chapter 4 an example is given how an additional template is
created and inserted.

2 : 24

Figure 2.17b. The nominal open loop, L s P s G j knom nom() () ()= ω , and the open loop templates
in an inverse Nichols chart for Example 2.1. P snom() and G s() are given in the caption of
Figure 2.17a.

The user may try to improve the design. in a new compensator file g2.m, in three directions:
i) better tuning of the present compensator; ii) better adherance to the bounds by smarter
compensator elements, like for instance a high frequency lowpass filter consisting of a
complex pole and a real zero, a so called Slor filter; and iii) designing a lower order
compensator that still meets the Horowitz bound constraints in a reasonable way. In such a
way one gets a feeling for the trade off between compensator complexity and specifications.

As a closing remark for this section we would like to point out that Example 2.1 is a synthetic
example, not only because it satisfies Theorem 1.2, but also because the pole excess of P(s)
is one, only. Such systems do not exist in reality. For analog implementation, we always
recommend to design strictly proper controllers, because otherwise the electronics will
decide the high frequecy cut-off frequency and roll-off for you. We followed this advice, and
hence the compensated open loop has a pole excess of two. As already noted, a realistic
plant description includes high frequency dynamics, or unstructured uncertainty. Examples
of such are given in Chapter 4.

2 : 25

function [G] = g1(s)

% g1.m Feedback compensator (final) for Example 2.1
%%
% DC-gain
% =======
 k = 2.5;

% Number of integrators
% =====================
 n = 1;

% Real Poles
% ==========
 p1 = -3.2; p2 = -1; p3 = -26; p4 = -1/eps; p5 = -1/eps;

% Real Zeros
% ==========
 z1 = -1/eps; z2 = -6; z3 = -1/eps; z4 = -1/eps; z5 = -1/eps;

% Complex Poles
% =============
 zp1 = 0; zp2 = 0; zp3 = 0; zp4 = 0; zp5 = 0;
 wp1 = 1/eps; wp2 = 1/eps; wp3 = 1/eps; wp4 = 1/eps; wp5 = 1/eps;

% Complex Zeros
% =============
 zz1 = 0.6; zz2 = 0; zz3 = 0; zz4 = 0; zz5 = 0;
 wz1 = 4; wz2 = 1/eps; wz3 = 1/eps; wz4 = 1/eps; wz5 = 1/eps;
%
% ---
 pole1 = 1./(1-s/p1); pole2 = 1./(1-s/p2); pole3 = 1./(1-s/p3);
 pole4 = 1./(1-s/p4); pole5 = 1./(1-s/p5);

 zero1 = 1-s/z1; zero2 = 1-s/z2; zero3 = 1-s/z3;
 zero4 = 1-s/z4; zero5 = 1-s/z5;

 cpole1 = 1./(1 + (2*zp1 + s/wp1).*s/wp1);
cpole2 = 1./(1 + (2*zp2 + s/wp2).*s/wp2);

 cpole3 = 1./(1 + (2*zp3 + s/wp3).*s/wp3);
cpole4 = 1./(1 + (2*zp4 + s/wp4).*s/wp4);

 cpole5 = 1./(1 + (2*zp5 + s/wp5).*s/wp5);

 czero1 = 1 + (2*zz1 + s/wz1).*s/wz1;
czero2 = 1 + (2*zz2 + s/wz2).*s/wz2;

 czero3 = 1 + (2*zz3 + s/wz3).*s/wz3;
czero4 = 1 + (2*zz4 + s/wz4).*s/wz4;

 czero5 = 1 + (2*zz5 + s/wz5).*s/wz5;

 G = (k./s.^n) ...
.*pole1.*pole2.*pole3.*pole4.*pole5 ...
.*zero1.*zero2.*zero3.*zero4.*zero5 ...

 .*cpole1.*cpole2.*cpole3.*cpole4.*cpole5 ...
.*czero1.*czero2.*czero3.*czero4.*czero5;

Figure 2.18.The edited feedback compensator file g1.m realizing the final compensator (2.4).

