
Exam January 10, 2018 in SF1811 Optimization.

Examiner: Johan Karlsson, tel. 790 84 40.

Allowed utensils: Pen, paper, eraser and ruler. A formula-sheet is handed
out. No calculator! No books or notes.

Language: Your solutions should be written in English or in Swedish.
Solution methods: All conclusions should be properly motivated. Unless

otherwise stated in the problem statement, the problems should be solved
using systematic methods that do not become unrealistic for large prob-
lems. Unless otherwise stated in the problem statement, known theorems
can be used without proving them, as long as they are formulated correctly.
Motivate all your conclusions carefully.

Note: Your personal number must be stated on the cover sheet. Number
your pages and write your name on each sheet that you turn in!

Preliminary grades (Credit = exam credit + bonus from homeworks):
23-24 credits give grade Fx (contact examiner asap for further info), 25-27
credits give grade E, 28-32 credits give grade D, 33-38 credits give grade C,
39-44 credits give grade B, and 45 or more credits give grade A.

1. Consider the following linear programming problem:

(LP ) :


min −x2 + 2x3 − x4
subject to x1 + 2x2 + x5 = 4

x1 − x2 + x3 + x4 = 6

xi ≥ 0, for i = 1, 2, 3, 4, 5.

(i) Use the Simplex method to compute an optimal solution of (LP ).
Start with x4 and x5 as basic variables. . . . . . . . . . . . . . . . . . . . (7p)

(ii) Explicitly write down the dual problem to (LP). Determine an
optimal solution to the dual problem and verify that this is opti-
mal, e.g., by using the optimal solution to (LP). . . . . . . . . . . . (3p)

2. Let f(x) = 1
2x

2
1x

2
2 + 4x21 +x22− 5x1x2− 2x2 where x = (x1, x2)

T ∈ R2,
and consider the problem of minimizing f(x) without any constraints.

(i) Use x(1) = (2, 2)T as starting point and calculate the next itera-
tion point x(2) using Newtons method. . . . . . . . . . . . . . . . . . . . . . (5p)

(ii) Is the function f(x) convex on the set R2? Motivate! . . . . . (2p)

(iii) Assume that the function should be minimized subject to the con-
straints x1 = x2. Find the optimal solution to this constrained
problem (using a method of your choice). Show that the solu-
tion is a global optimum. (Hint: Note that a twice differentiable
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function f is convex on a convex set C ⊂ Rn if and only if
(x− y)TF (x)(x− y) ≥ 0 for all x, y ∈ C, where F (x) denotes the
Hessian of f at x.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

3. a) Consider the matrix

H =

16 8 4
8 4 2
4 2 1


(i) Determine if H is positive semidefinite or not, e.g., using

LDLT -factorization.

(ii) Verify that c = (0,−1, 2)T belongs to the kernel of H.

(iii) Consider the unconstrained quadratic optimization problem

(P ) : min
x∈R3

1

2
xTHx+ cTx.

Determine the optimal solution of (P ) (if such solution exist).
Justify your answer.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

b) Consider the portfolio optimization problem, where we seek the
portfolio with minimal variance among the portfolios with given
expected profit. Let x ∈ Rn where xi is the number of shares in
asset i. Let r ∈ Rn where ri is the expected profit of asset i and
let [cij ]

n
i,j=1 = C ∈ Rn×n be a positive definite matrix where cij

is the covariance of the profit of asset i and asset j (variance if
i = j). Solve the following optimization problem

min
x∈Rn

xTCx

subject to rTx = 1.

Determine the optimal allocation x and the optimal value (min-
imal variance) explicitly in r and C. (Hint: Use the Lagrange
method.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

4. (a) Here we will consider an flow problem where we seek to transport
electricity in a network with minimal losses. Consider the network
in Figure 1 with five nodes and six edges, and where one unit of
current enters the network at node A (A is a source) and one unit
of current exits the system at node E (E is a sink). The loss in
an edge is the square of the current in that edge.

(i) Formulate the problem of minimizing the sum of all losses in
the network (i.e., sum of losses in all edges) as a QP problem
with constraints. The flow in an edge is allowed to go in both
directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)
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(ii) Solve the optimization problem (e.g., using the nullspace
method). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)
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Figure 1: Flow network.

5. Consider a setup where several communication channels are available
and where we seek to maximize the transmitted information content
subject to a constraint on the total transmission power. The capacity
of channel i is (by Shannon-Hartley theorem)

Bi log(1 + xi/Ni)

where Bi > 0 relates to the bandwidth, xi is the transmission power,
and Ni > 0 is the noise power. We want to determine the how to
distribute the transmission power over the channels so that the total
capacity is maximized when the total transmission power is bounded
by P , i.e., to solve the optimization problem

(P ) :


max

xi,i=1,...,n

∑n
i=1Bi log(1 + xi/Ni)

subject to
∑n

i=1 xi ≤ P
xi ≥ 0, for i = 1, . . . , n.

