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Introduction 

The paper translated here, "De Fractionibus Continuis Dissertatio", represents 
Euler's first published work on the theory of continued fractions, a subject to 
which he often returned during his long career. The emphasis is on basic identities 
and analytic theory, culminating in the development of the continued fraction 
expansion for e. A discussion of the periodic continued fractions associated with 
quadratic irrationalities is also included, but applications to number theory come 
in later publications. 

Readers interested in mathematical system theory will be concerned primarily 
with Euler's treatment of the Riccati equation, Sections 28-33. This aspect of the 
paper served as the chief motivation for the translation project. 

We are grateful to C. I. Bymes for suggesting that we translate this paper, 
and for his continuing support. Thanks for comments and help with references 
also to C. Bemlohr, P. Fuhrmann, W. Gragg, A. Lindquist, C. Martin, L. F. 
Meyers, A. Weil, H. Wimmer, and especially to J. Burckhardt and G. Mislin of 
the Euler Commission. As far as the translators know, no translation into English 
or another modern language has been published. 

Bibliographical Notes 

Two bibliographies are included. The first is a selected list of some of Euler's papers on continued 
fractions as well as some relevant to the Riccati equation but not necessarily involving continued 
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fractions. The second is a bibfiography of recent works on continued fractions and some background 
materials on Euler. In particular, [1, 9, 14, 15] fall in this latter category. See [2] for an overview of 
many of the relevant papers. 

References to Euler's published works are given according to the number assigned in Gustav 
Enestr~Sm's index: 

G. Enestr~m, Verzeichnis der Schriften Leonhard Eulers, 
Jahresbericht der Deutschen Mathematiker-Vereinigung, 
Erg~nzungsband 4, 1. Lieferung 1910, 2. Lieferung 1913. 

Papers are cited in the Collected Works compiled by the Swiss Academy of Sciences: 

Leonhardi Euleri Opera Omnia: Series I - IV 

For example, the present paper is cited E71, O.O. 1.14, 1744. That is, EnestrOm number 71, Opera 
Omnia, Series I, Volume 14, originally published in 1744. Dates are particularly tricky, since the date 
of composition is often much earlier than the date of publication. This Essay was written in 1737, but 
only published seven years later in the Proceedings of the National Academy of St. Petersburg. 

1. Various quantities have been considered in Analysis which are easy to 
express but difficult to evaluate. Namely, irrational and transcendental quantities, 
among which are logarithms, circular arcs, and the lengths of other curves, are 
frequently expressed by infinite series. Since the terms of these series are known, 
they indicate the values of these quantities distinctly enough. Moreover these 
series are of two kinds, to the first of which belong those whose terms are related 
by addition or subtraction and to the second those whose terms are related by 
multiplication. Thus, the area of a circle with diameter 1 may be expressed by 
either method; according to the first, the area of the circle is 

1 1 1 1 
1 - -~ + ~ - ff + ~ - etc. to infinity. 

According to the second method, the area equals the expression 

2 . 4 . 4 - 6 . 6 . 8 . 8 . 1 0 . 1 0  
3 . 3 - 5 . 5 - 7 - 7 . 9 . 9 . 1 1  

etc. to infinity. 

Of these series, those are to be preferred which converge most quickly and require 
the fewest terms to supply a good approximation to the desired quantity. 

2. In addition to the two kinds of series presented above, we consider a 
third whose terms are connected by continuing division, so that it will be 
convenient to call these series continued fractions. Although this construction is 
less used than the other two, not only does it exhibit its value just as clearly but it 
is also very well suited to approximate computation. However, these continued 
fractions have been used so little that except for a few special cases no methods 
have been available either for computing their precise values or for using them to 
express given transcendental quantities. Since I have been studying continued 
fractions for a long time, and I have observed many important facts pertaining 
both to their use and their derivation, I have decided to discuss them here. 
Although I have not yet arrived at a complete theory, I believe that these partial 
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results which I found after hard work will surely contribute to further study of 
this subject. 

3. In order that what I mean by the name continued fraction will be more 
clearly understood, I exhibit first of all the most general example: 

a +  
Ol 

b + B  

c + y  

d + 8  

e + e  

f + etc. 

The significance of this expression is easily understood from this method of 
writing. Clearly this quantity consists of two members, a whole number a and a 
fraction whose numerator is a and whose denominator is again composed of two 
members--a whole number b and a fraction whose numerator is fl and whose 
denominator again consists of two members, namely c and a fraction as before, 
and so on to infinity. Here pairs of quantities occur which I have distinguished by 
letters taken from the Latin and Greek alphabets. Of these quantities those which 
I have denoted with Greek letters I will call numerators because in fact they 
constitute the numerators of the sequence of fractions considered above. The 
remaining quantities expressed in Latin letters will be called denominators, since 
all of them except the first are indeed part of the denominators of the sequence of 
fractions. 

4. As far as I know, Viscount Brouncker (a) was the first who presented a 
continued fraction in this way. After Wallis communicated a result on the area of 
a circle to him, Brouncker changed the expression involved and asserted that the 
area of a circle is to the square of its diameter as 1 is to 

2 + 9  

2 +  25 

2 +49 

2 +81 

2 + etc. 

where the numerators are squares of odd integers and the denominators are all 
equal to 2. However, the way in which Brouncker arrived at this expression is not 
written down, and it would indeed be a pity if this method should perish since 
doubtless many outstanding facts of this sort can be derived in the same way. 
Moreover, when Wallis examined this fraction, he tried to produce a proof which 
is less natural and seems to be wholly different from my method. Moreover, 
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Wallis derived the whole approach from the following theorem, namely (b) 

a 2 = (a - 1)-¢ 

× ( a  + 1) + 

2(a - 1) + 9 

2(a - 1) + 25 

2(a - 1) + etc. 

1 

2(a + 1) + 9 

2(a + 1) + 25 

2(a + 1) +etc. 

whose truth he confirmed by induction, but most importantly, he did not offer 
the analysis which led to the theorem. 

