
Solutions for the exam in SF1811/SF1831/SF1841 Optimization for F.
Saturday March 13 2009 kl. 08.00–13.00

Instructor: Per Enqvist, tel. 790 62 98
There may be alternative solutions to the problem.

1. (a) Setting the node potential y4 = 0, and using that cij = yi − yj for the ij
corresponding to basic variables, then the rest of the node potentials are given
by

y1 = 3, y2 = 2, y3 = 0.

Then the reduced costs for the other indices are given by ĉij = cij − yi + yj :

ĉ13 = 2− 3 + 0 = −1, ĉ34 = 2− 0 + 0 = 2,

Since the reduced cost ĉ34 is negative, and the current BFS is not degenerate,
the proposed solution is not optimal.

(b) We add the variable x13 to the basis. A cycle is created in the graph, and the
maximal flow in this cycle is determined.
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It is obtained for δ = 25 and then the variable x23 becomes zero and exits the
basis.
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Again, setting the node potential y4 = 0, and using that cij = yi− yj for the ij
corresponding to basic variables, then the rest of the node potentials are given
by

y1 = 3, y2 = 2, y3 = 1.

Then the reduced costs for the other indices are given by ĉij = cij − yi + yj :

ĉ23 = 2− 2 + 1 = 1, ĉ34 = 2− 1 + 0 = 1,

Since the reduced costs are all positive the current solution is optimal.
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(c) A spanning tree is a tree that connects all nodes, so that there is a path from
any one node to any other node (not considering the directions of the arcs)
and that has no cycles (which are paths that starts and ends in the same node
without using the same arc twice)
There are 8 different spanning trees in the network graph.

2. (a) Alternative 1: Write the problem on standard form and verify with the simplex
algorithm that it is optimal.
Alternative 2: First show that x(a) = (2, 1, 0) is feasible. Both constraints are
satisfied, the inequality is satisfied with equality.
Consider the dual

(D)


max

y
y1 + 7y2

s.t. y1 + 2y2 ≤ 1
−y1 + 3y2 ≤ −1
2y1 + y3 ≤ 3
y2 ≥ 0

 .

Since x(a)
1 and x

(a)
2 are both non-zero, it follows by complementarity that y1 +

2y2 = 1 and −y1 + 3y2 = −1, i.e. y1 = 1 and y2 = 0. It is dual feasible and the
optimal values of the dual and primal are the same; y1+7y2 = 1 = x1−x2+3x3.

(b) The problem (P ) can be written on standard form

(Ps)

 min
x

cTx

s.t. Ax = b
x ≥ 0


where

A =
[

1 −1 2 0
2 3 1 −1

]
, b =

[
1
7

]
, c =

[
6 −1 3 0

]T
.

We start with x1 and x2 in the basis, giving the solution x = (2, 1, 0, 0) from
(a).

B =
[

1 −1
2 3

]
, N =

[
2 0
1 −1

]
Then the equations BT y = cB and ĉTN = cTN − yTN gives

y =
[

4
1

]
, ĉTN =

[
−6 1

]
.

Let x3 enter the basis. Which one should exit ?
From Bâ3 = a3, we get â3 = (7/5,−3/5)T , and since the second element is
negative, x1 exits the basis.
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Update the basis and nonbasis matrices:

B =
[

2 −1
1 3

]
, N =

[
1 0
2 −1

]
Then the equations BT y = cB and ĉTN = cTN − yTN gives

y =
1
7

[
10
1

]
, ĉTN =

[
30/7 1/7

]
.

Since all reduced costs are nonnegative, the current bfs x̂ = (0, 13
7 ,

10
7 , 0) is

optimal.

(c) The dual linear programing problem is

(D′)

 max
y

bT y

s.t. AT y ≤ c
y free

 ⇔


max

y
y1 + 7y2

s.t. y1 + 2y2 ≤ 6
−y1 + 3y2 ≤ −1
2y1 + y2 ≤ 3
−y2 ≤ 0

 .

Since x(a)
2 and x(a)

3 are both non-zero, it follows by complementarity that −y1 +
3y2 = −1 and 2y1 + y2 = 3, i.e. y1 = 10/7 and y2 = 1/7. This solution also
satisfies constraints 1 and 4, so it is feasible for the dual.
The dual solution can also be obtained from the last simplex iteration in (b).

3. (a) The Hessian of ex
2
1+x2

2+x2
3 , at the origin is

H = 2

 1 + 2x2
1 2x1x2 2x1x3

2x1x2 1 + 2x2
2 2x2x3

2x1x3 2x2x3 1 + 2x2
3

 ex2
1+x2

2+x2
3

∣∣∣∣∣∣
x=0

= 2I.