2.6 Closing the loop

As pointed out in Section 1.7, stability of the closed loop system must be ascertained
independently. Our example is however covered by Theorem 1.1, and hence closed loop
stability is ensured.

The closed loop template file cex2_1a.tpl is produced with the command

tplfop('cex2_1a','iosrs',[],'ex2_1a',1,'g1');

The user may study the closed loop templates with showtpl, and conclude that for the four
lowest frequencies where there is significant feedback, the templates are smaller than the
open loop templates.

2 : 26

We are however interested in the closed loop gain extent in comparison with the servo
specification. As in Section 2.3.1 we issue the command

figure, fdesign('cex2_1a.tpl');
hold on, showspc('ex2_1a','rsrs','freq',[],gcf);

and get Figure 2.19 which should be compared with Figure 2. 11. The gain extent satisfies
the tolerance specification, but not within the envelope of the servo specification. A prefilter
is needed to get the the closed loop FPG/(1+PG) within the specification.

Figure 2.19. The dotted line is the gain of the nominal complementary sensitivity function
P s G s P s G snom nom() () () ()1+� 	 in cex2_1a.tpl, where G(s) is given in (2.4) and

P s s s snom� � � �
 �= + + ⋅ +2 1 3 1 2 0 6 4 16
2

. . The gain extents of the complementary sensitivity

function templates in cex2_1a.tpl are marked by o, and the servo specification is from
rsrs_w in ex2_1a.spc .

2.7 Prefilter design

The prefilter is designed with the help of the command fdesign which has the same syntax
as cdesign. The prefilter is a Matlab m-file of exactly the same structure as the feedback
controller, and it is recommended that the standard file prefil.m is used as a "template" for
editing.

From Figure 2.19 it seems as if t F(s) should be a low pass filter with a bandwidth of about
2 rad/s. After a few attemps, the prefilter file f1.m got its final form of Figure 2.20, i.e.
including a well damped second order low pass filter whose bandwidths is about 4 rad/s. The
gain of the final closed loop in Figure 2.21 is displayed the result of the command

figure, fdesign('cex2_1a.tpl','f1');
hold on, showspc('ex2_1a','rsrs','freq',[],gcf);

Figure 2.21 shows a limited frequency range around the bandwidth. The gain extent of
closed loop transfer function, maxFL L1+� � and minFL L1+� � , is within specifcations. It

now remains to simulate a number of plant cases in the frequency and time domains to
ensure that there is no wobbling (secondary resonances, see Horowitz and Sidi 1972), and
that the time domain specifications are satisfied.

2 : 27

function [F] = f1(s)

% f1.m Prefilter (final) for Example 2.1
%%
% DC-gain
% =======
 k = 1;

% Number of integrators
% =====================
 n = 0;

% Real Poles
% ==========
 p1 = -1/eps; p2 = -1/eps; p3 = -1/eps; p4 = -1/eps; p5 = -1/eps;

% Real Zeros
% ==========
 z1 = -1/eps; z2 = -1/eps; z3 = -1/eps; z4 = -1/eps; z5 = -1/eps;

% Complex Poles
% =============
 zp1 = 0.83; zp2 = 0; zp3 = 0; zp4 = 0; zp5 = 0;
 wp1 = 3.4; wp2 = 1/eps; wp3 = 1/eps; wp4 = 1/eps; wp5 = 1/eps;

% Complex Zeros
% =============
 zz1 = 0; zz2 = 0; zz3 = 0; zz4 = 0; zz5 = 0;
 wz1 = -1/eps; wz2 = 1/eps; wz3 = 1/eps; wz4 = 1/eps; wz5 = 1/eps;
%
% ---
 pole1 = 1./(1-s/p1); pole2 = 1./(1-s/p2); pole3 = 1./(1-s/p3);
 pole4 = 1./(1-s/p4); pole5 = 1./(1-s/p5);

 zero1 = 1-s/z1; zero2 = 1-s/z2; zero3 = 1-s/z3;
 zero4 = 1-s/z4; zero5 = 1-s/z5;

 cpole1 = 1./(1 + (2*zp1 + s/wp1).*s/wp1);
cpole2 = 1./(1 + (2*zp2 + s/wp2).*s/wp2);