(i) Relax the power constraint (Lagrange relaxation) and compute
the optimal power configuration as a function of the Lagrange
multiplier (i.e., compute x̂i(y)). . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

(ii) Consider the special case: n = 3, B1 = B2 = B3 = 1, N1 =
1, N2 = 3, N3 = 5, and P = 4. Find the Lagrange multiplier so
that the global optimality conditions are satisfied.. . . . . . . . . .(4p)

Good luck!

3



1 Solutions

1. a) Let β = (4, 5) and ν = (1, 2, 3). This gives

Aβ =

(
0 1
1 0

)
, cβ =

(
−1
0

)
, Aν =

(
1 2 0
1 −1 1

)
, cν =

 0
−1
2

 .

Hence we have

Aβ b̄ = b =

(
4
6

)
⇒ b̄ =

(
6
4

)
,

which is a basic feasible solution. Next, we have

ATβ y = cβ ⇒ y =

(
0
−1

)
.

Therefore

rν = cν −ATν y =

 0
−1
2

−
1 1

2 −1
0 1

( 0
−1

)
=

 1
−2
3

 .

Since the basic feasible solution b̄ is strictly positive and the sec-
ond component of the reduced cost is negative the solution is not
optimal. Therefore we introduce the variable ν2 = 2 as new ac-
tive variable. Noting that ā2 = (−1, 2)T we get tmax = 2 which
gives xβ2 = 0 and hence the variable x5 can be removed from the
basic tuple.

Next we will do a second simplex iteration. This time for the
basic tuple β = (2, 4):

Aβ =

(
2 0
−1 1

)
, cβ =

(
−1
−1

)
, Aν =

(
1 0 1
1 1 0

)
, cν =

0
2
0

 .

Hence we have

Aβ b̄ = b =

(
4
6

)
⇒ b̄ =

(
2
8

)
,

which is a basic feasible solution. Next, we have

ATβ y = cβ ⇒ y =

(
−1
−1

)
.

Therefore

rν = cν −ATν y =

0
2
0

−
1 1

0 1
1 0

(−1
−1

)
=

2
3
1

 .

4



Since the the reduced cost is positive the solution x = (0, 2, 0, 8, 0)T

is the optimal solution.

b) The dual problem is given by

(D) :



max 4y1 + 6y2

subject to y1 + y2 ≤ 0

2y1 − y2 ≤ −1

y2 ≤ 2

y1 ≤ −1

y1 ≤ 0.

By complementarity xT (c − AT y) = 0, hence the second and
forth component of c − AT y must be zero, i.e., 2y1 − y2 = −1
and y1 = −1. This gives the optimal solution y1 = −1, y2 = −1.
Also note that this is a feasible solution to the dual problem and
that the corresponding values of the objective function is −10 for
both the primal and dual problem.

2. a) Note that

∇f(x) =

(
x1x

2
2 + 8x1 − 5x2

x21x2 + 2x2 − 5x1 − 2

)
, H(x) =

(
x22 + 8 2x1x2 − 5

2x1x2 − 5 x21 + 2.

)
In the point x(2) = (2, 2)T we have

∇f(x(2)) =

(
14
0

)
, H(x(2)) =

(
12 3
3 6

)
,

d = −H(x(2))−1∇f(x(2)) =

(
−4/3
2/3.

)
With t = 1 the new solution is x(1) + (−4, 2)T /3 = (2, 8)T /3.
Finally note that

f(x(1)) = 4 > f
(
x(1) + (−4, 2)T /3

)
= −304/81 ≈ −3.75

hence the new point has a smaller objective value than the pre-
vious solution, hence we let x(2) = (2, 8)T /3.

b) Note, e.g., that

H((0, 0)T ) =

(
8 −5
−5 2

)
is not positive semidefinite, hence the function is not convex on
R2.
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c) On the set x1 = x2, the objective function is

1

2
x41 − 2x1.

This is convex, and hence any stationary point is an optimal
point. Take the derivative with respect to x1:

∂

∂x1

(
1

2
x41 − 2x1

)
= 2x31 − 2

and note that this is zero only if x1 = 1 (x31 is increasing). Hence
the unique optimal point is x1 = x2 = 1.

Note that since the set {x : x1 = x2} have empty interior, the
function can be convex even though the Hessian is not positive
definite. Convexity can also be verified from (x − y)TH(x)(x −
y) ≥ 0 for all x, y ∈ {x : x1 = x2}. In our case this holds since(

1 1
)( x21 + 8 2x21 − 5

2x21 − 5 x21 + 2.