Therefore,

∇2f(0) =

 2 −2 4
−2 5 2

4 2 16

 .
The LDLT factorization is given by

∇2f(0) =

 2 −2 4
−2 5 2

4 2 20

 =

 1 0 0
−1 1 0

2 2 1

 2 0 0
0 3 0
0 0 −4

 1 −1 2
0 1 2
0 0 1


Since D33 = −4, the Hessian is not positive definite, since the eigenvalues of the
Hessian have the same signs as the diagonal elements of D. (One eigenvalue of
the Hessian will be negative and two of them will be positive)

(b) All the diagonal elements in the given LDLT factorization are non-negative, so
the modified Hessian is positive semidefinite. But since one diagonal element
is zero, the modified Hessian is not positive definite.



Page 4 of 6 Solutions Exam 2009-03-14 SF1841

(c) −c is the same as minus the first column in H̃, so −c = H̃(−e1), where e1 =
(1, 0, 0)T .

(d) Applying row operations to H̃ you get:

H̃ = ∇2f(0) =

 2 −2 4
−2 5 2

4 2 20

 ∼
 2 −2 4

0 3 6
0 6 12

 ∼
 1 −1 2

0 1 2
0 0 0

 =

 1 0 4
0 1 2
0 0 0


The null space of H̃ is spanned by

Z =

 −4
−2

1

 ,
and this is clearly a one-dimensional space.

4. (a) Clearly, ∇f(x)T = Hx+ c, and then ∇f(x(0))T = Hx(0) + c = c. Then,

(d(1))T c = −1, (d(2))T c = −3, (d(3))T c = 2

so the first two are descent directions, but not the third one. The first and third
ones are feasible directions, since if all components are positive, the vectors
points in to the feasible region. The second one, on the other hand, points
outside the feasible region and is not a feasible direction. Thus, only d(1) is a
feasible descent direction.
Since there exists a feasible descent direction at x(0) it can not be a local
minimum.

(b) Let
g1(x) = 1− (x2

1 + x2
2)

g2(x) = x1

g3(x) = x2

g4(x) = x3

Then, the problem can be written min f(x) subject to gi(x) ≥ 0 for i = 1, 2, 3, 4.
At x(1), constraints 1,3 and 4 are active.

∇f(x(1))T = Hx(1)+c =

 −1
2
1

 , ∇g1(x(1))T =

 −2x(1)
1

−2x(1)
2

0

 =

 −2
0
0



∇g3(x)T =

 0
1
0

 , ∇g4(x)T =

 0
0
1

 ,

For the KKT-conditions to be satisfied we need to find non-negative Lagrange
parameters such that
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 −1
2
1

−
 −2

0
0

λ1 −

 0
1
0

λ3 −

 0
0
1

λ4 =

 0
0
0


Now λ1 = 1/2, λ3 = 2, λ4 = 1 and λ2 = 0.
So the KKT-conditions are satisfied.

(c) The point x̄ = (0, 0, 0) is feasible. A nullspace matrix Z for A is given by

Z =

 1
1
0

 , and ZTHZ = 12, cTZ = 1

so v = −1/12 solves ZTHZv = −ZT c. Then, since the reduced Hessian ZTHZ
is positive definite, x̂ = x̄+ vZ = (−1/12,−1/12, 0) is the minimum.

(d) Note that the reduced Hessian is positive definite, so the f(x) is strictly convex
on the feasible set. Therefore, the stationary point determined in (c) is a global
minimum.

5. (a) The Lagrange function is

L(x, λ) =
m∑

i=1

ai

xi
− λ

(
b−

m∑
i=1

log xi

)
= −λb+

m∑
i=1

(
ai

xi
+ λ log xi

)
It is well defined for xi > 0, separates into m independent minimization prob-
lems, minxi>0 `i(xi, λ) where `i(xi, λ) = ai/xi + λ log xi, for each xi, and is
minimized for the xi(λ) such that

∂L

∂xi
(x, λ) = − ai

x2
i

+
λ

xi
= 0,

i.e., xi(λ) = ai/λ. This follows since it is the only point where the derivative
is zero and the second derivative `′′i (ai/λ, λ) = λ/x2

i > 0. (Note that `i goes to
infinity as xi goes to zero or infinity)
The dual function is obtained by inserting this xi in the Lagrange function

J(λ) =
m∑

i=1

ai

ai/λ
− λ

(
b−

m∑
i=1

log(ai/λ)

)

J(λ) = mλ−mλ log λ+ λ

m∑
i=1

log ai − λb

(b) We know that the dual function J is concave and it is differentiable, so the
maximum point must satisfy

∂J

∂λ
(λ) = m−m−m log λ+

m∑
i=1

log ai − b = 0
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Thus

λ = exp

{
(

m∑
i=1

log ai − b)/m

}
.

(c) With λ from (b) inserted in the expression for xi in (a) we obtain:

x̂i =
ai

λ
= ai exp

{
b

m
−

m∑
i=1

log ai

m

}
.

(d) Note that g(x̂) = 0, λ is positive, so the point (x̂, λ) satisfies the GOC.


