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Exercises

1. Linear programming

1.1 (20070601-nr.1a)

A company manufactures the three products: A,B and C.
The manufacturing process consists of the moments cutting and pressing.
Every product has to pass both moments.

The department of cutting, which can be used 8 hours per day has the follow-
ing capacity:
2000 units per hour of product A or
1600 units per hour of product B, or
1100 units per hour of product C.
The production can be switched from one product to another without prob-
lems.

The department of pressing, which can be used 8 hours per day has the fol-
lowing capacity:
1000 units per hour of product A, or
1500 units per hour of product B, or
2400 units per hour of product C.
The production can be switched from one product to another without prob-
lems.

The coverage contribution (income minus moving cost) per manufactured unit
of the product are:
12 SEK for A, 9 SEK for B and 8 SEK for C.

The company now wants to decide how many units of each product that (in
average) should be produced to make the total coverage contribution as large
as possible, without breaking the capacity constraints of the sections.

Your assignment is to formulate the company’s problem as a LP-problem. You
don’t have to calculate the optimal solution of this LP-problem.

1.2 (20070601-nr.2)

Consider the following LP-problem::

minimize −3x1 + 4x2 − 2x3 + 5x4
s.t. x1 + x2 − x3 − x4 ≤ 8,

x1 − x2 + x3 − x4 ≤ 4,
x1 ≥ 0,

x2 ≥ 0,
x3 ≥ 0,

x4 ≥ 0.
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(a) Transform the problem to standard form using the two slack variables x5
and x6. Then solve the problem using the simplex method. Start with
the introduced slack variables as basic variables. . . . . . . . . . . . . . . . . . . (4p)

(b) Assume that the objective function coefficient corresponding to x4 is
changed from 5 to 2. Use the simplex method on this modified problem.
It is allowed to start from the final solution from the (a)-task. Explain
what happens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

(c) Formulate the dual LP-problem corresponding to the problem on stan-
dard form (with 6 variables) from the (a)-task. Visualize the feasible
region to this dual problem in a figure with the dual variables y1 and y2
on the axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(d) What does the corresponding figure look like for the dual LP-problem on
standard form from the (b)-task? Comment on the figure!

1.3 (20070307-nr.1a)

The Cidermans family business produce and sell four different types of cider:
Apple cider, Pear cider, Mixed Cider and Standard Cider.
Every hectoliter cider requires p working hours for the production and q work-
ing hours for packaging. The economic profit of the cider for the Cidermans
is v SEK/hektoliter.

p, q and v has different values for the different types of cider according to the
following table:

p q v

Apple cider 1.6 1.2 196
Pear cider 1.8 1.2 210

Mixed Cider 3.2 1.2 280
Standard Cider 5.4 1.8 442

A normal week the company has 80 hours (two family members) to spend on
production and 40 hours (one family member) on packaging.

Further, they have decided that the Apple cider shall be at least 20% of the
produced volume and that the Pear cider shall be at most 30% of the total
volume produced cider.

The question is how much of each sort of cider that is to be produced so that
the profit of the Cidermans is maximized given the constraints above. The
cider is very popular and they can sell everything that they produce without
problems.

Your assignment is to formulate the Cidermans problem as a LP-problem.
However you do not have to compute the optimal solution.
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1.4 (20070307-nr.2)

(a) The following system consists of two linear equations and four linear
inequalities.

x1 + 2x2 + 3x3 + 4x4 = 10,
2x1 + 3x2 + 4x3 + 5x4 = 12,
x1 ≥ 0,

x2 ≥ 0,
x3 ≥ 0,

x4 ≥ 0.

To investigate systematically whether this system has a feasible solution
or not, you can form the following LP-problem with the two “artificial”
variables x5 and x6.

minimize x5 + x6
s.t. x1 + 2x2 + 3x3 + 4x4 + x5 = 10,

2x1 + 3x2 + 4x3 + 5x4 + x6 = 12,
x1 ≥ 0,

x2 ≥ 0,
x3 ≥ 0,

x4 ≥ 0,
x5 ≥ 0,

x6 ≥ 0.

Your task is to first solve this LP-problem with the simplex method and
then answer the question whether there exist a solution to the original
problem above. Motivate your answer carefully! . . . . . . . . . . . . . . . . . . . (6p)

(b) The following two LP-problems (which have their origin in a certain two-
person Zero-sum game) are each-others duals. This you do not have to
show.

minimize x3
s.t. −x1 + 2x2 + x3 ≥ 0

3x1 − 4x2 + x3 ≥ 0
x1 + x2 = 1

x1 ≥ 0, x2 ≥ 0, x3 free.

maximize y3
s.t. −y1 + 3y2 + y3 ≤ 0

2y1 − 4y2 + y3 ≤ 0
y1 + y2 = 1

y1 ≥ 0, y2 ≥ 0, y3 free.

