
Exam in SF1811/SF1841 Optimization.
April 7, 2015, 8:00–13:00

Examiner: Krister Svanberg, telephone: 790 7137, email: krille@math.kth.se.

Allowed utensils: Pen, paper, eraser and ruler. (Penna, papper, suddgummi och linjal.)
No calculator! (Ingen räknare!) A formula-sheet is handed out.

Language: Your solutions should be written in English or in Swedish.

Unless otherwise stated in the problem statement, the problems should be solved using
systematic methods that do not become unrealistic for large problems. Unless otherwise
stated in the problem statement, known theorems can be used without proving them, as
long as they are formulated correctly. Motivate all your conclusions carefully.
A passing grade E is guarranteed for 25 points, including bonus points from the home
assignments during Nov-Dec 2014. 23-24 points give a possibility to complement the
exam to grade E within three weeks from the announcement of the results. Contact the
examiner as soon as possible by email if this is the case.
Write your name on each page of the solutions you hand in and number the pages.
Write the solutions to the different questions 1,2,3,4,5 on separate sheets.
This is important since the exams are split up during the corrections.

1. Consider the LP problem
minimize cTx

subject to Ax = b,

x ≥ 0,

where

A =


1 1 0 0 0 0 0
−1 0 1 1 0 0 0

0 −1 −1 0 1 1 0
0 0 0 −1 −1 0 1
0 0 0 0 0 −1 −1

 , b =


4
5
6
−7
−8

 , cT = (5, 7, 1, 4, 2, 6, 3).

(a) As can be seen from the special structure of A, this is in fact a minimum cost
network flow problem. Illustrate the corresponding network in a figure. . (2p)

(b) Show that x̂ = (4, 0, 9, 0, 15, 0, 8)T is an optimal solution to the problem. (3p)

(c) Formulate, in details, the corresponding dual problem D (no matrices in the
answer), and give an optimal solution to D. Also check that the complementarity
conditions are satisfied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(d) Verify that the spanning tree corresponding to the above optimal solution still
corresponds to an optimal solution also if the right hand side vector b is changed
from ( 4, 5, 6,−7,−8)T to ( 7, 8,−4,−5,−6)T. What are the new primal and
dual optimal solutions and optimal values after this change of b? . . . . . . . (3p)
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2. This exercise deals with the shortest distance beween two given lines in IR3.

Let the line L1 be the intersection of the two (non-parallel) planes
x1 − x2 + x3 = 1 and x1 + x2 − x3 = 1,
and let the line L2 be the intersection of the two (non-parallel) planes
x1 − x2 − x3 = 1 and −x1 + x2 − x3 = 1.
Calculate the shortest distance between L1 and L2. Also calculate the two points
(one on L1 and the other on L2) between which the distance is the shortest. . (9p)

Hint :
A line L in IR3 can always be written on so called parmeter form, i.e. on the form
L = {x ∈ IR3 | x = x0 + t·d, t ∈ IR }, where x0 and d 6= 0 are two vectors in IR3

and t ∈ IR is the parameter.

3. Consider the function f : IR2 → IR defined by

f(x) = x31 − 3x1 + x1x2 + 1
2x

2
1x

2
2, where x = (x1, x2)

T.

Consider the following three points: x = (0, 3)T, x = (1,−1)T and x = (−1, 1)T.

(a) How many (if any) of these points are local optimal solutions to the problem
of minimizing f(x) without any constraints? Motivate your answer. . . . . . (3p)

(b) Perform a complete iteration with Newtons method for minimizing f(x)
without any constraint, starting from the point x = (1, 0)T. . . . . . . . . . . . . . (6p)

(c) Is x = (1, 0)T a global optimal solution to the problem of minimizing f(x)
subject to the constraints x1 ≥ 0 and x2 ≥ 0 ? Motivate carefully. . . . . . . . (2p)

4. Consider the following LP problem with 21 variables.

minimize
21∑
j=1

|j−11|xj ( 10x1 + 9x2 + . . . + 9x20 + 10x21)

subject to
21∑
j=1

(21−j)xj = 40, ( 20x1 + 19x2 + . . . + x20 = 40)

21∑
j=1

(j−1)xj = 20, ( x2 + 2x3 + . . . + 20x21 = 20)

xj ≥ 0, j = 1, . . . , 21.

(a) Start with the variables x1 och x21 as basic variables and perform a complete
iteration with the Simplex method. Is the new basic solution you obtain an
optimal solution to the problem? Motivate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

(b) How many different feasible basic solutions with x1 as one of the basic variables
are there to this problem? And how many of these are optimal solutions? (4p)
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5. Let p1, . . . ,pm be m given points in IRn and consider the following optimization
problem in the variables z ∈ IR and x ∈ IRn:

minimize 1
2z

2

subject to ‖x− pi‖ 2 − z ≤ 0 , i = 1, . . . ,m.

where, as usual, ‖x− pi ‖ 2 = (x− pi)
T(x− pi).

(a) Use Lagrange relaxation to deduce an explicit expression (containing y and the
m points pi) for the dual objective function ϕ(y), valid for all dual variable
vectors y ∈ IRm with y ≥ 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Hint:
Shorter expressions are obtained by introducing the matrix P with columns
p1, . . . ,pm, and the two vectors q = (‖p1‖2, . . . , ‖pm‖2)T and e = (1, . . . , 1)T.

(b) Assume now that m = n = 2, p1 = (1, 0)T and p2 = (0, 1)T.
Let ŷ = (0.25, 0.25)T and calculate the corresponding solution (ẑ, x̂) to the
original (primal) problem. Then show that ŷ is an optimal solution to the dual
problem, while (ẑ, x̂) is an optimal solution to the primal problem. . . . . . . (4p)

Note: An interpretation of the problem in (a), which should not be used for solving
the problem in (b), is the following: Assume that (ẑ, x̂) is an optimal solution to the
problem in (a). Then the square root of ẑ is the radius of the smallest sphere in IRn

which contains all the given points pi, while x̂ is the center of this sphere.

Good luck!