 cpole3 = 1./(1 + (2*zp3 + s/wp3).*s/wp3);
cpole4 = 1./(1 + (2*zp4 + s/wp4).*s/wp4);

 cpole5 = 1./(1 + (2*zp5 + s/wp5).*s/wp5);

 czero1 = 1 + (2*zz1 + s/wz1).*s/wz1;
czero2 = 1 + (2*zz2 + s/wz2).*s/wz2;

 czero3 = 1 + (2*zz3 + s/wz3).*s/wz3;
czero4 = 1 + (2*zz4 + s/wz4).*s/wz4;

 czero5 = 1 + (2*zz5 + s/wz5).*s/wz5;

 F = (k./s.^n) ...
.*pole1.*pole2.*pole3.*pole4.*pole5 ...
.*zero1.*zero2.*zero3.*zero4.*zero5 ...

 .*cpole1.*cpole2.*cpole3.*cpole4.*cpole5 ...
.*czero1.*czero2.*czero3.*czero4.*czero5;

Figure 2.20. The edited prefilter file f1.m realizing the final prefilter

F s
s s

� �

 �

=
+ ⋅ +

1

1 2 0 83 3 4 3 42 2. . .
 (2.5)

2 : 28

Figure 2.21. The dotted line is the gain of the nominal closed loop transfer function
F s P s G s P s G s� � � 	nom nom() () () ()1+ , where the complimentary sensitivity function nominal

P s G s P s G snom nom() () () ()1+� 	 and templates P s G s P s G s() () () ()1+� � are found in

cex2_1a.tpl. G(s) is given in (2.4), F(s) in (2.5) and

P s s s snom� � � �
 �= + + ⋅ +2 1 3 1 2 0 6 4 16
2

. . The gain extents of the templates are marked by

o, and the servo specification is from rsrs_w in ex2_1a.spc

2.8 Simulations

One efficient way to select plant cases for simulation is to use those parameter combinations
from which the edes of one or more templates emanate. Some template computation
methods give this information, e.g. the Recursive Edge Grid method or one of the other grid
methods after pruning. For each template in the template file, a parameter matrix is stored
whose columns contain the plant cases. Since the rff method does not give this information,
we take it from one of the other template files if we were wise enough to save it (Section
2.2.2), or recompute a template for some critical frequency.

Based on Figure 2.17b we select the template for 5 rad/s, and compute its edge with the
Recursive Edge Grid method. Then the command gettpl is used to get out the parameter
matrix par which includes 84 plant cases. We use the command ccases, to compute the
closed loop frequency functions and sensitivity functions for the selected cases, on the dense
frequency vector logspace(-1,2,120). Compare the use of the command cases in
Section 2.1.6. The sensitivity and closed loop frequency functions are plotted in Figures
2.22 and 2.23, respectively.

ctpl('ex2_1b','ex2_1a','aedgrid_[5,5]',5); % 5 rad/s template
[tpl,par]=gettpl('ex2_1b',5); % par covers 84 cases
figure, showspc('ex2_1a','odsrs','freq');
ccases('ex2_1a',par,'odsrs','g1','f1',logspace(-1,2,120),'mag');
hzoom % Fig. 2.22
figure, showspc('ex2_1a','rsrs','freq');
ccases('ex2_1a',par,'rsrs','g1','f1',logspace(-1,2,120),'mag');
hzoom % Fig. 2.23

2 : 29

Figure 2.22. Selected sensitivity function cases for the the plant (2.1) controlled by the
feedback compensator (2.4). For some plant cases, the sensitivity specification (2.2c), drawn
in heavy black, is violated for the frequencies [6, 9] rad/s.

Figure 2.23. Selected closed loop frequency function cases for the the plant (2.1) controlled
by the feedback compensator (2.4) and the prefilter (2.5).The servo specification in the
frequency domain (Figure 2.10), is also drawn, and is seen to be almost satisfied. A better
prefilter design would have satisfied it completely.

