
CHAPTER 9

Control of robotic systems

9.1. Path tracking control

In this section we use the following model for a robot:

ẋ = v cosφ
ẏ = v sinφ(9.1)

φ̇ = ω

9.1.1. Curvature driving. Suppose now the reference path (given by
some path planning algorithm) to track is

xd(t) = p(t)
yd(t) = q(t), 0 ≤ t ≤ T.

(9.2)

We assume that ṗ(t)2 + q̇(t)2 �= 0 for any t ∈ [0, T].
In order to track the trajectory, we need

ẋd = vd cos(θd)
ẏd = vd sin(θd).

(9.3)

Solving the equations we have

vd(t) =
√
ṗ(t)2 + q̇(t)2 (forward), θd(t) = atan(ṗ(t), q̇(t)).

This gives

ωd(t) = θ̇d(t) =
q̈(t)ṗ(t) − p̈(t)q̇(t)

vd(t)2
.

By this way we obtain an open-loop control vd(t), ωd(t) for the trajectory
tracking. In fact this is the unique control that gives exact tracking.

However, the above controller is not robust at all with respect to distur-
bances and measurement errors. Thus we present a feedback controller that
does the tracking only approximately, but robustly.

9.1.2. Virtual vehicle approach. In the virtual vehicle approach, the
motion of the reference point (the virtual vehicle) on the planned trajectory
is governed by a differential equation containing error feedback. It can be
viewed as a combination of the conventional trajectory tracking, where the
reference trajectory is parameterized in time, and a dynamic path following
approach, where the criterion is to stay close to the geometric path, but not
necessarily close to an a priori specified point at a given time. The main idea

79

80 9. CONTROL OF ROBOTIC SYSTEMS

behind our approach can be seen in Figure 1, and the reason for calling the
reference point, together with the associated differential equation, a virtual
vehicle is that the reference point is moving on the path that we want the
platform to follow. At the same time it has its own dynamics for describing
the motion, and one of the advantages with our approach is that it is quite
robust with respect to measurement errors and external disturbances. When
one uses directional sensors, it is important that the relative orientation of
the robot is known. This naturally could be achieved if we could specify at
what relative orientation the look-ahead distance should be kept. It seems
natural that we choose a point (xL, yL) on the robot’s axis of orientation, a
distance dρ from the center (figure 1). Furthermore, by explicitly setting dρ

to L > 0 and fixing the position to the axis of orientation we now control a
point that can be driven arbitrarily close to (p(s), q(s)) without causing φd

to be undefined. This particular choice of control point also contributes to
the control of the orientation towards the reference point, since controlling
(xL, yL) towards (p(s), q(s)) means simultaneously controlling φ towards φd.

 T(X ,Y)T

Y

X

L

Δφ

ρ

ρ

)L,YL(XL

Figure 1. Virtual vehicle.

Now define the new point (xL, yL) on the axis of orientation a distance
L from the center of the robot, (x, y).

xL = x+ L cosφ
yL = y + L sinφ(9.4)

Derivation and the unicycle model gives[
ẋL

ẏL

]
=
[

cosφ −L sinφ
sinφ L cosφ

]
︸ ︷︷ ︸

A

[
v
ω

]
:=
[
vL

ωL

]
.

It is well known that by this way one can feedback linearize the dynamics
since the matrix A is always nonsingular. Thus,

9.1. PATH TRACKING CONTROL 81

(9.5)
[
v
ω

]
=
[

cosφ sinφ
− 1

L sinφ 1
L cosφ

] [
vL

ωL

]
.

If the controls vL and ωL are chosen as

(9.6) vL = −k(xL − xr(s)) + ẋr

ωL = −k(yL − yr(s)) + ẏr,

including both a proportional and a derivative part, xL and yL are driven
towards xr and yr. In this case ρ is controlled towards L instead of zero and
therefore φd does not approach a singularity. Using (9.6) in (9.5) we get

v = −k(L− ρ cos Δφ) +
√
p′2 + q′2 cos(θr − φ)ṡ

ω =
kρ

L
sinΔφ+

1
L

√
p′2 + q′2 sin(θr − φ)ṡ

where θr is the orientation of the trajectory in the point (p(s), q(s)). We let

(9.7) ṡ =
v0√

p′2 + q′2
e−αρL

and end up with

(9.8)
{

v = k(ρ cos Δφ− L) + v0e
−αρL cos(θr − φ)

ω = kρ
L sinΔφ+ v0

L sin(θr − φ).