The primal problem has been solved and the optimal solution
x̂1 = 0.6, x̂2 = 0.4, x̂3 = −0.2
has been obtained. Use this information to (with optional method) obtain
an optimal solution ŷ to the dual problem.
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1.5 (20060603-nr.1)

Consider the following LP-problem on standard form:

minimize 4x1 + 3x2 + 2x3 + 3x4 + 4x5

s.t. 4x1 + 3x2 + 2x3 + x4 = 5,

x2 + 2x3 + 3x4 + 4x5 = 3,

x1 ≥ 0,
x2 ≥ 0,

x3 ≥ 0,
x4 ≥ 0,

x5 ≥ 0.

(a) Use the Simplex method to determine an optimal solution to the problem.
Start with x1 and x5 as basic variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

(b) The optimal solution is not unique. Determine another optimal basic
solution than the one you obtained in the (a)-task. . . . . . . . . . . . . . . . . (2p)

(c) Formulate the corresponding dual problem and state an optimal solution
to it. Illustrate also the dual problem graphically in a figure with y1 and
y2 on the coordinate axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

1.6 (20060308-nr.1)

Consider the following linear optimization problem:

minimize x1 + 5x2 + 2x3

s.t. x1 + x2 ≥ 2,

x1 + x3 ≥ 2,

x2 + x3 ≥ 2,

xj ≥ 0, j = 1, 2, 3.

(a) Use the simplex method to determine an optimal solution. You must
start from the basic solution x1 = x2 = x3 = 1 (which is feasible but not
optimal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7p)

(b) Formulate the corresponding dual LP-problem and state an optimal so-
lution to it. Verify in particular that the objective values are equal. (3p)

Optional help:

 1 1 0
1 0 1
0 1 1


−1

=
1

2
·

 1 1 −1
1 −1 1
−1 1 1

.

1.7 (20060308-nr.4b)

Assume that a1, . . . ,am are given vectors in IR3 and that b1, . . . , bm are given
positive numbers (i.e. bi > 0).

Let Ω = {x ∈ IR3 | aT
i x ≤ bi, for i = 1, . . . ,m }.

The set Ω is a region (in IR3) whose “walls” are formed by planes on the form
Pi = {x ∈ IR3 | aT

i x = bi }.
Now assume that you want to determine the center point and radius to the
biggest sphere that is contained in the set Ω.

Formulate this as a LP-problem! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)
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1.8 (20051024-nr.1)

Consider the following LP-problem. (Observe that it is a maximization prob-
lem).

maximize qTx

s.t. Px ≤ b,

x ≥ 0,

where P =

[
1 −1 1
1 1 −1

]
, b =

(
1
1

)
and q = (1, 1, 2)T.

(a) Solve the problem with the simplex method. Start with the slack variables
in the basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7p)

(b) Determine two vectors x0 ∈ IR3 and d ∈ IR3 such that if you let x(t) =
x0 + t ·d, with t ∈ IR, then it holds both that x(t) is a feasible solution to
the problem for every t > 0, and that qTx(t)→ +∞ s.t. t→ +∞. (1p)

(c) Formulate the corresponding dual LP-problem and determine with op-
tional method (e.g. graphically) if it has any feasible solutions. Comment.
(2p)

1.9 (20051024-nr.3)

In a certain city there is a subway-line with 12 stations. One year ago they
did a careful investigation about how many commuters that are going between
different pairs of stations. They computed rij = the average number of com-
muters per day that use the subway to go between station i to station j (i.e.
enters at station i and leaves at station j). This was done for every pair (i, j)
with i ∈ {1, . . . , 12}, j ∈ {1, . . . , 12} and i 6= j.

But now one year has passed since the investigation, and many have changed
residence and/or place where they work, and they are to update the the above
mentioned investigation about traveling in the subway. However, they don’t
want to do this investigation as extensive as one year ago, but only for every
i ∈ {1, . . . , 12} measure pi = the average number of commuters per day that
enters the subway at station i, and for every j ∈ {1, . . . , 12} measure qj = the
average number of commuters per day that leaves the subway at station j.

Surely the result will be that the one year old numbers rij are not consistent
with these measured pi and qj , and hence one should change the rij :s to new
numbers xij that are both consistent to the numbers pi and qj , and differ “as
little as possible” from the old numbers rij .

Your task is to formulate the problem to determine such estimations xij (of
the average number of commuters per day that goes from station i to station
j) as an optimization problem on suitable form!

Note that there is no unambiguous solution to this exercise since it is not
self-evident what is meant by “as little as possible”.

To obtain full point you shall select a LP-formulation that catches the problem
in a reasonable way. A convex QP-formulation can also give a decent number
of points, as can also other reasonable formulations as convex optimization
problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(10p)
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1.10 (20050331-nr.2)

It is well known that the following two LP-problems P and D are each-others
duals.

