
Formula sheet on the exam in SF1811, Jan 2016

Note: No calculator is allowed on the exam!

R(A)⊥ = N (AT), R(AT)⊥ = N (A), N (A)⊥ = R(AT), N (AT)⊥ = R(A).

Simplex method for LP problem on standard form.
Aβ = [ aβ1 · · ·aβm ], Aν = [ aν1 · · ·aν` ], Aβb̄ = b, z̄ = cTβ b̄, AT

βy = cβ, rTν = cTν − yTAν .
Finished if rν ≥ 0. Otherwise, choose a q with rνq < 0. k = νq, Aβāk = ak, xk = t,

z = z̄ + rkt, xβ = b̄− ākt, tmax= min
i

{
b̄i
āik
| āik > 0

}
=

b̄p
āpk

. Let νq och βp change place.

P : minimize cT1 x1 + cT2 x2 D : maximize bT
1 y1 + bT

2 y2

subject to A11x1 + A12x2 ≥ b1, subject to AT
11y1 + AT

21y2 ≤ c1,

A21x1 + A22x2 = b2, AT
12y1 + AT

22y2 = c2,

x1 ≥ 0, x2 free. y1 ≥ 0, y2 free.

x̂ is optimal to P and ŷ is optimal D if and only if x̂ is feasible to P, ŷ is feasible to D,
ŷT
1 (A11x̂1 + A12x̂2 − b1) = 0 and x̂T

1 (c1 −AT
11ŷ1 −AT

21ŷ2) = 0.

A symmetric matrix H is positive definite [semidefinite] if and only if there is
a lower triangular matrix L with all `ii = 1 and a diagonal matrix D with all
di > 0 [di ≥ 0] such that H = LDLT.

Quadratic functions. f(x) = 1
2xTHx + cTx + c0, with H symmetric.

∇f(x) = (Hx + c)T, F(x) = H, f(x + td) = f(x) + t (Hx + c)Td + 1
2 t

2 dTHd.
x̂ minimizes f(x) if and only if H is positive semidefinite and Hx̂ + c = 0.

Equality-constrained QP. minimize 1
2xTHx + cTx + c0 subject to Ax = b.

x̂ = x̄ + Zv̂, (ZTHZ)v̂ = −ZT(Hx̄ + c),

[
H −AT

A 0

](
x̂

û

)
=

(
−c

b

)
.

MN solution to LSQ problems. ATAx̄ = ATb, AATū = Ax̄, x̂ = ATū.

Newton. F(x(k))d = −∇f(x(k))T gives d(k) if F(x(k)) is positive definite.
x(k+1) = x(k)+ tkd

(k) where tk satisfies f(x(k)+ tkd
(k)) < f(x(k)). Try tk = 1 first.

Nonlinear LSQ. minimize f(x) = 1
2

∑m
i=1(hi(x))2 = 1

2h(x)Th(x).

x ∈ IRn, h(x) ∈ IRm, ∇h(x) a m×n matrix with
∂hi
∂xj

(x) in row i and column j.

∇f(x) = h(x)T∇h(x) (row vector), F(x) = ∇h(x)T∇h(x) +
∑

i hi(x)Hi(x).

Gauss-Newton. ∇h(x(k))T∇h(x(k))d = −∇h(x(k))Th(x(k)) gives d(k).
x(k+1) = x(k)+ tkd

(k) where tk satisfies f(x(k)+ tkd
(k)) < f(x(k)). Try tk = 1 first.

Equality-constrained NLP. minimize f(x) subject to hi(x) = 0, i = 1, . . . ,m.
Lagrange conditions: ∇f(x̂) +

∑
i ûi∇hi(x̂) = 0T and hi(x̂) = 0, i = 1, . . . ,m.

Inequality-constrained NLP. minimize f(x) subject to gi(x) ≤ 0, i = 1, . . . ,m.
KKT conditions: ∇f(x̂) +

∑
i ŷi∇gi(x̂) = 0T, gi(x̂) ≤ 0, ŷi ≥ 0, ŷigi(x̂) = 0.

Lagrangean relaxation. P: minimize f(x) subject to g(x) ≤ 0 and x ∈ X.
L(x,y) = f(x) + yTg(x), ϕ(y) = min

x∈X
L(x,y). D: maximize ϕ(y) s.t. y ≥ 0.

Glob. opt. cond. (GOC): L(x̂, ŷ) = min
x∈X

L(x, ŷ), g(x̂) ≤ 0, ŷ ≥ 0, ŷTg(x̂) = 0.


