
Solutions for the exam in SF1811/41 Optimization.
Monday June 11, 2012, tid. 14.00–19.00

Examiner: Per Enqvist, tel. 790 62 98

There may be alternative solutions.

1. (a) There are three equations that should hold if the measurements were exact.

U1 = I1R1, d.v.s 12 = 0.3R1

U2 = I2R2, d.v.s 12 = 0.4R2

U3 = I3R3, d.v.s 12 = 0.6/(1/R1 + 1/R2)

And with the conductivity as the unknown variables

12L1 = 0.3, 12L2 = 0.4, 12(L1 + L2) = 0.6.

The lest-squares problem is to minimize the sum of squares of the errors in
these equations, i.e., to minimize

f(L1, L2) = (12L1 − 0.3)2 + (12L2 − 0.4)2 + (12(L1 + L2)− 0.6)2.

This can be written as f(L) = ‖AL− b‖2 where L = [L1, L2]
T and

A =

 12 0
0 12

12 12

 , b =

 0.3
0.4
0.6

 .
The optimal solution is then given by L = (ATA)−1AT b = (1/45, 11/360) and
the corresponding resistances are R = (45, 360/11).

(b) We start by transforming A in stair-case form by elementary row-operations:

A =

[
2 4 1 2
4 4 0 1

]
∼

[
1 2 1/2 1
0 −4 −2 −3

]
∼

[
1 0 −1/2 −1/2
0 1 1/2 3/4

]
Since the two first columns are unit vectors, the range space is spanned by the
first two columns in A, i.e., the range space is spanned by the vectors [2, 4]T

and [4, 4]T .

The nullspace is spanned by the vectors
1/2
−1/2

1
0




1/2
−3/4

0
1

 .
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2. (a) The flow at each node is in balance if Ax = b, where

A =



1 1 1 0 0 0 0 0 0
−1 0 0 1 0 0 0 0 0

0 −1 0 0 1 1 0 0 0
0 0 −1 0 0 0 1 0 0
0 0 0 −1 −1 0 0 1 0
0 0 0 0 0 −1 −1 0 1
0 0 0 0 0 0 0 −1 −1


, b =



10
0
0
0
−3
−2
−5


,

(b) The basic solution is found by considering the flow through the spanning tree
and make sure that the flow is in balance at each node, the basic variables are
then given by

x12 = 0, x13 = 8, x14 = 2, x35 = 8, x46 = 2, x57 = 5.

It is degenerate since x12 = 0, even though it is a basic variable.

(c) L̊at nodpotentialen Let the node potential y7 at node 7 be 0. y5− y7 = c57 = 3
gives y5 = 3.
y3 − y5 = c35 = 2 gives y3 = 5.
y1 − y3 = c13 = 3 gives y1 = 8.
y1 − y2 = c12 = 2 gives y2 = 6.
y1 − y4 = c14 = 1 gives y4 = 7.
y4 − y6 = c46 = 1 gives y6 = 6.

The reduced costs are now r25 = c25−y2+y5 = 4−6+3 = 1, r36 = c36−y3+y6 =
3 − 5 + 6 = 4. and r67 = c67 − y6 + y7 = 2 − 6 + 0 = −4. Since the reduced
cost r67 is negative, x67 it will enter the basis. We add the corresponding arc to
the sub-graph and then a cycle is formed. The variable x67 can be increased to
5 whereby x57 becomes zero and exits the basis. A new basic solution is then
given by

x12 = 0, x13 = 3, x14 = 7, x35 = 3, x46 = 7, x67 = 5.

(also degenerate)

L̊at nodpotentialen y7 vid nod 7 vara 0. Let the node potential y7 at node 7 be
0. y6 − y7 = c67 = 2 gives y6 = 2.
y4 − y6 = c46 = 1 gives y4 = 3.
y1 − y4 = c14 = 1 gives y1 = 4.
y1 − y2 = c12 = 2 gives y2 = 2.
y1 − y3 = c13 = 3 gives y3 = 1.
y3 − y5 = c35 = 2 gives y5 = −1.

The reduced costs are now r25 = c25−y2+y5 = 4−2+1 = 1, r36 = c36−y3+y6 =
3 − 1 + 2 = 4. and r57 = c57 − y5 + y7 = 3 − (−1) + 0 = 4. Since all reduced
costs are positive, the current basic solution is the unique optimum.

3. (a) We start with x1 and x2 as basic variables. I.e. basic and non-basic variable
indices are β = {1, 2} and η = {3, 4}, so

B =

[
1 3
1 1

]
, N =

[
0 1
1 1

]
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and b̄ = B−1b = [1 1]T which gives the starting basic solution x = (1, 1, 0, 0).

From the equations BT y = cB and ĉN tT = cTN − yTN we get

y =

[
−2
5/2

]
, rTN =

[
−3/2 1/2

]
.

Let x3 enter the basis. Which one should exit ?

From Bâ4 = a4, we get that â4 = (3/2,−1/2)T , and since the first element is
the only positive one, x1 exits the basis.