P: minimize cTx D: maximize bTy

s.t. Ax ≥ b, s.t. ATy ≤ c,

x ≥ 0. y ≥ 0.

In this exercise the connection between the optimal values of the problems is
illustrated (which sometimes can be +∞ or −∞).

Suppose that A =

[
0 1
−1 0

]
.

Solve graphically the above problems P and D, state their optimal values
and, if there are any, their optimal solutions.

(a) When b = ( 1, −1 )T and c = (−2, 2 )T. . . . . . . . . . . . . . . . . . . . . . . . . .(2p)

(b) When b = ( 1, −1 )T and c = ( 2, 2 )T. . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(c) When b = (−1, −1 )T and c = (−2, 2 )T. . . . . . . . . . . . . . . . . . . . . . . . (2p)

(d) When b = (−1, 1 )T and c = ( 2, 2 )T. . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(e) When b = (−1, −1 )T and c = ( 2, −2 )T. . . . . . . . . . . . . . . . . . . . . . . . (2p)

To solve a problem graphically means in this case to draw the feasible region
and the curvature of the objective function, and from this make conclusions
about the optimal value of the problem and the, in case there is one, optimal
solution. Since both P and D are to be solved in each part of the exercise it
will in total be 10 figures (but each individual figure is fast to draw).

1.11 (20050307-nr.2)

Consider the following LP-problem which we denote P.

minimize z = cTx

s.t. Ax = b ,

x ≥ 0 ,

where A =


1 1 0 1 0 0

2 2 2 1 0 2

2 0 2 1 2 1

, b =


1

3

5

, cT =
(

2 1 1 1 2 1
)
.

(a) Suppose that x1, x3 and x5 are chosen as basic variables. Determine
the corresponding basic solution, and show that this is a feasible basic
solution to P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(b) The basic solution above is not optimal (right?). Perform an iteration
with the simplex method and determine a new, (better) feasible basic
solution. Then verify that you found an optimal solution to the problem.
(6p)
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(c) Formulate the dual problem D corresponding to P and denote an optimal
solution to D. Verify specifically that the optimal values of P and D are
equal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

1.12 (20050307-nr.5)

Given are two sets of points P = {p1, . . . ,pk} and Q = {q1, . . . ,q`} in IRn.
The k + ` points pi ∈ IRn and qj ∈ IRn are hence given, and we assume
that p1 = 0.

Now you want to determine whether there is any vector a ∈ IRn with non-
negative components (i.e. a ≥ 0) such that the hyper-plane {x ∈ IRn | aTx =
1} separates the sets of points (so that all points in P are on one side of the
plane while all points in Q are on the other side of the plane).

(a) First assume that both points in P and in Q are permitted to lie on the
separating plane, i.e. we seek a plane that “weakly” separates P and Q.

Formulate the problem to determine a weakly separating plane on the
form above (i.e. aTx = 1 with a ≥ 0) as a LP-problem on standard form.
State specifically a feasible starting basic solution to your LP-problem.
Also describe how you from the optimal solution to the LP-problem can
determine whether there is any weakly separating plane on the form
above. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

(b) Now suppose that neither points in P nor points in Q are allowed to be
on the separating plane, i.e. we search a plane that ”‘strictly”’ separates
P and Q.

Formulate the problem to determine a strictly separating plane on the
form above (i.e. aTx = 1 with a ≥ 0) as a LP-problem on standard form.
State specifically a feasible starting basic solution to your LP-problem.
Also describe how you from the optimal solution to the LP-problem can
determine whether there is any strictly separating plane on the form
above. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

1.13 (20041016-nr.2)

The five following vectors in IR3 are given:

a1 =

 1

−1

0

, a2 =

 0

1

1

, a3 =

−1

0

−1

, a4 =

 1

1

1

 and b =

 2

3

6

.

You want to determine whether there are any non-negative scalars xj such
that
b = a1x1 + a2x2 + a3x3 + a4x4.

Therefore you form the following LP-problem in the seven variables
x = (x1, x2, x3, x4)

T and v = (v1, v2, v3)
T:

minimize eTv

s.t. Ax + I v = b

x ≥ 0 and v ≥ 0,
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where A is a 3×4 matrix with the vectors above, aj , as columns,
I is a 3×3 unitary matrix and eT = (1, 1, 1).

(a) Show that an optimal solution to the LP-problem above is given by
x = (2, 5, 0, 0)T and v = (0, 0, 1)T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

(b) Are there any scalars xj ≥ 0 such that b = a1x1 + a2x2 + a3x3 + a4x4 ?
Motivate your answer carefully. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(c) Is there any vector y ∈ IR3 such that bTy > 0 and aT
j y ≤ 0 for all j ?

