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free
(@) MT)= 1| o
L 0 -
(b) There is no feasible solution, hence = oo
(c) J=1
t
(d) The optimal control for the unconstrained problem, u(t) = _ot) satisfies

3—2t’
the constraint |u(t)| < 1 and is thus also optimal for the constrained problem.
Indeed, the closed loop state satisfies |z(t)| < 1.

(a) The sequential optimization problem has the form

ey . Tpy1 = T + O(2) — ug), 2o given
max Z up ~ subj. to
=0 0<wup<ap

The corresponding dynamic programming recursion is

Vi(z) = Dax {u+Vigi(z +0(z —u))}

Vn(z) =0
(b) We have
Va(z) =0
Vo(x) = max u ==, = Uy =2
0<u<z
Vi(z) = max {u+2+0(z —u)}
= max{(l + 0)z, 2z} = 2z, = u =

Vo(z) = max {u+2(z +0(z — u))}
= max{(2 + 0)z, 3z} = 3z, =uy =2

Hence it is optimal to spend all the time. Note, the problem becomes more
interesting if the time horizon is longer, i.e. when N is larger.
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3. (a)

Let us consider the problem in (a) and (b) simultaneulsy. The ARE becomes
2ap — p2 =0

We are generally looking for a postive definite solution. We have

_J2a, a>0
P 0, a<0

The optimal control becomes

—2a, a>0
u=—pxr =
0, a<0

The closed loop system & = (a — p)x = —|a|x is stable in both cases. Note that
p only is positive semi-definite when a < 0, which is a case not covered by the
result in the course. However, it is obvious that « = 0 is optimal because we
only penalize the control and the system converges to zero with u = 0.

The open loop system is unstable when a > 0 and the control v = —2ax
stabilizes the system. The open loop system is stable when a < 0 and no control
is needed to bring the state to zero. Since the cost function only penalizes the
control it is optimal to do nothing.

Note, the case a = 0 is not well defined. The solution © = —ex stabilizes the
system but the corresponding cost is

/Oo 2 —2et th 61‘0
0 2

which becomes smaller the smaller € is. However, the limit when € = 0 is not
stabilizing, i.e. w = 0 does not stabilize the system.

4. The optimal control problem has the formulation

= —x1(t) +u(t), x1(0)

0
(), 22(0) =0

(t)
max z2(1) subj. to Zo(t) = a1
<u<l

o
IN

The Hamiltonian becomes

H(z,u,\) = M (=21 4+ u) + A2z

From the pointwise optimization we get

1, A >0

u = argmaxoguélH(x’u’ )\) - {0 A1 <0
s 1

We thus expect a switching control law. The adjoint equation becomes

M=)\ — N\
Ay =0
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with terminal condition determined by
A1) = Vo(x(1)) L Sy

where ®(x) = x2 and Sy = {x : x1(1) = 0.5}. Hence, we get Ai(1) = free and
A2(1) = 1. We can now solve the adjoint system, which gives

)\1(75) =1 + ()\1(0) - 1)6t
Ao(t) = 1

There can be at most one switch in the control function since A1 (t) is a monotonic
function. From the problem it is now clear that the control must have the form

1, 0<t<t
u(t) = o
0, ts<t<1
We can determine the switching time from the constraint z(1) = 0.5. We have

71(ts) =1 —ets and
z(l)=e 7)1 —e) =05

which gives ¢, = In(25¢).

5. The optimal control problem is

#(t) = —u(t), =(0) =z

tr
ma e~ Yu(®)p(u(t))dt subj. to
X/O (Hp(u(t)) j {tfzm(tf)_o

The Hamiltonian is H(t,z,u,\) = efatup(u) — Au, and the terminal manifold is
S¢(t) = {0}. The adjoint equation is A = —H, = 0, which implies A(t) = const (the
terminal condition gives no information). The pointwise optimization gives

u = argmax, e “up(u) — M = argmax, e “u(l —u/2) — du =1 — \e™

where we used that u < 2 because the cost is zero for v > 2, which obviously cannot
be optimal. From PMP we have the condition (along the optimal solution)

H(tg,x(ts), ults) Zyk (tr,x( ))—g‘f(tf,x(tf))zo

&
e *u(ty)p(u(fs)) — Mu(ty) =0

which implies u(ty) = 0. Since u(ty) = 1 — Ae®f = 0 we must have A = e~/ The
optimal control is u(t) = 1 —e~** =) where ¢ is determined by the state constraint

t
2(t7) ::vo—/0fu(t)dt:xo—tf—é(l—e_o‘tf) —0 (1)
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which is a nonlinear equation in ¢ . The optimal value function can now be computed

tf ty
Vi ty) = / (1 — 12/2)e="tdt = 0.5 / (1 — e20(t=t))=at gy
0 0

(1 _ e—atf)Q
N 2

where once again the terminal time ¢y is implicitly defined by equation (1).