We notice (with consternation) in Figure 2.22 that the sensitivity specification is not satisfied,
exactly between those frequencies in Figure 2.17a for which we had proudly designed the
feedback compensator such that the nominal open loop sat right on the Horowitz bounds. As
seen in Figure 2.23, a slight violation of the servo specification seems to occur for some
plant cases at 3 rad/s  although the prefilter design at the design frequencies (Figure 2.22)
gave an indication that all is in order. As remarked in Section 2.6 in the paragraphs following
equation (2.4), we should redesign the nominal open loop either by including bounds for
more frequencies, or by an "overdesign" for the current Horowitz bounds in the sense that the
nominal open loop keeps a small distance to all the bounds.

2 : 30

Qsyn does not provide any tool for time domain simulation. As a service to the the user who
has access to the Matlab Control Systems Toolbox, we provide the following commands that
will yield the 84 closed loop responses to a unit reference step, shown in Figure 2.24 together
with the time domain specification from file ex2_1a.spc.

ctpl('ex2_1b','ex2_1a','aedgrid_[5,5]',5); % 5 rad/s template
[tpl,par]=gettpl('ex2_1b',5); % par has 86 columns
[n,m]=size(par);
Gnum = 2.5*conv([1/6 1],[1/16 2*0.6/4 1]); % equ (2.4)
Gden = conv(conv([1 0],[1 1]),conv([1/3.2 1],[1/26 1]));
Fnum = [1]; % equ (2.5)
Fden = [1/(3.4*3.4) 2*0.83/3.4 1];
t = 0:0.01:3;
y = zeros(length(t),m);
for i = 1:m,
 k=par(1,i); a=par(2,i); z=par(3,i); wn=par (4,i); % Fig. 2.2
 Pnum = k*[1 a]; % equ (2.1)
 Pden = [1/(wn*wn) 2*z/wn 1];
 [Onum, Oden] = series(Gnum, Gden, Pnum, Pden); % open loop
 [Sbarnum, Sbarden] = feedback(Onum,Oden,[1],[1],-1); % compl sens
 [Cnum, Cden] = series(Fnum, Fden, Sbarnum, Sbarden); % cl loop
 y(:,i) = step(Cnum, Cden, t); % closed loop step response
end
showspc('ex2_1a','rsrs','time'), plot(t,y);
plot([1.5 3],[.95 .95],'r',[1.5 3],[1.05 1.05],'r','linewidth',2)

Figure 2.24. Selected closed loop reference step response cases for the the plant (2.1)
controlled by the feedback compensator (2.4) and the prefilter (2.5). For some plant cases,
the servo specification in the time domain (Figure 2.9) complemented with the settling time
specification (2.2b), drawn in thick grey and black, is violated both with respect to the
overshoot (2.2a) and settling time (2.2b) specifications.

In Figure 2.24 the time domain specifications are violated, too. We notice that the envelope
of the model responses (drawn in thin grey in Figure 2.24) is also violated. The reason
seems to be that the time domain specification in Section 2.3.1 is specified with too large a
difference between maximim and minimum rise time ([1.2, 0.2] seconds), which causes the
tolerance specification (Figure 2.9 and equation 1.10) to be to large around the bandwidth.
Figure 2.24 reveals that the closed loop rise time varies between 0.8 and 1.3 seconds, a
factor of 1.6, which is much less than the specified span of [0.2, 1.2] seconds. The maximum
rise time should be lowered, but also the minimum rise time should be increased. It is also
clear that the chosen 2nd and 3rd order models are not well adapted to this system which is
of higher order. An idea is to use only a second order approximant which will make the rise
time difference smaller.

2 : 31

2.9 Conclusions

All control designs have been iterative until a presentable result was reached. Our example
is no exception, and above the first few steps have been shown. We have shown some
common pitfalls:

• templates computed by methods that do not give the true template edges;
• too few and/or unsuitable frequencies for which templates and Horowitz bounds are

computed;
• time domain specifications that do not reflect the nature of the closed loop system and

therefore give rise to too loose frequency domain specifications, while in other cases one
may get too tight frequency domain specifications that may result in over design, i.e.
excessive bandwidth of the complementary sensitivity function, or a failure to find a
controller;

• too great an effort to satisfy the Horowitz bound constraints strictly, by "clever" loop
shaping, which may result in violations of the specification for frequencies between the
bound frequencies, and may also make it necessary to spend a great effort to loop shape
the prefilter so that the servo specification is strictly satisfied.