5. Not  only is it possible to approximate the value of a given continued 
fraction of this kind easily and conveniently, but it is also possible to find bounds 
between which t h e  true value is contained. Thus, if any quadratic or other 
transcendental quantity were expressed in this manner, it will be an easy matter 
to compute it approximately. I shall show this from the form of a general 
continued fraction: 

Ol 
a+ 

b + f l  

c + y  

d + ~  

e + etc. 

in which I assume all the terms positive. Moreover, it appears that an approxi- 
mate value is obtained if the continued fraction is broken off at some point, and 
that the longer the fraction is continued before truncation, the better the ap- 
proximation obtained. 

Thus, a alone (neglecting the entire fractional part) is less than the value of 
the continued fraction. On the other hand, 

O/ a + - -  
b 

has a value larger than the true value, since b is smaller than the complete 
denominator. But if 

Ol 
a . - l - - -  

b+B 
¢ 
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is considered, its value is smaller than the true value since the fraction f l / c  makes 
the denominator b + f l / c  too large. And so in this manner successive truncations 
of the continued fraction lead to alternately greater and lesser values. Therefore it 
will be possible to approach the true value of the continued fraction as closely as 
desired. 

6. The following sequence of expressions will be therefore obtained: 

a a + ~  a + b +  ~ a ÷ - -  

¢ 

b + f l  

c + ' l  

d 

of which those of odd order (first, third, fifth,...) are less than the value of the 
continued fraction, while those of even order are greater than that value. Since the 
third term is greater than the first, the fifth is greater than the third, and so on, 
the odd terms by increasing eventually attain the true value of the continued 
fraction. Similarly the even terms which continually decrease, will by decreasing 
at length descend to the true value. Moreover, if these expressions are changed 
into simple fractions, the following sequence of the same expressions will appear: 

a ab + ot abc + otc + fla abcd + acd + t a d  + yab + aT 
-f b bc + fl bcd + f ld + "yb etc. 

If this sequence is inspected rather attentively, the law by which these terms 
progress will easily be understood. By this operation, these fractions can be 
continued as far as desired without laborious reduction of those composite 
fractions. 

7. The law o f  progression of these fractions is seen clearly from the 
following scheme: 

a b c d e 

1 a ab + a abc + ac + fla abcd + etcd + t a d  + "lab + oct 
-6' 1 '  b ' bc + fl ' bcd + fld + "yb ' 

a fl ~ 8 e 

etc. 

Indeed in these fractions, the denominators of the continued fraction are 
written above and the numerators are written below. The fraction 1/0 is placed 
first, according to the rule to be described below. Now the law of progression 
consists in this: the product of a numerator with the corresponding upper 
indicator, added to the product of the preceding numerator with the lower 
indicator, yields the succeeding numerator. A similar rule applies to the de- 
nominators. This law is easily observed from the inspection of these fractions if 
they are continued further, but it is possible to deduce their nature from the 
continued fractions themselves; however, I believe there is no point in including 
the proof here. 
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8. If the differences of these fractions are arrived at by subtracting each 
from the preceding, the following sequence appears: 

1 a a/3 a/3y 

-0' 1 . b '  + b ( b c + / 3 ) '  - (bc+/3) (bcd+/3d+'yb)  
etc. 

Here the formation of the numerators is obvious, but each denominator is formed 
from the two preceding ones. Therefore when the limit which exhibits the true 
value of the continued fraction is examined from the beginning (after rejecting 
1/0) ,  the sum of a and all the differences will be the true value of the proposed 
continued fraction: 

a + 1 - - ~ - b ( b c + f l )  + ( b c + f l ) ( b c d + f l d + ) , b )  

a/3 v~ 
- F- etc. 

(bcd+ •d + rb )( bcde +...) 

We have, therefore, an infinite series of the first kind whose terms are connected 
by addition and subtraction, which is equal to the value of the proposed 
continued fraction. This series converges rapidly and is quite suitable for the 
approximate computation of its value. 

If pairs of terms are combined to avoid alternating signs, the same continued 
fraction will be found to be equal to the following series: 

ac a/3 7 e 
a + ~- + etc. l(bc +/3) (bc+B)(bcde+Bde+'/be+~bc+/3~) 

The rule for forming the numerators and denominators of this series is easily 
derived from the one above. Moreover this series converges very quickly and 
certainly leads to approximations of the true sum. 

9. Therefore, the faster this last discovered sequence converges, the faster 
the continued fraction itself must be said to converge, since the number of terms 
in the given sequence corresponds to the number of fractions in the continued 
fraction. Therefore it is clear that a continued fraction converges fastest when its 
numerators a, r ,  7,.-. are small and its denominators a, b, c, . . .  are large. More- 
over, we can assume that all these numbers, both numerators and denominators, 
are integers; for if they were fractions they could be changed into whole numbers 
by the known reduction of fractions (namely multiplying numerator and de- 
nominator by the same number). Therefore if all the numbers a, r ,  y . . . .  as well as 
a, b, c . . . .  are assumed integral, the continued fraction will converge fastest if all 
the numerators a,/3, V . . . .  are equal to 1. Then indeed the larger the denominators 
a, b, c, d . . . .  are, the faster the continued fraction will converge. The numerators 
can not be less than one, since if any numerator is zero, the continued fraction is 
broken off there and becomes a finite fraction. The same thing happens if any one 
of the denominators is set equal to infinity, because just as before the continued 
fraction will be broken off there and will turn into a finite fraction. 
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10. If therefore the following continued fraction, all of whose numerators 
are 1, is proposed: 

a 4  
b + l  

c + l  

d + l  

e + l  

f + etc. 

the following sequence of fractions which only depends on a, b, c, d . . . .  ap- 
proaches its value: 

a b c d e 

1 a ab + 1 abc + c + a abcd + cd + ad + ab + 1 
-6' "1' b ' bc+ l ' bcd + d + b 

etc. 