Determine in that case such a vector y. . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)
(Help: Consider the dual problem to the LP-problem above.)

1.14 (20041504-nr.2)

You have downloaded a program from the net of unknown quality to solve
LP-problems of the form

minimize cTx

s.t. Ax = b,

x ≥ 0.

You test the program with the following data:

A =

 3 2 1 3 3 2
2 4 2 1 2 1
1 2 3 2 3 3

, b =

14
16
10

, cT = ( 2, 3, 2, 2, 3, 2 ).

Then the program prints the following:

“An optimal solution to the problem is x = ( 3, 2, 1, 0, 0, 0 )T , and an
optimal
solution to the corresponding dual problem is y = (0.25, 0.50, 0.25)T”.

(a) Verify that the result of the program is correct. . . . . . . . . . . . . . . . . . . . (6p)

(b) Assume that the constraints Ax = b above are changed to the constraints
Ax ≥ b.
Determine an optimal solution to this new problem. . . . . . . . . . . . . . . .(2p)

(c) Now suppose that the constraints Ax = b above are changed to Ax ≤ b.
Determine an optimal solution to this new problem. . . . . . . . . . . . . . . .(2p)
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1.15 (20040310-nr.5)

Consider the following LP-problem with 101 variables:

minimize cTx

s.t. Ax = b ,
x ≥ 0,

where A =

[
100 99 98 · · · 51 50 49 · · · 2 1 0
0 1 2 · · · 49 50 51 · · · 98 99 100

]
, b =

(
100
200

)
and cT = ( 50 49 48 · · · 1 0 1 · · · 48 49 50 ).

The j:th column in A is hence given by aj = (101−j , j−1)T, for j = 1, . . . , 101,
while the j:th component in c is given by cj = | j−51 | (absolute norm).

(a) Start with the variables x1 and x101 in the basis, and perform one itera-
tion with
the simplex method. Determine whether the new basic solution you ob-
tain
is an optimal solution to the problem or not. . . . . . . . . . . . . . . . . . . . . . . (4p)

(b) How many feasible basic solutions does this LP-problem have? . . . . (3p)

(c) How many of these basic solutions are optimal solutions? . . . . . . . . . (3p)
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2. Network problems

2.1 (20070601-nr.1b)

Here a so called balanced transportation problem, with four factories and four
costumers, is studied. I.e. a problem on the form

minimize
4∑
i=1

4∑
j=1

cijxij

s.t.
4∑
j=1

xij = si , for i = 1, . . . , 4

4∑
i=1

xij = dj , for j = 1, . . . , 4

xij ≥ 0 , for all i and j,

where
si = given supply at factory i,
dj = given demand at customer j,
cij = given transportation cost per unit from the factory i to customer j,
xij = number of units transported from factory i to customer j.

Assume that the supply at the factories and the demand at the customers is
given by
s1 = 40, s2 = 30, s3 = 20, s4 = 10, d1 = 10, d2 = 20, d3 = 30, d4 = 40,
and the transportation costs are given by the table:

cij customer 1 customer 2 customer 3 customer 4

factory 1 116 125 136 149

factory 2 109 116 125 136

factory 3 104 109 116 125

factory 4 101 104 109 116

With the help of the “North West Corner”-rule the following feasible basic
solution is obtained:

xij customer 1 customer 2 customer 3 customer 4 si
factory 1 10 20 10 0 40

factory 2 0 0 20 10 30

factory 3 0 0 0 20 20

factory 4 0 0 0 10 10

dj 10 20 30 40

Decide whether this is an optimal solution to the problem or not.

2.2 (20070307-nr.1b)

Consider the LP-problem

minimize cTx
s.t. Ax = b,

x ≥ 0,
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where A =



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
−1 0 0 −1 0 0 −1 0 0

0 −1 0 0 −1 0 0 −1 0
0 0 −1 0 0 −1 0 0 −1


, b =



3
5
7
−2
−4
−9


and cT =

(
2 3 4 3 3 4 3 2 4

)
.

From the special form of the matrix A it follows that the problem in reality
is a minimum cost flow problem. Draw the corresponding network and verify
thereafter that x̂ = (2 , 0 , 1 , 0 , 0 , 5 , 0 , 4 , 3)T is an optimal solution to the
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

2.3 (20060603-nr.5)

A company has agreed on supplying p1, p2 and p3 tonnes of a certain product
(to an important costumer) at the end of each of the following three months.
p1, p2 and p3 are given constants.

Every month the company can manufacture at most a ton to the cost of c
SEK/tonne. By using overtime they can manufacture another at most b tonnes
per month to the cost of d SEK/tonne. a, b, c and d are given constants with
a > b and d > c.