2.10 Summary of the Qsyn command sequence

% edit the plant description file ex2_1a.m, Sec. 2.1
plnt ex2_1a

% plot selected plant frequency function cases in a Bode diagram
cases('ex2_1a',[2 5; 1 3; .3 .3; 8 4],[],1);

% compute the plant templates and place them in the template file
% ex2_1a.tpl, Section 2.2
ctpl('ex2_1a')

% display the templates
showtpl('ex2_1a');

% define servo specifications, and translate them to the frequency
% domain, with the result saved in the specification file ex2_1a.spc,
% Section 2.3. Plot the specifications
rsrs('ex2_1a',[],[1.2 0.2],10,1.5,[],logspace(-1,2),2.85,3.1);
showspc('ex2_1a','rsrs','time'); showspc('ex2_1a','rsrs','freq');

% study the plant amplitude function and the servo specifications,
% Figure 2.11
fdesign('ex2_1a.tpl'),
hold on, showspc('ex2_1a','rsrs','freq',[],gcf);

% define sensitivity specifications, store them in ex2_1a.spc, plot
add2spc('ex2_1a','odsrs',logspace(-1,2),6); % create and insert
showspc('ex2_1a','odsrs','freq'); % show

% compute tolerance bounds from the servo specification, place them
in the bounds file ex2_1a.bnd, Section 2.4. Show the bounds
cbnd('ex2_1a','rsrs');
hngrid, hold, showbnd('ex2_1a',gcf,[],'rsrs')

2 : 32

% compute sensitivity bounds, and place them in ex2_1a.bnd. Plot
cbnd('ex2_1a','odsrs');
hngrid([],[],1), hold on, showbnd('ex2_1a',gcf,[],'odsrs');

% plot dominant bounds
clg,hold off, hngrid, axis([-360 0 -50 50]), mgrid(12,10), hold on
showbnd('ex2_1a',gcf,[0.2 0.5 1 2],'rsrs',[],[5 10 20 50],'odsrs')

% edit the feedback compensator file g1.m, by copying fbcomp.m.
% Section 2.5

% show the nominal open loop with the dominant bounds
clg,hold off, hngrid, axis([-360 0 -50 50]), mgrid(12,10), hold on
showbnd('ex2_1a',gcf,[.2 .5 1 2],'rsrs','roll', ...
 [5 10 20 50],'odsrs','roll');
h1=cdesign('ex2_1a.m','g1',[], [],[],[],logspace(-2,3));

% edit g1.m interatively , until the nominal open loop satisfies the
% bounds, plot
h2=cdesign('ex2_1a.m','g1',[],[],[],[],logspace(-2,3));

% display open loop nominal with templates
tplfop('oex2_1a','*',[],'ex2_1a',1,'g1');%create open loop tpl file
showtpl('oex2_1a',[],[],'-');,hold on, hngrid([],[],1)

% close the loop. Place the complementary sensitivity function
templates in the file cex2_1a.m. Section 2.6
tplfop('cex2_1a','iosrs',[],'ex2_1a',1,'g1');

% compare the complementary sensitivity function with the servo spec
fdesign('cex2_1a.tpl');
hold on, showspc('ex2_1a','rsrs','freq',[],gcf);

% edit the prefilter file f1.m, by copying prefil.m.
% Section 2.7

% compute the closed loop, and compare with servo specifications
fdesign('cex2_1a.tpl','f1');
hold on, showspc('ex2_1a','rsrs','freq',[],gcf);

% edit f1.m interatively, until the nominal open loop satisfies the
% servo specifications, plot
fdesign('cex2_1a.tpl','f1'),
hold on, showspc('ex2_1a','rsrs','freq',[],gcf);

% simulate the closed loop in the frequency and time domains, as
% described in Section 2.8

% if necessary, redesign

2 : 33