Clearly, the numerator or denominator of each fraction, multiplied by the index 
and added to the numerator or denominator respectively, give the numerator or 
denominator  of the succeeding fraction. Therefore the value of this continued 
fraction is equated to the sum of the following series: 

1 1 1 a-4 + 
1.b b ( b c + l )  ( b c + l ) ( b c d + d + b )  

1 
- + etc. 

( bcd + d + b) ( bcde + . . .  ) 

or to the sum of this one, whose denominators are formed from alternating 
denominators of the series above: 

¢ e 

a +~--c---c~+ ( b c + l ) ( b c d e + d e + b e + b c + l )  +etc .  

11. If in such a continued fraction, all of whose numerators are one, the 
denominators are fractions, it will be convenient to transform it into another 
fraction, in which both the numerators and denominators are integers. If we are 
given a continued fraction of this kind, 

a - t  
b 1 
- -+  
B c 1 

C d 1 
q - _ _  

D e 
+ etc. 
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it will be changed into the following form: 

a q -  
B 

b + B C  

c + C D  

d + D E  

e + etc. 

In a similar way, any continued fraction ma3, be changed into another one 
whose numerators are all equal to 1, but whose denominators may be fractions. 
Namely we have 

a 1 
a +  : a - I  

b+B b 1 
- - t  

c + 7  a ac 1 +- -q -  
d + ~  /3 /3d 1 

e + e  a7 

f + etc. 

a'ye 1 
t 

fl~ flS f 
- -  + e t c .  
orye 

where the second fraction is easily formed from the first. 
l l a .  Therefore, when a continued fraction is given, either its true value (if 

the continued fraction is truncated), or at least an approximation, can be given as 
an ordinary fraction. Conversely, an ordinary fraction can be transformed into a 
continued fraction. The transformation of an ordinary fraction into a continued 
fraction with numerators all 1 and integral denominators must first be shown. 
Moreover, every finite fraction whose numerators and denominators are finite 
whole numbers may be transformed into a continued fraction of this kind which 
is truncated at a finite level. On the other hand, a fraction whose numerator and 
denominator are infinitely large numbers (which are given for irrational and 
transcendental quantities) will go across to a continued fraction running to 
infinity. To find such a continued fraction, it suffices to assign the denominators, 
since we set all numerators equal to one. In fact, these will be derived from the 
numerator and denominator of the given fraction by executing the customary 
operation for finding their greatest common divisor. Certainly the numerator is 
divided by the denominator, and the denominator by the remainder, and thus in 
turn the preceding divisor by the remainder. In fact, the denominators of the 
desired continued fraction arise as quotients in this continued division. 

12. Thus if it is proposed to change the fraction A / B  into a continued 
fraction all of whose numerators are one, I divide A by B with quotient a and 
remainder C; the preceding divisor B is divided by this remainder C with 
quotient b and remainder D, by which D is divided, and so on until a zero 
remainder and an infinitely large quotient is obtained. Moreover this operation is 
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represented in the following manner: 

B I A 
C 

a 

B b 

D C c 

E D d 

F E I 

G etc. 

Therefore, the quotients a, b, c, d, e, etc., will be found by this operation, and it 
follows that 

A 
- - = a q -  
B b + l  

c + l  

d + l  

e + etc. 

If the remainder G = 0, we have 

E 1 F 
e = ~  and - e = - - g  

and following this 

d + l  d + F  D 
e E E 

1 E 
and 

1 D '  
d + -  

e 

C 4 - - -  
1 E C 

1 =C+D D" 
d + -  

e 

And ascending by this method up to the beginning, the continued fraction is 
found to equal A/B. 

13. If in the fraction A/B we have A < B then the first quotient a is 0 and 
the first remainder is A, so that then B must be divided by A. Therefore, in this 
case 

1 
A / B  = 

b + l  

c + l  

d + l  

e + etc. 



304 L, Euler 

Moreover, in the case A < B a single term will appear in the continued 
fraction if B is an integral multiple of A, and the continued fraction will consist 
of two denominators if the ratio A : B  belongs to the class of superparticular 
ratios. On the other hand, there will be more than two denominators if A : B  
belongs to the class of superpartient ratios (a). Furthermore, the continued 
fraction will run to infinity if the ratio of A to B is not the ratio of two whole 
numbers, but is either irrational or transcendental. To change such expressions 
into continued fractions it is necessary to approximate them by rational numbers, 
as is customarily done by decimal fractions. Therefore if such expressions are 
obtained, continued fractions will be formed in the prescribed manner. 

14. When some fraction or other expression has been converted into a 
fraction of this kind, then we can assign an approximate value to it just as in 
Section 10. Thus, if the expression 

A 
- - = a 4  
B b + l  

c + l  

d + l  

e + etc. 

has been found and the following sequence of fractions has been constructed 
from a, b, c, d etc. 

a b c d e 

1 a ab + 1 abc + c + a abcd + cd + ad + ab + 1 

-0' 1 '  b ' bc+ l "' bcd + d + b 
etc. 

then these fractions will be approximately equal to the expression A / B ,  and the 
further they are from the beginning the closer they are to A / B .  Moreover, if any 
of these fractions will be examined, no other fraction which lies closer to the value 
A / B  can be expressed with smaller numbers. In this way the following problem is 
conveniently solved: "To convert a fraction composed of large numbers into a 
simpler one which approximates it more closely than can be done with numbers 
which are no larger." Wallis (a) worked on this problem with great zeal, but he 
gave a rather difficult and laborious solution. 