The quantities of the product that is manufactured of the product, but are
not needed for delivery the same month, can be stored for delivery another
month. The storage cost is ` SEK per tonne and month that you store. ` is a
given constant.

If the company does not supply the agreed quantity a certain month, they can
instead deliver the missing quantity at a later month, but no later than the
third and last month. The agreed fee for being late is f SEK per tonne and
month that you are late. f is a given constant.

In the beginning of month 1 the storage is empty, and you don’t want anything
in the storage after the three months. We can assume that p1+p2+p3 < 3a+3b.

Formulate the company’s planning problem, in which the costs of the company
is to be minimized, as an optimization problem of adequate form.

A totally correct formulation gives 8 points.
A totally correct formulation as a minimum cost flow problem gives 10 points.

2.4 (20060308-nr.3)

Consider a balanced transportation problem with 4 suppliers and 4 customers:

minimize
4∑
i=1

4∑
j=1

cijxij

s.t.
4∑
j=1

xij = si , for i = 1, . . . , 4

4∑
i=1

xij = dj , for j = 1, . . . , 4

xij ≥ 0 , for all i and j,
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where si = supply at supplier i, dj = demand at customer j,
cij = the transportation cost per unit from supplier i to customer j.

Suppose supply and demand are given by

s1 = 80, s2 = 60, s3 = 40, s4 = 20,

d1 = 20, d2 = 40, d3 = 60, d4 = 80,

and that the transportation costs are given by the table:

cij customer 1 customer 2 customer 3 customer 4

supp 1 16 25 36 49

supp 2 9 16 25 36

supp 3 4 9 16 25

supp 4 1 4 9 16

(a) Determine a feasible basic solution with the “North West Corner”–rule.
(1p)

(b) Show that the solution you obtained in the (a)-task above turns out to be
an optimal solution. (If you do not know the “North West Corner”–rule
you may solve the problem starting from an optional basic solution.) (5p)

(c) Assume that both s4 and d1 are changed from 20 to 40. Determine an
optimal solution to this new problem. Motivate your answer. . . . . . . (2p)

(d) Restore s4 and d1 to 20. Assume that c22 is decreased from 16 to 16−δ22,
while the other cij are unchanged. For which values on δ22 is it valid that
the optimal solution from the (b)-task above is still optimal? . . . . . . (2p)

2.5 (20051024-nr.2)

A given directed network has the node set N = {1, 2, 3, 4, 5, 6} and edge set
B = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5), (4, 6), (5, 6)} (directed
edges).
The network has two source nodes, node 1 with the supply 25 units and node 2
with the supply 10 units, and two sink nodes, node 5 with the demand 15 units
and node 6 with the demand 20 units. The nodes 3 and 4 are intermediate
nodes, with neither supply nor demand. The flow cost cij , in kSEK per unit
flow, for respective edge (i, j) in the network are according to the following:
c12 = 3, c13 = 2, c23 = 1, c24 = 4, c34 = 4, c35 = 4, c45 = 1, c46 = 2,
c56 = 3.

(a) Determine a flow of minimal cost that fulfills the constraints on supply
and demand according to above. Start from the following (natural) fea-
sible basic solution:
x12 = 10, x13 = 15, x24 = 20, x35 = 15, x46 = 20, the other xij = 0.
(8p)

(b) Formulate the dual LP-problem corresponding to the minimum cost flow
problem above. Determine a solution to this dual problem and verify that
the optimal values are equal (for the dual and the primal). . . . . . . . . (2p)
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2.6 (20050331-nr.1)

A company has two factories, here called F1 and F2, and three big customers
here called K1, K2 and K3. All transports from plants to customers are
through any of the company’s reloading terminals, called T1 and T2.

Since factories, terminals and customers are spread out over the country, the
costs for the transports between different units are different.

The transportation costs from the factories to the terminals and from the
terminals to the customers, in the unit 100 SEK per tonne, are given by the
following table:

T1 T2

F1 7 6

F2 4 5

K1 K2 K3

T1 6 7 7

T2 6 9 5

A specific week the demand by each of the three customers is 200 tonnes of the
company’s product. The company’s supply of the product the specific week is
300 tonnes in each of the two plants.

The head of the company’s transport division has proposed the following trans-
port plan, in the unit tonnes.

T1 T2

F1 0 300

F2 200 100

K1 K2 K3

T1 0 200 0

T2 200 0 200

Your exercise, as a contracted optimization consultant, is to decide whether
the proposed plan is optimal from the transportation point of view. If that is
not the case, you should produce an optimal plan.

Note that you must use a general method that is useful also on bigger problems
of this type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

2.7 (20050307-nr.1)

(a) A network with capacities has the set of nodes N = {1, 2, 3, 4, 5, 6, 7, 8}
and the set of edges B = {(1, 2), (1, 3), (1, 4), (2, 6), (3, 5), (3, 7), (4, 6), (5, 8), (6, 8), (7, 8)}.
Each of these 10 edges in B has the capacity kij = 1.