Remark: If the reference path is only given as a collection of dense way
points {(xd(s), yd(s)) : s = 1, 2, . . . , N}, then (9.7) can be modified as

(9.9) sk+1 = sk + σ(ρk),

where

σ =
{

0 if ρk > ερ
1 if ρk ≤ ερ

A new control objective here is to align the orientation of the robot and
the orientation of the path using θr−φ. Trying hard to align the robot to the
orientation of the path when the robot is far away is not very appropriate,
and is suppressed by the exponential term. When the robot comes closer
and ρL approaches zero the situation changes.

Δφ→ 0 ⇔ ρL → 0 ⇒ ρ→ L

⇒
{
v → v0 cos(θr − φ)
ω → v0

L sin(θr − φ)

With a perfect alignment, Δφ = 0, θr − φ = 0 and ρ = L, thus it is clear
that v0 represents the desirable tracking speed.

82 9. CONTROL OF ROBOTIC SYSTEMS

9.2. Consensus problem

We begin by considering a flock of N birds. Each bird flies with the same
speed but with possibly different directions. Namely

vi = (v cos θi, v sin θi)T ,

where θi is the heading of bird i, and for the sake of simplicity, we assume
the birds fly on a plane.

Now suppose for each bird, it changes its heading by the following model:

θ̇i = ui,

or
θi(t+ 1) = θi(t) + ui(t) := ωi(t).

An interesting question is how each bird should update its heading so even-
tually we have

θ1(t) = · · · = θN (t).
It turns out

ωi(t) =
1
N

N∑
j=1

θj(t)

will do the trick. One thing we should be careful here is to calculate the
average heading properly. We can rewrite the control as

ωi(t) = θi(t) +
1
N

∑
j 	=i

(θj(t) − θi(t)),

or,

(9.10) ui(t) =
1
N

∑
j 	=i

(θj(t) − θi(t)).

If we use a local coordinate θi ∈ (−π, π], then ωi(t) can be calculated prop-
erly.

A problem with the controller (9.10) is that each bird needs to know the
relative headings of all the other birds. In the following we show that this is
not necessary.

Now we consider a system of N agents:

(9.11) ẋi = ui, i = 1, · · · , N
where xi can be viewed as heading, position or other quantities.

We define the consensus problem as follows:
Consensus problem:

Find ui(t) such that as t→ ∞ we have

x1(t) = x2(t) = · · · = xN (t),

here we assume that agent i can only detect relative errors xj − xi of its
neighbors, namely j ∈ Ni.

9.2. CONSENSUS PROBLEM 83

Similar to the flocking problem, we consider a controller of the following
type:

(9.12) ui(t) =
∑
j∈Ni

aij(xj − xi),

where aij are positive weights. If we let x = (x1, · · · , xN)T , then

(9.13) ẋ = −Lx,
where

L = D −A = diag(
∑
j 	=1

a1j , · · · ,
∑
j 	=N

aNj) − [aij].

Now define

V (x) = xTLx =
1
2

N∑
i=1

∑
j∈Ni

aij(xj − xi)2.

Proposition 9.1. The consensus problem is solved, namely as t → ∞,
x1(t) = · · · = xN (t) in (9.13), if and only if

(9.14) V (x) = 0 ⇐⇒ x1 = x2 = · · · = xN .

In fact, in this case

lim
t→∞xi(t) =

1
N

N∑
i=1

xi(0).

9.2.1. Connection to graph theory. We take graph as a collection
of nodes (vertices) and edges that connect the nodes, denoted byG = (V,E).
If we consider each agent i as a node in a graph and each positive weight aij

Node i

Node j

Node k

aij

aik

Figure 2

defines an edge between Node i and Node j, then the matrix A given above
uniquely defines a graph. A is called the adjacency matrix of the graph, D
the degree matrix and L the graph Laplacian.

We say a graph is connected if any two nodes are connected by edges.

Proposition 9.2. The consensus problem is solved if and only if the
associated graph is connected.