15. Our method applies to the given fraction 35__~5 
113 

which according to Metius (a) approximately expresses the ratio of circumference 
to diameter. Therefore we seek fractions made up of the smallest possible 
numbers which differ only a little from this ratio. Therefore, I divide 355 by 113 
and I find 

355 1 
- - = 3 + - -  
113 1 

7+1-- ~ 
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from which I form the following fractions 

3 7 16 

1 3 22 
0 '  1 '  7 

355 
113" 

3 22 355 
Therefore, the fractions ]- and -if- approximate the fraction 1-~ more 

3 
closely than any others made from smaller numbers. Moreover, ~ is larger and i- 

is smaller than the given quantity just as we established in general above. These 
fractions will be called principal convergents, since in addition to these, other 
non-principal convergents can be assigned which I judge equally satisfactory. 

22 .  
Namely, just as the fraction -if- is formed from the preceding ones with the index 

7, so non-principal convergents are formed by substituting smaller numbers in 
place of 7 which are formed by subtracting the number one over and over. 

16. If the ratio of circumference to diameter is computed more exactly by 
continued division, just as before, the following sequence of quotients appears: 3, 
7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14 etc. from which simple fractions are brought to 
light in the following way: 

3 7 15 1 292 1 

1 3 22 
0 '  1 '  7 

333 
106 

355 1 0 3 9 9 3  principal 
113' 33102  convergents 

2 
1 '  

1 
1'  

19 
6 

16 
5 

13 
4 

10 
3 

7 
2 

4 
1 

etc. 

311 
99 

289 
92 

267 
85 

245 
78 

223 
71 

201 
64 

103638 
32989 

103283 
32876 

102928 
32763 

etc. 

non-principal 
convergents 

Therefore, in this way two kinds of fractions are obtained, of which one sort is 
too large and the other is too small. Namely, those are too large which are written 
under the indices 3, 15, 292 etc., and the rest are too small. From this it is easy to 
establish the whole table of Wallis, which is composed of all fractions approxi- 
mating the true ratio of circumference to diameter more closely than would be 
possible with smaller or equal numbers. 
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17. By this method it is possible to define the proportion of leap years so 
that the beginning of years will always occur at the same time. This determination 
depends on the length of the solar year, which according to the most accurate 
observations I set as 365 days, 5 hours, 49', 8". Therefore the excess over 365 days 
will be 5h49'8 '', and if this excess is set equal to one quarter of a day, each fourth 
year may safely be declared a leap year. However, since this excess is less than 6 
hours, a smaller number of leap years must be accepted. This number is derived 

21600 
from the ratio of 24 h to 5h49'8 '', or from the fraction 5237 ' from which it 

follows that in the interval of 21,600 years only 5237 leap years ought to be set. 
Since, however, this period is too large, we shall obtain smaller periods by 
investigating fractions with smaller numbers which are approximately equal to the 

21600 
fraction 523-----ff'" To this end I present the following division: 

5237 I 21600 
20948 

652 

4 

5237 
5216 

21 652 
651 

31 

21 21 

Now from the quotients 4, 8, 31, 21 which are denominators of the continued 
fraction, the following fractions are formed: 

4 8 31 21 

1 4 33 1027 21600 
O' 1 '  --8-' 249 '  5237" 

4 
Of these fractions, the second, 1 '  gives the ratio of the Julian calendar in which 

every fourth year is set as a leap year. Therefore the mark may be attained more 
nearly if in 33 years only 8 years are set as leap years, according to the third 
fraction. Since, however, it is convenient for the period to have an integral 

1027 
number of years, let us consider non-principal convergents to ~ which have 

numerators divisible by 4. These will be 

136 268 400 532 664 
33 ' 65 ' 97 ' 129' 161' 

etc. 

400 
of which the third, --~-, is most convenient for the computation of the calendar. 

Moreover, it appears from this that there ought to be only 97 leap years in each 
interval of 400 years. That is, in this interval, 3 years which were leap years in the 
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Julian calendar ought to be changed into ordinary ones--a  change which the 
rules of the Gregorian calendar incorporate. From this, it is understood that a 
more accurate correction cannot be obtained in a shorter number of years. Most 
accurately, however, the calendar will be reconciled with the sun if in the interval 
of 21,600 years one year which ought to be a leap year according to the Gregorian 
calendar is changed to an ordinary one. 

18. We seek now the fractions which approximate v~- so closely that no 
fractions with smaller denominators approach more closely. In fact 

~/2-= 1.41421356 = 
141421356 
100000000" 

If continuing division is carried out in the prescribed manner, this fraction gives 
the quotients 

1, 2, 2, 2, 2, 2, 2, 2 etc., 

from which the following fractions are formed, satisfactory to such a degree that 
they are principal or non-principal convergents. 

1 2 2 2 2 2 2 2 

1 1 3 7 17 41 99 239 
O' T '  2 '  5 '  1-2' 2---9 ' 7-0 ' 169 

2 4 10 24 58 140 
T'  3 '  --7-' 1--if' 4--1-' 99 

/1 i i  / I  t,,," /1 t,,,' 

etc. 

Here the alternate fractions marked by the symbol w" are greater than v~-, and 
the remaining ones having the sign/1 are less than ~-.  

19. This description of v~- has been suitably presented, since all the 
quotients except the first have the value 2, so that 

v ~ = l +  
2 + 1  

2 + 1  

2 + 1  

2 + etc. 

Similarly, if v~- is analyzed, the quotients 

1, 1, 2, 1, 2, 1, 2, 1, 2, 1, etc., 
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are found, so that 

L. Euler 

1 + 1  

2 + 1  

1 + 1  

2 + 1  

1 + 1  

2 + etc. 

For  although it does not follow rigorously from this division that the 
quotients proceed further in this way, this result not only seems probable but can 
be proved. We shall show below how to investigate the values of continued 
fractions whose denominators are either all equal, or else every other one is equal, 
or else every third, etc. 