Determine a maximum flow from node 1 to node 8 in this network! Use
the maximum flow algorithm and start from the zero flow (i.e. all xij = 0).

Determine also a cut of minimum capacity that separates node 1 and 8.
Verify that the capacity of the minimum cut = the value of the maximum
flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

(b) This (b)-task is independent of the (a)-task above.

The owner of a street-stand is about to make a weekly schedule for his
seven part-time employed technology students. Every day of the week
two students shall work in the stand, and every student shall work two
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times a week. To meet the wishes of the employees each of the employees
has stated which days they want to work. These are the wishes:

Student 1: Monday, Saturday, Sunday.
Student 2: Tuesday, Saturday, Sunday.
Student 3: Wednesday, Saturday, Sunday.
Student 4: Thursday, Saturday, Sunday.
Student 5: Friday, Saturday, Sunday.
Student 6: Monday, Tuesday, Wednesday, Thursday, Friday.
Student 7: Monday, Tuesday, Wednesday, Thursday, Friday.

The owner shall now intent to make a schedule where each student gets
to work two of the days he/she stated.

Your task is to formulate the scheduling problem of the owner as a maxi-
mum flow problem in a certain network. Explain and motivate carefully.
You do not need to compute the maximum flow, but you should describe
how you given the maximum flow determine whether there exists a sched-
ule that fulfills the wishes or not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

2.8 (20041016-nr.1)

An airport operator will under a period of time maintain four airports with
fuel. The demand for fuel is estimated to the following:

Airport 1 2 3 4

Demand (tonnes) 300 300 300 300

They have received offers from three different fuel distributing companies re-
garding the total transport capacity and prices for delivery to the respective
airports for the period:

Supplier 1 2 3

Capacity (tonnes) 400 400 400

Airport 1 2 3 4

Sup. 1 (SEK/tonne) 5 4 4 5
Sup. 2 (SEK/tonne) 7 4 4 7
Sup. 3 (SEK/tonne) 8 6 5 7

They want to determine a plan for the purchases that minimizes the fuel costs
of the airport operator during the period.

(a) Formulate this as a linear programming problem.
State carefully what your variables stand for. . . . . . . . . . . . . . . . . . . . . .(2 p)

(b) As you surely have noted the problem is a typical “transportation prob-
lem”.
Use therefore the transport algorithm to solve it. . . . . . . . . . . . . . . . . . (6 p)

(c) Formulate the corresponding dual LP-problem and state an optimal so-
lution to it.
(2 p)
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2.9 (20040415-nr.1)

A company has four factories, in the cities A, B, C and D, and five big cus-
tomers, in the cities P, Q, R, S and T.

At a specific time the customers demand the following quantities of the com-
pany’s product: Customer in P 50 tonnes, Customer in Q 120 tonnes, Cus-
tomer in R 110 tonnes, Customer in S 70 tonnes and Customer in T 90 tonnes.

The company’s supply of the product at the time is 90 tonnes at the factory
in A, 100 tonnes at the factory in B, 60 tonnes at the factory in C and 190
tonnes at the factory in D.

The transportation costs from factories to customers, in 100 SEK/tonne, is
given by the following table:

P Q R S T

A 6 6 5 6 3

B 9 8 7 8 6

C 8 8 5 7 5

D 8 9 6 7 5

(a) Determine how much the company should transport from each factory
to each customer to make the total transportation cost minimized under
the constraints that the customers demand are satisfied and the supply
of the factories are not exceeded. Use the transport algorithm. . . . . (7p)

(b) The solution you obtained is not unique, right? Determine therefore also
another optimal solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

2.10 (20040310-nr.1)

The linear optimization problem stated below in the variables xik and zkj can
be interpreted as a minimum cost problem with I source-nodes, K intermedi-
ate nodes, J sink-nodes, an edge from every source-node to every intermediate
node (corresponding to the variables xik) and an edge from every intermediate
node to every sink-node (corresponding to the variables zkj).
All flow from the source-nodes (factories) to the sink-nodes (stores) must al-
ways go through intermediate nodes (trans-shipment terminals).

minimize
I∑
i=1

K∑
k=1

pikxik +
K∑
k=1

J∑
j=1

qkjzkj

s.t.
K∑
k=1

xik = si , for i = 1, . . . , I

−
I∑
i=1

xik +
J∑
j=1

zkj = 0 , for k = 1, . . . ,K

−
K∑
k=1

zkj = −dj , for j = 1, . . . , J

xik ≥ 0 , zkj ≥ 0 , for all i, k, j
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Here si, dj , pik and qkj are given positive numbers such that
I∑
i=1

si =
J∑
j=1

dj .

