
Exam in 5B1872 Optimal Control

March 8, 2007 at 8.00–13.00

Answers and solution sketches

1. The dynamic programing recursion is

V (x, k + 1) = min
u

{

u2 + V (x + u, k)
}

V (x, 3) = (x − 1)2

Simple calculations gives

u0 =
1

4
(1 − x0) =

1

4
, x1 =

1

4

u1 =
1

3
(1 − x1) =

1

4
, x2 =

1

2

u2

1

2
(1 − x2) =

1

4
, x3 =

3

4

2. (a)

min x(tf ) subj. to











ẋ(t) = v cos(θ(t)) + c, x(0) = 0,

ẏ(t) = v sin(θ(t)), y(0) = 0, y(tf ) = yf

tf > 0

(b) H(x, y, θ, λ) = λ1(v cos(θ) + c) + λ2v sin(θ). Pointwise minimization gives

min(λ1(v cos(θ) + c) + λ2v sin(θ)) = λ1c − v
√

λ2

1
+ λ2

2

with optimal direction determined by

[

cos(θ∗)
sin(θ∗)

]

= −
1

√

λ2

1
+ λ2

2

[

λ1

λ2

]

The adjoint equation is defined by

λ̇1(t) = 0, λ1(t) = λ0

1

λ̇2(t) = 0, λ2(t) = λ0

2

so the direction must be constant.

1



Sid 2 av 4 Exam March 8, 2007 5B1872

(c) The boundary conditions for the adjoint variable satisfies

λ1(tf ) = 1

λ2(tf ) = ν, ν ∈ R

Unfortunately, this does not provide sufficient information in order to continue. Ins-
tead we consider the terminal condition

x(tf ) = (v cos(θ∗) + c)tf =xf

y(tf ) = v sin(θ∗)tf =yf

which implies

xf (θ∗) =
v cos(θ∗) + c

sin(θ∗)
yf

We want to minimize xf (θ∗) and therefore solve for the stationary point

x′

f (θ∗) =
−v + c cos(θ∗)

sin2(θ∗)
yf = 0

which is the case when

θ∗ = cos−1(−v/c)

3. (a) We have H(x, u, λ) = 2λu. This gives µ̃(x, λ) = −sign(λ) and thus the HJBE
becomes

{

−Vt = H(x, µ̃(x, Vx), Vx)

V (T, x) = φ(x)
⇔

{

−Vt = −2Vxsign(Vx)

V (1, x) = x2

Hence, alternative (a) is correct.

(b) The second attempt is using the dynamic programming equation correctly. In
the first attempt the two time segments are treated independently, which is a
violation of the dynamic programming equation and the principle of optimality.

4. The Hamiltonian is

H(x, u, λ) = u2

1 + u2

2 + λ1u1 + λ2u2

Pointwise minimization gives

u∗ = µ(λ) =

[

−λ1/2
−λ2/2

]

The adjoint equation is
[

λ̇1

λ̇2

]

=

[

0
0

]

⇒
[

λ1(t)
λ2(t)

]

=

[

λ0

1

λ0

2

]
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The boundary conditions for the adjoint variable reduces to

λ(0) =

[

1
22(0)

]

ν1, λ(2) =

[

−1
2x2(2)

]

ν2

where ν1ν2 ∈ R. Since λ(t) = λ0 (constant) we must have ν2 = −ν1. Clearly, this
requires that x2(0) = x2(2) = 0, which gives the control

u =

[

ν1

0

]

The solution becomes

x(t) =

[

ν1t
0

]

In order for x(2) ∈ S1 we must have ν2 = 0.5.

We get the same solution in problem (b).

5. (a) Only u = −(1 +
√

2) gives a closed loop system that converges to zero. This is
the optimal solution.

(b) The Hamilton-Jacobi-Bellman equation becomes

0 = min
u

{

xT x + u2 + Vx(x)T (Ax + Bu)
}

It is easy to see that V (x) = xT Px is a solution if P solves the ARE

AP + PA + I = PBBT P

The optimal control is u = −BT Px. There are many solutions to the ARE but
only the positive definite solution gives a stable closed loop system, i.e. only
when P > 0 will the closed loop solution converge to zero. We know from the
lecture notes that there always exists a positive definite solution to the ARE
under the stated conditions.

(c) The ARE AT P + PA + I − PBBT P = 0 becomes

[

−p2

12
+ 1 −p12p22 + p11

−p12p22 + p11 2p12 − p2

22
+ 1

]

= 0

which implies

P12 = ±1

P22 = P11 = ±
√

1 ± 2

The positive definite solution to the ARE is

P =

[
√

3 1

1
√

3

]
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The optimal state feedback is u = −R−1BT Px = −
[

1
√

3
]

x and the closed
loop system matrix becomes

A − BBT P =

[

0 1

−1 −
√

3

]

which is a stable matrix. The optimal cost is

V (x0) = xT
0 Px0 = 2(1 +

√
3)