19a. Therefore, let the following continued fraction be given 

1 
a-~ 

b + l  

b + l  

b + etc. 

which is set equal to x. We have 

1 1 

x - a  b + l  b + x - a  

b + l  

b + etc. 

from which 

X 2 - -  2 a x  + bx  + a 2 - ab = 1 

and 

b ~ +  b 2 
x = a - ~ +  -~- . 
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Substituting b = 2 and a = 1, this becomes 

1 
x = 1 +  

2 + 1  

2 + 1  

2 + 1  

2 + etc. 

if b = 2a, we have 

~a~-+l  = a + 
2 a +  1 

2 a +  1 

2 a +  1 

2a + etc. 

309 

from which it is readily possible to extract an approximate square root of any 
number  which exceeds a square by 1. Putting a -  2 supplies the following 
approximation for ~ - :  

4 

2 
1 '  

1 

1 '  

4 4 4 4 4 

9 38 161 682 2889 
4 '  1-if' 72 ' 305'  1292 

7 29 123 521 2207 

3 '  1--3' 5 5 '  233 '  987 

5 20 85 360 1525 
2 '  - 9 '  3--if' 161'  682 

3 11 47 199 843 
1 '  -5-'  21-' 8 9 '  377 

etc. 

2 

1 

20. Let the following continued fraction 

a +  
b + l  

c + 1  

b + l  

c + l  

b + l  

c + etc. 
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be set equal to x. The value of x itself can be discovered in the following way: 

1 
x - - a  = 

b + l  

c + 1  

b + l  

c + l  

b + etc. 

1 

b +  1 

c + x - a  

Therefore, we have 

x + c - a  
x - a =  

bx  + bc - ab + 1 

or~ 

bx  2 + b c x  - 2 a b x  = abc - a2b + c. 

Therefore, if c = 2a, then 

bx  2 = a2b + 2a  and  
2a 

X - -  + -b--  • 

In a similar way, if 

1 
x = a - [  

b + l  

c + 1  

d + l  

b + l  

c + 1  

d + etc. 

then 

x - a  = 1  

b + l  

c +  

d + x - a  
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from which it follows that 

311 

( b c  + l ) x  2 + ( b c d  + b + d - c - 2 a b c - 2 a ) x  - abcd + a2bc - ab - ad  

+ a a - c d + a c - l =  O. 

In this manner all continued fractions of this kind, whose denominators are 
either all equal, or else every second or every third or every fourth, etc., 
denominator are equal among themselves may be computed. Moreover, every 
such value x is the root of a quadratic equation. 

21. Before we proceed to the computation of continued fractions in general 
whose denominators form an arithmetic progression let us analyze certain tran- 
scendental quantities which, when converted into continued fractions, give de- 
nominators proceeding in an arithmetic progression. From these examples a 
straightforward method of computing continued fractions of this sort will arise. 
Therefore, testing this method by means of logarithms and other transcendental 
quantifies, I have found that the number whose natural logarithm is 1, and its 
powers, lead to continued fractions of this kind. Therefore I set this number = e, 
so that 

e = 2.71828182845904, 

which is converted into the continued fraction 

e = 2 +  
1 + 1  

2 + 1  

1 + 1  

1 + 1  

4 + 1  

1 + 1  

1 + 1  

6 + 1  

1 + etc. 

whose third denominators make up the arithmetic progression 2, 4, 6, 8, etc., the 
others being ones. Even if this rule is seen by observation alone, nevertheless it is 
reasonable to suppose that it extends to infinity. In fact, this result will be proved 
below. Likewise, if 

v/-e - =  1.6487212707 
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is converted into a continued fraction, it will be 

1 
v~7= 1 4  

1 + 1  

1 + 1  

1 + 1  

5 + 1  

1 + 1  

1 + 1  

9 + 1  

1 + 1  

1 + 1  

13 + etc. 

whose law of progression is similar to the preceding one. Similar rules will be 
observed in other continued fractions into which powers of e are converted (a). 

22. In a similar way, I have considered the cube root of the number  e, and I 
have found that 

~e-e - 1 

2 
- - =  0.1978062125 = 

5 + 1  

1 8 +  1 

3 0 +  1 

4 2 +  1 

54 + etc. 

All denominators  of this continued fraction except the first form an arithmetic 
progression. 

The situation is similar if integral powers of e are considered and trans- 
formed into continued fractions. Thus, considering the square of e, I have found 
(a) 

e 2 - 1  1 
- - =  3.19452804951 = 3 4 

2 5 + 1  

7 + 1  

9 + 1  

1 1 +  1 

1 3 +  1 

15 + etc. 
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Furthermore, from the number e itself, whose continued fraction has an 
interrupted arithmetic progression of denominators, I have observed that with a 
few changes of this kind a continued fraction free of interruptions can be formed. 
For example, 

e + l  

e - 1  
= 2 4  

6 + 1  

10+ 1 

14+ 1 

1 8 +  1 

22+ 1 

26 + etc. 

in which there is a regular arithmetic progression proceeding with a difference 
of 4. 

23. Since I have observed a strong similarity between continued fractions 
whose denominators lie in interrupted or uninterrupted arithmetic progressions, I 
pose the following question: Is it always possible to transform a continued 
fraction whose denominators make up an interrupted arithmetic progression into 
another one whose arithmetic progression is not interrupted? I have considered an 
arbitrary progression a, b, c, d, e, etc., and between each pair in this progression 
I have inserted the two numbers m, n, in order to form the following continued 
fraction: 

a-~ 
m + l  

n + l  

b + l  
m + l  

n + l  

c + l  

m + l  

n + l  

d + etc. 

I have found this fraction to be equal to the following continued fraction, whose 
denominators lie in an uninterrupted progression: 

1 ((m 1 n + 1)a + n -~ 
mn +1  ( m n + l ) b +  m + n +  1 

( m n + l ) c + m + n +  1 / 

(ran + l ) d +  m + n+etc . ] .  
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The proof of the equality consists in this: the ordinary fractions which approacb 
the limiting values agree among themselves, so the limits must coincide. 

24. If, the order of the two interpolated quantities m, n is reversed, the latter 
continued fraction undergoes a change only in the first term. This yields the 
following rather elegant theorem: 

1 
a 4  

m + l  

n + l  

b + l  

m + l  

n +  1 

c + etc. 