)(
1
1

)
= 6x21 ≥ 0

for any x1.

3. a) i) Note that

H =

4
2
1

(4 2 1
)

which is positive semidefinite. ii) Note that

Hc =

0
0
0


hence c belong to the kernel of H. iii) Since c ∈ N (H) we have
that c ⊥ R(H) and since c 6= 0 it follows that c /∈ R(H). There-
fore there is no solution to Hx + c = 0 and no solution to the
minimization problem. Note that −c is a descent direction and
the objective value goes to −∞ for x = −tc as t→∞.

b) Using the Lagrange method the solution x is optimal if there is
an u such that (

2C −r
rT 0

)(
x
u

)
=

(
0
1

)
Note that C is positive definite this is equivalent to

x =
1

2
C−1ru

rTx = 1.
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These equations together gives u = 2(rT (C)−1r)−1, which yields
the optimal solution x = (rTC−1r)−1C−1r and the optimal value

xTCx = (rTC−1r)−2rTC−1CC−1r = (rTC−1r)−1.

4. a) Let xij be the current in the (directed) edge (i, j) where

(i, j) ∈ E = {(1, 2), (1, 3), (1, 4), (2, 4), (3, 5), (4, 5)}.

That is, if xij > 0 there is a flow of xij from node i to node j
and if xij < 0 there is a flow of |xij | from node j to node i. The
optimization problem is then given by{

min xTx

subject to Ax = b

where

A =


1 1 1 0 0 0
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 −1 0 1
0 0 0 0 −1 −1

 , x =



x12
x13
x14
x24
x35
x45

 , b =


1
0
0
0
−1

 .

b) Note that

Z =



1 0
0 1
−1 −1
1 0
0 1
0 −1


is a basis for the nullspace of A. This can be seen by noting that
the first column of A corresponds to flow in the cycle (A→ B →
D → A) and the second column the cycle (A→ C → E → D →
A). Also note that the flow of one unit current from along the
path (A→ C → E) is represented by

x0 =
(
0 1 0 0 1 0

)T
,

which is therefore a feasible solution. Therefore any solution can
be written as x = x0+Zv, where v = (v1, v2)

T ∈ R2, any optimal
v satisfies

(ZTZ)v = −ZTx0.
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Since ZTZ =

(
3 1
1 4

)
is positive definite, the optimal solution is

given by

v = −(ZTZ)−1ZTx0 =

(
2
−6

)
/11, x = x0 + Zv =



2
5
4
2
5
6

 /11.

5. a) We first change sign of the objective, and consider the corre-
sponding minimization problem. For a given y ≥ 0, the relaxed
problem is

(PRy) :

 min
xi,i=1,...,n

−
∑n

i=1Bi log(1 + xi/Ni) + y(
∑n

i=1 xi − P )

subject to xi ≥ 0, for i = 1, . . . , n.

Note that the objective function can be separated into terms so
that each term only depends on one variable, and hence the opti-
mal solution can be computed for each variable separately. That
is, the part of the objective function that depends on the variable
xi ≥ 0 is

−Bi log(1 + xi/Ni) + yxi.

This is a convex function with derivative −Bi/(Ni + xi) + y. If
the derivative at xi = 0 is non-negative, i.e., if Bi/Ni ≤ y, then
the minimizing argument is xi = 0. If the derivative at xi = 0
is negative, then the minimizing argument xi is characterized by
−Bi/(Ni + xi) + y = 0, that is xi = Bi/y − Ni. To summarize,
the optimal values x̂i(y) for i = 1, . . . , n, to the problem (PRy)
are given by

x̂i(y) =

{
0 if Bi/Ni ≤ y
Bi/y −Ni if Bi/Ni > y.

b) For the parameters in our problem we get

x̂1(y) =

{
0 if 1 ≤ y
1/y − 1 if 1 > y,

x̂2(y) =

{
0 if 1/3 ≤ y
1/y − 3 if 1/3 > y,

x̂3(y) =

{
0 if 1/5 ≤ y
1/y − 5 if 1/5 > y.
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In order to satisfy GOC, we need y(
∑3

i=1 x̂i(y) − 4) = 0. Note
that y = 0 is not feasible to the primal problem since x̂i(y)→∞
as y → 0. Therefore we must have

∑3
i=1 x̂i(y)− 4 = 0. Note that

x̂i(y) are non-increasing functions of y and that
∑3

i=1 x̂i(y)−4 = 0
is satisfied for y = 1/4. This gives the optimal solution: x̂1 = 3,
x̂2 = 1, x̂3 = 0. By definition this satisfies the first and forth
criteria of GOC. Primal and dual feasibility also hold, hence we
have verified GOC.
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