Update basic and non-basic matrices; The basic and non-basic variable indices
are given by β = {2, 3} och η = {1, 4}, and

B =

[
3 0
1 1

]
, N =

[
1 1
1 1

]

The equations BT y = cB and ĉTN = cTN − yTN gives

y =

[
−1

1

]
, rTN =

[
2 1

]
.

Since all reduced costs are non-negative, x̂ = (0, 4/3, 2/3, 0)T is optimal.

(b) The dual is

(D)


min
y

4y1 + 2y2

s.t. y1 + y2 ≤ 2
3y1 + y2 ≤ −2
y2 ≤ 1
y1 + y2 ≤ 1

 .

(c) The feasible region for the dual is given by
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The complementarity condition tells us that x̂T (AT ŷ−c) = (0, 4/3, 2/3, 0)T (AT y−
c) = 0, hence 3y1 + y2 = −2 and y2 = 1 must hold so the optimum for the dual
is obtained at y = (−1, 1).

Since we have equality constraints in the primal it always hold that ŷT (Ax̂− b)
since x̂ is feasible for the primal.

It is easy to also check that bT y = −4 + 2 = −2, cTx = 4/3 ∗ (−2) + 2/3 =
−6/3 = −2, are both the same.

4. (a) The iterations for the gradient method can be seen in the Figure below.
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What is important to notice is that the search directions are orthogonal to the
level curve that passes through the starting point of the iteration, and that the
step length is chosen so that search direction coincides with the tangent of a
level curve in the next point of the iteration. This leads to that the next search
direction will become orthogonal to the previous one. The step of Newton’s
method will point directly to the global minimum since the objective function
is a convex quadratic function.

(b) The matrix H can be factorized as H = LDLT where

D =

[
4 0
0 1

]
, L =

[
1 0
−1 1

]
.

Since the diagonal elements in D are positive, the matrix H is positive definite
and the quadratic objective function is convex.

(c) The solution to the problem is unique since H is positive definite, and it is
given by the x which solves Hx = −c, i.e., by x = (13/4, 3).

(d) First we determine the nullspace of A, it is spanned by

Z =

[
1
−1

]
.

A solution x̄ to the constraint is given by

x̄ =

[
0
3

]
,
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The equation system (ZHZT )v = −ZT (Hx̄ + c), i.e. 17v = −(−26), gives
v = 26/17. Finally, x̂ = x̄ + Zv = [26/17 25/17]T is a global minimum since
the problem is convex.

5. (a) The objective function f(x) is the sum of the convex functions ex1+x2 and
−x1 − 3x2, so it is convex.

The feasible region is the intersection of two sets. Since the intersection is not
a connected set, but consists of two separate sets, it is not convex.

Since the feasible region is not convex, the optimization problem is not convex.

(b) If we know that the sets C1 and C2 both are convex, then we know that their
union is also convex.

If the sets C1 and C2 are not convex, but their intersection is only one point,
then the intersection is convex. But if instead C1 = C2, then the intersection is
C1 which is by assumption not convex. So we can not say anything about the
convexity in this case.

(c) Let

g1(x) = −ex1 + x2, g2(x) = e · x21 − x2.

Then
∇f(x) =

[
ex1+x2 − 1 ex1+x2 − 3

]
,

∇g1(x) =
[
−ex1 1

]
, ∇g2(x) =

[
2e · x1 −1

]
.

In x(c) = (0, 0) it holds that g1(x
(c)) = −1 and g2(x

(c)) = 0. Constraint 1 is
not active and therefore must ŷ1 = 0.

But then the equation

∇f(x(c)) + ŷ1∇g1(x(c)) =
[
e0 − 1 e0 − 3

]
+ ŷ2

[
0 −1

]
= 0

has no solution and the KKT-conditions are not satsified. Therefore, x(c) =
(0, 0) can not be a local minimum.

(d) In x(d) = (1, e) it holds that g1(x
(c)) = 0 and g2(x

(c)) = 0. Both constraints
are thus active and both ŷ1 and ŷ2 can be non-zero.

Then the equation

∇f(x(d)) + ŷ1∇g1(x(d)) + ŷ2∇g2(x(d)) =

=
[
e1+e − 1 e1+e − 3

]
+ ŷ1

[
−e1 1

]
+ ŷ2

[
2e1 −1

]
= 0

has a solution[
ŷ1
ŷ2

]
=

[
−e 2e
1 −1

]−1 [
e1+e − 1
e1+e − 3

]
=

1

3e

[
1 2e
1 e

] [
e1+e − 1
e1+e − 3

]
which is positive and the KKT-conditions are satisfied.

Therefore, x(c) = (0, 0) can be a local minimum, but since the problem is not
convex the KKT-conditions are only necessary, but not sufficient, so we can not
say that it is a local minimum.
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(e) In an interior point no constraints are active and then both ŷ1 and ŷ2 must
be equal to zero. Since ∇f(x) =

[
ex1+x2 − 1 ex1+x2 − 3

]
there are no such

point such that the derivative is zero, hence the KKT-conditions can not be
satisfied in an interior point and there are no local minima of the function in
an interior point.