1 n - m  
- a - t - -  = - - .  

n + l  m n + l  

m + l  

b + l  

n + l  

m÷a ) 
c + etc. 

That is, if any numbers are substituted in place of a, b, c, d, etc., the difference 
between the two fractions is known and independent of a, b, c, d,.. .  ; namely, it is 

n - m  

m n  + 1 "  
25. From the same equality found in Section 23 between interrupted and 

uninterrupted continued fractions, the following equality is found by dividing 1 
by each fraction and adding the quantity A to each result. 

1 
A 4  

a + l  

m + l  

n + l  

b + l  

m + l  

n + l  

c + etc. 

m n  +1  
= A 4  

( m n  - 1)a  + n + 1 

( ran  + 1)b + m + n + 1 

( ran  + 1)c + m + n + e t c .  
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Therefore, by the aid of this equation any continued fraction having a 
progression of denominators interrupted by the two quantities m and n can be 
converted into another one in which the denominators lie in a progression without 
any interruptions. Therefore, as we have in the above fractions, m and n are set 
equal to 1, the following equation results: 

1 
A a  

a + l  

1 + 1  

1 + 1  

b + l  

1 + 1  

1 + etc. 

F rom Section 21, we have 

1 1 
- - = 1 +  
e - 2  2 + 1  

1 + 1  

1 + 1  

4 + etc. 

= A - ~  
2 

and setting A = 1, a = 2, b = 4, etc., we obtain 

1 2 

e - 2  5 +  1 

1 0 +  1 

1 4 +  1 

1 8 +  1 

22 + etc. 

I t  follows by  taking reciprocals, that 

1 
e = 2 4  

1 + 2  

5 + 1  

1 0 +  1 

1 4 +  1 

1 8 +  1 

2 2 +  1 

26 + etc. 

2 a + 1 +  1 

2 b + 2 +  1 

2c + 2 + etc. 
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In a similar way, we find from the same section that 

vce- = 1 _~ 

= 1 ~  

1 + 1  

1 + 1  

1 + 1  

5 + 1  

1 + 1  

2 

3 + 1  

1 2 +  1 

2 0 +  1 

28 + etc. 

1 + 1  

9 +e tc .  

a-~ 
b + l  

c + 1  

d + l  

e + etc. 

mn + 1  
= a - n +  

m + 1  

n +  1 

b - m - n +  l 

m n + l  m + l  

n +  1 

c - r n - n +  l 

m n +  1 m + etc. 

or, by removing the fractions in the denominators, if the work were examined, it 

These continued fractions converge so fast that it is an easy matter  to find the 
values of e and ¢~- as closely as you please. 

26. On the other hand, it is possible to transform a continued fraction 
whose denominators lie in an uninterrupted progression into another one in 
which the progression of denominators is interrupted by two constant numbers m 
and n. Thus, I have found that 
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will be 

1 
a 4  

b + l  

c + 1  

d + etc. 

mn + 1  
= a - n q  
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m + 1  

n +  m n + l  

Therefore,  setting m = n = 1, 

b - m - n + m n + l  

m + 1  

n +  m n + l  

c - m - n + m n + l  

m + 1  

n + etc. 

1 
a +  

b + l  

c + 1  

d + etc. 

2 
= a - l q -  ~ 

1 + 1  

1 +  1 

½ b - 1 + 1  

1 + 1  

1 +  1 

½ c - 1 + 1  

1 + 1  

1 +  1 

½d - 1 + etc. 

27. We  have considered cont inued fractions whose denominators  fo rm an 
ar i thmetic  progression interrupted in such a way  that between any two terms, two 
cons tan t  quanti t ies are interposed. It  is possible to extend the same reduct ion 
when 4, 6, 8 . . . .  constant  quantities are interpolated. However,  it is not  possible to 
interpolate  an odd  number  of quantities. Thus, if four numbers  m, n, p,  q are 
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interpolated between each contiguous pair of the quantities a, b, c, d, setting for 
short 

mnpq + mn + mq + pq + l = P 

and 

mnp + npq + m + n + p + q = Q, 

we obtain 

a +  
m + l  

n + l  

:1( 
P 

p + l  

q + l  

b + l  

m + etc. 

1 
Pa + npq + n + q + p b  + Q + 1 

P c + Q +  1 

P d  + Q + etc. 

If  m = n = p = q = 1, we. obtain 

a-4 
1 + 1  

:1( 
5 

1 + 1  

1 + 1  

1 + 1  

5 a + 3 ÷  

b + l  

1 + 1  

1 + etc. 

1 

5 b + 6 +  1 

5 c + 6 +  1 ) 
5d + 6 + etc. 

From this a new method of converting continued fractions is born. 
28. In  the preceding sections, where I have converted the number  e (whose 

logarithm is 1) together with its powers into continued fractions, I have only 
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observed the arithmetic progression of the denominators and I have not been able 
to affirm anything except the probability of this progression continuing to 
infinity. Therefore, I have exerted myself in this above all: that I might inquire 
into the necessity of this progression and prove it rigorously. Even this goal I have 
pursued in a peculiar way, by which the integration of the equation 

- 4 n  

2 n + 1  
a dy + y 2 dx = x dx 

is reduced to the integration of 

a dq + q 2 dp = dp . 

For when I set (a) 
1 

p = (2n + l ) x  2n+1. 

I have found that 

a 1 

q = p + 3 a  - - +  
P 5a 1 --q-  

p 7a 
- - +  
P 

$ 1 

(2n - 1 ) a  1 

2n 

2 n + 1  p x y 

Whence, since q can be given in terms of p in case p = ( 2 n  + l ) x  2n+1, it is 
possible to form a finite equation between x and y which will be the integral of 

- -4n  

the equation ady + y 2 d x  = x : "  +1 dx for every positive integer n. 
29. If, therefore, n is assumed to be an infinite number, the expression 

sought will be a continued fraction running to infinity whose denominators 
constitute an arithmetic progression. Wherefore the following equation will be 
obtained 

a 1 
q = - q  

p 3a 

P 5a 1 

p 7a 1 
q 

p 9a + etc. 

