
Exam in SF1811/SF1841 Optimization.
Saturday, January 18, 9:00–14:00

Examiner: Krister Svanberg, telephone: 790 7137, email: krille@math.kth.se.

Allowed utensils: Pen, paper, eraser and ruler. (Penna, papper, suddgummi och linjal.)
No calculator! (Ingen räknare!) A formula-sheet is handed out.

Language: Your solutions should be written in English or in Swedish.

Unless otherwise stated in the problem statement, the problems should be solved using
systematic methods that do not become unrealistic for large problems. Unless otherwise
stated in the problem statement, known theorems can be used without proving them, as
long as they are formulated correctly. Motivate all your conclusions carefully.

A passing grade E is guarranteed for 25 points, including bonus points from the home
assignments during Nov-Dec 2013. 23-24 points give a possibility to complement the
exam to grade E within three weeks from the announcement of the results. Contact the
examiner as soon as possible by email if this is the case.

Write your name on each page of the solutions you hand in and number the pages.
Write the solutions to the different questions 1,2,3,4,5 on separate sheets.
(This is important since the exams are split up during the corrections.)

1. In the network below, nodes 1 and 2 are source nodes with supplies 30 and 20 units,
nodes 4 and 5 are sink nodes with demands 35 and 15, while node 3 is an intermediate
node without any supply or demand.
The costs per unit flow in the various arcs are given by

c12 = c23 = c34 = c45 = 1, c13 = c14 = c25 = c35 = k, where k is a constant > 1.
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(a) The minimum cost flow problem corresponding to these assumptions can be
formulated as an LP problem on the form:

minimize cTx subject to Ax = b and x ≥ 0.

Write down, in details, the matrix A and the vectors b and c for this example,
and describe what the components in the variable vector x stand for. . . . (3p)
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(b) The four arcs with cij = 1 corresponds to a spanning tree, so a basic solution
to the problem is obtained by sending suitable flows in just these four arcs.
Calculate the arc flows for this basic solution, and decide if it is a feasible basic
solution or not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(c) For which values of the constant k is the basic solution above an optimal solution
to the considered minimum cost problem?
(Hint: Calculate the reduced cost for each of the four non-basic arcs.) . . . (3p)

2. (a) Consider the following LP problem on standard form.

P1: minimize x1 + 3x2 + x3 + x4

subject to x1 − x2 + x3 − x4 = 2,
x1 + x2 − x3 − x4 = 4,
xj ≥ 0, j = 1, 2, 3, 4.

Show that (x1, x2, x3, x4) = (3, 1, 0, 0) is an optimal solution to P1. . . . (3p)

(b) Formulate the dual LP problem D1 corresponding to the primal problem P1.
Illustrate D1 in a figure containing the feasible region of D1 and at least two
level sets for the objective function in D1. Determine, using your figure, the
optimal solution to D1, and check that the optimal values of P1 and D1 are
equal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(c) Assume now that both the equality constraints in P1 are changed to inequality
constraints of the type ≥ , so that the following problem P2 is obtained:

P2: minimize x1 + 3x2 + x3 + x4

subject to x1 − x2 + x3 − x4 ≥ 2,
x1 + x2 − x3 − x4 ≥ 4,
xj ≥ 0, j = 1, 2, 3, 4.

Use the simplex method to calculate an optimal solution to P2.
You may use the results from (a) above to get a feasible basic solution to start
the simplex method from when solving P2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(d) Assume now that both the equality constraints in P1 are changed to inequality
constraints of the type ≤ , so that the following problem P3 is obtained:

P3: minimize x1 + 3x2 + x3 + x4

subject to x1 − x2 + x3 − x4 ≤ 2,
x1 + x2 − x3 − x4 ≤ 4,
xj ≥ 0, j = 1, 2, 3, 4.

Use the simplex method to calculate an optimal solution to P3.
This time, it is recommended that you start with the slack variables as basic
variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)
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3. Consider the following equality-constrained quadratic programming problem QP1:

QP1: minimize 1
2(x21 + x22 + x23)− x1 − x2 − x3

subject to x1 + x2 = 1,

x2 + x3 = 3.

(a) Solve QP1 by using a null-space method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

(b) Solve QP1 by using a Lagrange method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(c) Use the KKT conditions to prove that the optimal solution to QP1 which you
obtained above is an optimal solution also to the inequality-constrained problem
QP2 obtained by replacing the constraints x1 +x2 = 1 and x2 +x3 = 3 in QP1
by the constraints x1 + x2 ≤ 1 and x2 + x3 ≥ 3 in QP2. . . . . . . . . . . . . . . . . . (3p)

(d) What is the optimal solution to the inequality-constrained problem QP3
obtained by replacing the constraints x1 + x2 = 1 and x2 + x3 = 3 in QP1
by the constraints x1 + x2 ≥ 1 and x2 + x3 ≤ 3 in QP3?
Motivate your answer carefully. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

4. It is assumed, based on physics, that the quantity w depends on the time t according
to the formula

w(t) =
1

1 + c t

for some positive (but otherwise unknown) constant c. In order to estimate a value
of c one could measure w at different times t, and then calculate the value of c which
minimizes the quadratic sum

1
2

m∑
i=1

(
1

1 + c ti
− wi)

2,

where w1, . . . , wm are the obtained measured values of w at the given times t1, . . . , tm.
Assume the following data: m = 2, t1 = 1, t2 = 3, w1 = 0.46, w2 = 0.22.

Start with the guess c = 1 and make one iteration with Gauss-Newtons method to
calculate a better value of c in the above meaning. . . . . . . . . . . . . . . . . . . . . . . . . . . . (7p)
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5. Let D be a given n×n diagonal matrix with strictly positive diagonal elements
d1, . . . , dn, where dj > 0 for all j, and let the set F be defined by

F = {x ∈ IRn | xTDx ≤ 1}.

(F is the region inside and on the surface of an “ellipsoid” in IRn.)

Further, let q ∈ IRn be a given point outside F , so that qTDq > 1.

Assume that we want to find the point x̂ in F with the smallest distance to q
among all the points in F . This can be formulated as a nonlinear optimization
problem with a quadratic objective function and a quadratic constraint function:

P: minimize (x−q)T(x−q) subject to xTDx ≤ 1.

(a) Use Lagrange relaxation to deduce an explicit expression for the dual objective
function ϕ(y), valid for all y ≥ 0, and formulate the dual problem D. . . . . (4p)

(b) Deduce an explicit expression for the derivative ϕ ′(y) of the dual objective
function, valid for all y ≥ 0.
Then show that ϕ ′(0) > 0, and that ϕ ′(y) is strictly decreasing for all y ≥ 0,
and that there is a number y1 > 0 such that ϕ ′(y1) < 0. . . . . . . . . . . . . . . . . (3p)

(c) From (b) above it follows that there is a unique optimal solution ŷ to the dual
problem. It is in general not possible to calculate ŷ analytically, but assume
that ŷ has been calculated by some numerical method. Then let x̂ be the unique
x which minimizes the Lagrange function L(x, ŷ), for fixed y = ŷ.
Prove that x̂ is an optimal solution to the primal problem P. . . . . . . . . . . . . (4p)

Good luck!


