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KTH Matematik

Exam in 5B1873 Optimal Control
March 8, 2007 at 8.00-13.00
Answers and solution sketches

z(t) =vcos(0(t)) + ¢, x(0)=0,
minz(tf) subj. to y(t) = vsin(6(t)), y(0) =0, y(ty) =yy
ty > 0

(b) H(z,y,0,)\) = Ai(vcos(f) + ¢) + Aqvsin(f). Pointwise minimization gives

min(Ai(veos(0) + ¢) + Aqvusin(f)) = Aic — vy A+ A3

with optimal direction determined by

[cos(@*)} o 1 [)\1]
sin(@)] = Nl e
The adjoint equation is defined by
() =0, M(t) =X
Aa() =0, Na(t) = A3

so the direction must be constant.

(¢) The boundary conditions for the adjoint variable satisfies

Ai(ty) =1
)\Q(tf) =v, VER

Unfortunately, this does not provide sufficient information in order to continue. Ins-
tead we consider the terminal condition

x(ty) = (vecos(9*) + o)ty =x5
y(ty) = vsin(0%)ty =y
which implies

« _ veos(0%)+c
zp(07) = vsin(6*) Yr
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We want to minimize x¢(6*) and therefore solve for the stationary point
—v + ccos(0*)
vsin?(6*%)

which is the case when

0* = cos H(—v/c)

:v’f(H*) = yr =20

2. (a) We have H(z,u,\) = 2Au. This gives ji(x,\) = —sign(A) and thus the HIBE
becomes

{—Vt = H(z, i(z, V), Vi) - {—Vt = —2V,sign(V,)
V(T,z) = ¢(x) V(1,z) =22

Hence, alternative (a) is correct.

(b) The second attempt is using the dynamic programming equation correctly. In
the first attempt the two time segments are treated independently, which is a
violation of the dynamic programming equation and the principle of optimality.

3. Both problems have the same solution. Here we only give the proof of part (b), which
is a bit harder that (a). The Hamiltonian is

H(z,u, \) = u? + u3 4+ M\u1 + doug

Pointwise minimization gives

=[]

The adjoint equation is
M) _ o )] _ A
Xa| |0 Aa(t)] (A9
The boundary conditions for the adjoint variable reduces to
1 -1
)\(0) = [22(0)] v, )\(2) = |:2£L‘2(2):| 1)

where v1v5 € R. Since A(t) = A? (constant) we must have vy = —uv;. Clearly, this
requires that z2(0) = z2(2) = 0, which gives the control

S

The solution becomes

o(t) = [V(l]t]

In order for z(2) € S; we must have vy = 0.5.
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4. We may use the dynamic programming algorithm with
V(k,xz) = |11f|11§n1 {lul +V(E+ 1,2 +u)}
V(2,z) = 2|z|
At k=1 we get

1+2z—1], z>1

V(1,2) = min {Jul + 2o + ul} = Jo, 2 <1
u

- 1+2z+1], z<-1

with corresponding controls

-1, z>1
wi={—-z |s|<1
1, lz] < —1

At k = 0 we have three cases
(a) If |x + u| < 1 (possible when |z| < 2) then
14+20z—1), 1<z<?2

V@JﬂZHgﬂM+W+UH= |z, 2] <1
ul<
I1+jz+1], —-2<z<-1
with corresponding controls
-1, 1<x<2
-y, 0<y<z<l

1, -2<z<-1

(b) If z +u > 1 (possible when x > 2) then

V(O,x):‘ |i<ri{|u|+1+2|m+u—1|}:2+2|:1:—2|
ul<

and uy = —1

(¢) If x +u < —1 (possible when x < —2) then

V(O,x):‘ |i<nl{\u|+1+2|x+u+1\}:2+2|x+2]
Ul

and uj = 1.
Hence, one possible explicit MPC is (with y = = above)
-1, z>1

uyy = pzye) = § —x, —1<z<1
1, r< -1
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5. (a) Only u = —(1++/2) gives a closed loop system that converges to zero. This is
the optimal solution.

(b) The Hamilton-Jacobi-Bellman equation becomes

0 = min {xTx +u? 4 Vi (2) T (Az + Bu)}

It is easy to see that V(z) = T Px is a solution if P solves the ARE
AP+ PA+1=PBB"P

The optimal control is u = —B” Px. There are many solutions to the ARE but
only the positive definite solution gives a stable closed loop system, i.e. only
when P > 0 will the closed loop solution converge to zero. We know from the
lecture notes that there always exists a positive definite solution to the ARE
under the stated conditions.

(¢) The ARE ATP + PA+ I — PBBT P = 0 becomes

—ply+1 —p12p22 + P11

=0
—p12pa2 + P11 2p12 — Py +1
which implies

Po=+1
Pog =P =+v1£2

The positive definite solution to the ARE is

[

The optimal state feedback is u = —R™!BT Pz = — [1 \/g] x and the closed
loop system matrix becomes

Crp [0 1
A BBP_[_l _\/g]

which is a stable matrix. The optimal cost is

V(xo) = xf Pzg = 2(1 + V/3)