P 
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and q (the value of this continued fraction) will be defined by the equation 

adq + q2dp = dp. 

In fact, it will be 

adq = dp 
1 - q  2 

and 

10g 1 + q 
i - q  = p + C  

where the constant ought to be determined from this equation by setting q = 
a q + 1  2p 

when p = O. Wherefore there follows - l o g  = p and -q + 1 = e T  ' whence 
2 - 1 q - 1  q 

2 p  

e a  + l  
q = 219 ' 

e a - 1  

which is the desired value of the continued fraction. Since from this it follows that 

2-e-e 2 
e a = l + - -  

q - l '  

we have 

2__p 2 
a 

e = 1 - ~  
a - p  

P 

1 

3a 1 

p 5a 1 
+ - -  

p 7a 
- -  + etc. 
P 

30. I f  we set a / 2 p  = s, or a = 2ps ,  there results 

1 
- 2 s e = 1 +  

2 s - 1 +  1 

6 s +  1 

lOs + 1 

14s + 1 

18s + etc. 
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and from the equation found earlier it follows that 
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1 

e ~ + l  
1 

e s - - 1  

- - = 2 s +  
6 s +  1 

10s + 1 

14s + 1 

18s + etc. 

If the denominators of this fraction are interpolated by two ones, we have 

I 

e S + l  
1 

e s - 1  

- -  = 2 s - 1 +  

1 + 1  

1 +  1 

3s - 1 + 1  

1 + 1  

1 +  

5s - 1 + etc. 

From which arises the following continued fraction 

1 
- 1 3 e =1-~ 

s - 1 + 1  

1 + 1  

1 +  1 

3s - 1 + 1  

1 + 1  

1 +  1 

5s - 1 + 1  

1 + etc. 

Truly everything found above follows from these formulae, by which we have 
expressed e and its powers as continued fractions. That  is, the necessity of the 
progressions only observed earlier is now p r o v e d .  

31. So far we have found a continued fraction whose denominators form an 
arithmetic progression and whose value can be exhibited. Since however this 
progression is only a special kind of arithmetic progression I have considered 
arithmetic progressions in general and continued fractions whose denominators 
constitute such progressions. I have taken the main idea up again in the following 
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way. Suppose therefore given the following continued fraction whose value (which 
I seek) is set equal to s: 

s = a 4  
(1 + n)a + 1 

(1 + 2n)a + 1 

(1 + 3n)a + 1 

(1 + 4n)a + etc. 

I begin from an approximation to the value of s, following the method 
discussed above: 

a (1 + n)a (1 + 2n)a (1 + 3n)a 

1 a ( l + n ) a 2 + l  ( l+n) ( l+2n)a3+(2+2n)a  

O' T '  (1+  n ) a  ' ( l + n ) ( l + 2 n ) a 2 + t  
etc. 

These fractions approach the value of s, and the fraction carried to infinity 
will give the true value of s. 

32. If these fractions are continued further the law by which they are 
formed will be easily observed. From this law it may be concluded that after both 
the numerator and the denominator are divided by the first term of the de- 
nominator, the limiting fraction will be 

1 1 1 
a + + + + etc. 

l.na 1.2.1(l+n)n2a 3 1.2.3.1(1+n)(1+2n)n3a 5 

1 1 1 
1 + + + + etc. 

l( l+n)na 2 1.2(1+n)(1+2n)n2a 4 1.2.3(X+n)(1+2n)(l+3n)n3a 6 

to which s is set equal. Therefore I substitute a = 
1 

, so that 

l +  z z 2 z 3 

1 ~ + 1-2-1(1+ n) + 1.2-3-1(1+ n ) ( l + 2 n )  +etc. 

vfnz Z Z 2 Z 3 

l~ - - +  + 
1(1+ n) 1.2(1+ n ) ( l + 2 n )  1.2.3(l+n)(l+2n)(1+3n) 

+etc. 

from which the value is found. Next, let 

z z 2 
t = 1 + G - / -  + 1-2-10+.) 

z 3 
+ 

1.2.3.1(1+.)(1+2.) 
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and 

Z 2 2 

u = l +  - - +  
1(1+ n) 1 . 2 (1+  n ) ( l + 2 n )  

Z 3 

so that 

+ 
1-2-3(1 + n)(1 + 2n)(1 + 3 n )  

+ etc., 

t 
S ~ m 

From inspection of these two series, it is clear that 

d r =  u d z  

and in a similar way, it may be found that 

u d z  + n z  d u  = t dz  . 

From the substitution t -- vu,  with 

O 
S = 

f n - z '  

we have 

v d u  + u d o  = u d z ,  

a n d  

u d z  + n z  d u  = uv  dz  , 

f rom which it follows that 

d u  d z - d v  v d z - d z  

U O r l z  

and the following equation between z and v holds: 

n z d v  - v d z  + v2 dz  = n z d z ,  

in which I substitute 

v = z l / " q  and z = r"  

so that it will change to 

d q  + qZ d r  = n r n -  Z dr .  
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From this equation, if q may be determined from r and r is set equal to 

r = n - 1 / n a - 2 / n  

then the desired value will be 

L. Euler 

s = arq. 

33. Therefore, the computation of the value of the given continued fraction, 
which I have called s, with 

s = a 4  
(1 + n)a + 1 

(1 + 2n)a  + 1 

(1 + 3n)a + 1 

(1 + 4n)a  +etc.  

is reduced to the solution of the equation 

dq -I- q2 dr = nr~- 2 dr. 