Assume specifically that we have the following data given:
I=K=J=2, s1= 30, s2= 20, d1= 40, d2= 10, p11= 5, p12= 2,
p21= 3, p22= 2, q11= 5, q12= 5, q21= 7, q22= 6.

(a) Show that the following solution is an optimal solution to the problem:
x11 = 0, x12 = 30, x21 = 20, x22 = 0, z11 = 20, z12 = 0, z21 = 20, z22 = 10.
(7p)

(b) Formulate the dual LP-problem corresponding to the problem above
and state an optimal solution to this dual problem. Verify specifically
that the optimal values of the problems (primal and dual) are equal. (3p)
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3. Convexity

3.1 Let C and D be two convex sets, α ∈ IR and f : C → IR a convex function.
Show that the following sets are convex.

(a) αC = {αx|x ∈ C}.
(b) C

⋂
D.

(c) C +D = {x+ y|x ∈ C, y ∈ D}.
(d) {x ∈ C|f(x) ≤ α}.
(e) epi f = {(x, µ) ∈ C × IR|f(x) ≤ µ}.

3.2 Let Cα denote a convex set in IRn for each α in the index set A. Show that⋂
α∈ACα is a convex set.

3.3 Let f and g be convex functions on a convex set C, and let α be a positive
constant. Show that the following functions are convex on C.

(a) f + g.

(b) αf .

(c) max{f, g}.

3.4 Let fα be convex functions (defined on the same convex set C) for each α in
the index set A. Show that supα∈A fα is a convex function.

3.5 Let f : I → IR be a nondecreasing convex function on the interval I ⊆ IR, and
let g : C → I be a convex function on the convex set C ⊆ IRn. Show that
f(g(x)) is a convex function on C.

3.6 Which of the following functions are convex?

(a) f(x) = ln(ex1 + ex2).

(b) f(x) = ln(
∑n
i=1 e

aixi).

(c) f(x) =
√∑n

i=1 x
2
i .

(d) f(x) = x21/x2, for x2 > 0.

(e) f(x) = −√x1x2, for x1, x2 > 0.

(f) f(x) = −(
∏n
i=1 xi)

1/n, for xi > 0.

3.7 Show the inequality between the arithmetic and the geometric mean, i.e., show
that for xi > 0, it holds that (

∏n
i=1 xi)

1/n ≤ 1
n

∑n
i=1 xi.

3.8 (a) Let x1, . . . , xm ∈ IRn be given. Show that

C = {x ∈ IRn| There exist ti ≥ 0 such that x =
m∑
i=1

tixi,
m∑
i=1

ti = 1}

is a convex set.

(b) Suppose that X is a convex subset of IRn and that x1, . . . , xm ∈ X. Show
that

∑m
i=1 tixi ∈ X, if ti ≥ 0 and

∑m
i=1 ti = 1.
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3.9 (20060308-nr.5)

Let f be a one-variable function (f : IR → IR) which is twice continuously
differentiable on the entire IR and fulfills that f(x) > 0 for all x ∈ IR.

Let the one-variable function g be defined by g(x) = (f(x))2, for all x ∈ IR.

Determine which of the following statements that are true (proof or counterex-
ample).

Note that it is given that f(x) > 0 for all x ∈ IR.

(a) If f is convex on IR then g is convex on IR. . . . . . . . . . . . . . . . . . . . . . . . (2p)

(b) If f is not convex on IR then g is not convex on IR. . . . . . . . . . . . . . . . (2p)

(c) If x̂ is a local minimizer to f then x̂ is a local minimizer to g. . . . . . (2p)

(d) If x̂ is not a local minimizer to f then x̂ is not a local minimizer to g.
(2p)

(e) Assume that in a given point x0 ∈ IR is holds that
f ′(x0) 6= 0, f ′′(x0) > 0, g ′(x0) 6= 0 and g′′(x0) > 0.

Let x1 be the point you obtain if you perform one iteration with Newton’s
(one-variable)-method to minimize f(x) starting from the point x0,
and let x̄1 be the point you obtain if you perform one iteration with
Newton’s (one-variable)-method to minimize g(x) starting from x0.

Show that |x̄1 − x0| < |x1 − x0|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2p)

Known theorems may be used without proof if they are properly formulated.

3.10 (20051024-nr.5)

Let f and g be two given real valued functions that are convex on whole IRn,
and consider the following convex optimization problem, which we denote P0,
in the variable vector x ∈ IRn:

minimize f(x)

s.t. g(x) ≤ 0.

This exercise is about how you can determine an overestimation of the optimal
value to P0 with help of linear programming.

Let x(1),x(2), . . . ,x(K) be K given points in IRn and form the following LP-
problem, which we denote LP1, in the variables w1, . . . , wK :

minimize
K∑
k=1

wkf(x(k))

s.t.
K∑
k=1

wkg(x(k)) ≤ 0

K∑
k=1

wk = 1

wk ≥ 0, for k = 1, . . . ,K.