To find the integral of this equation, note that a = oo implies s = ~ and a = 0 
implies s = 1. From this, the following rule for introducing a constant of integra- 
tion is found, so that in the case n ~< 2 if q = oo I set r = 0. Moreover, we assume 
that n is a positive number from which a continued fraction arises, having (so far 
as we have considered) positive denominators. 

34. I t  is established moreover that the derived equation 

dq + qZdr = nrn-Edr 

agrees with the equation once proposed by Count Riccati and it follows that for n 
we obtain positive numbers, because only those cases can be integrated in which n 

1 
is a number  of the form 2m +-------1' where m is a positive integer. Because of this, 

the value of the following continued fraction can always be given in a finite 
expression: 

1 

a + (2m + 3)a 

2m + 1 (2m + 5)a 1 -F 
2m + 1  (2m + 7)a 

+ etc. 
2 m + !  
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Indeed, this is obvious. In case m = 0, we have the continued fraction 

1 
a q  

3 a +  1 

5 a +  1 

7 a + l  

9a + etc. 

whose value we have already found above. It is possible to reduce the general case 
to this one; for if I set a = (2m + 1)b I obtain 

(2m + 1)b + 
(2m + 3)b + 1 

(2m + 5)b +etc.  

which is already known as long as m is a positive integer. 
35. Therefore,  it appears through this resolution of continued fractions that 

the integration of the equation 

dq + q2dr = nr~-2dr 

is reduced to the integration of this equation 

dq + q2 dr = 2dr 

2 
in case n = 2m + 1 where m is a positive integer. I have discussed this reduction 

in Section 28 above in the same way, and from this beginning it is possible to 
finish the calculation. Moreover, by this reasoning it is possible to figure out how 
the exact value of this kind of continued fraction is discovered. I shall consider 
the case n = 2 (or m = 0), from which 

s = a q  
3 a +  1 

5 a +  1 

7a + etc. 

The actual value of s is found from the equation 

dq + q2 dr = 2dr 

which when integrated gives 

1 +v~- 
r = log q 

2v~ q - v ~  
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from which it follows that 

q = ( e 2 r v ~ - + l ) ~  - 

eErf2_ l 

Furthermore, 

1 q 
r = ~  and s = arq = - ~  

from which the value itself is given as 

e 2/~ + 1 
S - -  

e 2/a _ 1 

just as we found above in Section 29. 

L. Euler 

Notes  

Notes marked "C. B." are by Carl Boehm, editor of O.O.I.14. Other notes are by the translators. 
Notes are grouped by section. 

Note to Title. See also Commentary 123 of this volume, as well as Introduction to the Analysis of the 
Infinite, Lausanne 1748, vol.. I, chapter 18; O.O.1.8, p. 362. C. B. 

The Introductio in Analysin Infinitorum is also available in a photostat edition published by 
Culture et Civilisation, Brussels 1967. 

4. (a) W. Brouncker (1620-1684). See J. Wallis, Arithmetica Infinitorum, Oxford 1655, p. 182; 
Opera Mathematica, vol. I, Oxford 1695, p. 355 and especially p. 469. See also O.O.I.1, p. 507. C. B. 

(b) See E123, O.O.1.14, Sec. 15. C. B. 
11. In the first edition the section number 11 was incorrectly repeated. C. B. 
13. (a) Concerning these expressions, compare Martianus Capella (V. Saec), De nuptiis Philo- 

logiae et Mercurii et de septem artibus liberalibus libri novem, ed. U. F. Kopp, Frankfurt am Main 1836, 
p. 609 and Boethius (480-524), De institutione Arithmeticae libri duo, ed. G. Friedlein, Leipzig 1867, p. 
46. C. B. 

See also Boethian Number Theory: A Translation of the De Institutione Arithmetica, Michael 
Masi, Editions Rodopi B. V., Amsterdam 1983. U. S. distributor: Humanities Press, Atlantic 
Highlands, N.J.; pp. 104 and 108. 

14. (a) J. Wallls, Opera Mathematica, vol. II, Oxford 1693, chapters 98-99, pp. 418-429. See 
also chapters 56-61, pp. 232-250. C. B. 

15. (a) Adrian Antoniszoon, called by the common name "Metius" (1527-1607). See for 
example the book of his Adrian Metius (1571-1635) which is called Arithmeticae libri duo et 
Geometriae, Book VI, Lugd. Batav. 1626, first part of Geometry, Chapter X. Metius formed the 

355 15 1 7  15 + 17 355 
fraction ~ from the fractions 3-~-~ and 3 l z o  as follows: 3 ~  = T ~ "  C. B. 

17. For more information on continued fractions and the calendar, see S. I. Seleshnikov, 
History of the Calendar and Chronology, Izdatel'stvo "Nauka," Moscow, 1970, Chapter 3, section 1 
(in Russian). Chapter 3, section 3 on the Roman Calendar contains an explanation of Euler's use of 
the Latin word "bissextilis" for "leap year": extra days in leap years were inserted after the sixth day, 
counted up to and including the first of March. We are grateful to L. F. Meyers for this reference. 
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19. In the first edition the number 19 was repeated by mistake. C. B. 
21. (a) See F. Rudio, Archimedes, Huygens, Lambert, Legendre: Vier Abhandlungen ~ber die 

Kreismessung, etc. Leipzig 1892, note 2, p. 51. C. B. 
22. (a) A more accurate value is 3.19452804946532. C. B. 
28. (a) Euler had communicated this most ingenious remark to his friend Christian Goldbach as 

early as 25 November 1731, Correspondance math. et phys. publibe par P. H. Fuss, St. Petersburg 
1843, vol. I, p. 58, O.O.III.12. C. B. 

A photostatic edition of Fuss 1843 is available from Johnson Reprint Corporation, New York 
and London, 1968. 

34. Jacopo Francesco Riccati, 1676-1754. Born in Venice, educated at the University of Padua. 
Riccati began working on second-order differential equations around 1710, and conjectured the 
integrability conditions cited here in 1724. Proofs were supplied by D. Bernoulli and Euler. 
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