Suppose that x̂ is an optimal solution to P0 and that ŵ = (ŵ1, . . . , ŵK)T is
an optimal basic solution to LP1 (obtained with the simplex method).
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(a) Show that
K∑
k=1

ŵkf(x(k)) ≥ f(x̂), i.e. that the optimal value to LP1 is

an overestimation of the optimal value of P0. . . . . . . . . . . . . . . . . . . . . . (7p)

(b) Assume that one of the four given points x(k) is an optimal solution to
P0. Determine an optimal solution to LP1 and show that the optimal
solutions
to P0 and LP1 now are identical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)
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4. Lagrange relaxations and duality

4.1 Solve the following problem, and motivate global optimality.

min
n∑
j=1

x2j

s.t.
n∑
j=1

ajxj ≥ b

xj ≥ 0, j = 1, . . . , n

where aj , j = 1, . . . , n and b are constants.

4.2 Solve the following problem, and motivate global optimality.

max
n∑
j=1

lnxj

s.t.
n∑
j=1

ajxj ≤ b,

xj > 0, j = 1, . . . , n,

where aj , j = 1, . . . , n and b are positive constants.

4.3 Solve the following problem, and motivate global optimality.

min
n∑
j=1

ajxj

s.t.
n∑
j=1

bj
xj
≤ b0,

xj > 0, j = 1, . . . , n,

where aj , j = 1, . . . , n, and bj , j = 0, . . . , n are positive constants.

4.4 Solve the following problem, and motivate global optimality.

min
n∑
j=1

aj
xj

s.t.
n∑
j=1

bjxj = b0,

xj > 0, j = 1, . . . , n,

where aj , j = 1, . . . , n, and bj , j = 0, . . . , n are positive constants.

4.5 Solve the following problem, and motivate global optimality.

min
n∑
j=1

ecjxj

s.t.
n∑
j=1

ajxj ≥ b,

where aj , j = 1, . . . , n, cj , j = 1, . . . , n and b are positive constants.
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4.6 At an exam, a “new” method is used for answering multiple-choice questions.
The answer is given by denoting the probability of each answer to be correct.

The given probabilities have to sum up to 1 (and be nonnegative of course).

If choice k is correct and you have put the probability qk you are given the
score ln qk (which is normally negative).

Suppose you are to answer such a multiple-choice question with N alternatives.
You judge that the probability is pn for alternative n to be correct. The
probabilities qn which you give as answers do not have to be identical to the
pn.

(a) Formulate the problem to determine the probabilities qn so that the ex-
pected total score is maximized.

(b) Determine the optimal choice of qn, n = 1, . . . , N.

Remark: You use subjective probabilities in the same way you would use
regular probabilities.

4.7 Consider the problem (P ) defined as

(P )

min x41 + 2x1x2 + x22 + x83

s.t. (x1 − 2)2 + (x2 − 2)2 + (x3 − 3)2 ≤ 6,
x1x2x3 ≤ 10,
x1 ≥ 1,
x2 ≥ 0,
x3 ≥ 0.

Use Lagrangean relaxation to show that x̂ = ( 1 1 1 )T is a global minimizer
to (P ).

4.8 Determine the dual problem to

(P )

min
n∑
i=1

x2i

s.t.
n∑
i=1

aixi = b.

4.9 Determine a suitable dual problem to

(P )

min
n∑
i=1

ai
xi

s.t.
n∑
i=1

bixi = b0,

li ≤ xi ≤ ui, i = 1, . . . , n,

where ai > 0, 0 < li < ui for i = 1, . . . , n and b0 > 0.
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4.10 Determine a suitable dual problem to

(P )

min
n∑
i=1

n∑
j=1

xij lnxij

s.t.
n∑
j=1

xij = ai, i = 1, . . . , n,

n∑
i=1

xij = bj , j = 1, . . . , n,

xij ≥ 0, i = 1, . . . , n, j = 1, . . . , n,

where ai > 0 for i = 1, . . . , n and bj > 0 for j = 1, . . . , n.

4.11 Consider the problem

(P )

min
n∑
j=1

x3j

s.t.
n∑
j=1

ajxj ≥ b,

xj ≥ 0, j = 1, . . . , n,

where aj > 0, j = 1, . . . , n and b > 0.

(a) Determine (D), the (Lagrange-) dual problem to (P ) which is created
when the sum constraint is relaxed.

(b) Determine an optimal solution to (D). (It is not necessary to use a
systematic method.)
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5. Quadratic programming

5.1 (20070601-nr.3)

This problem concerns a small electrical network with resistances on the links.
The network has the set of nodes N = {1, 2, 3, 4} (i.e. in total 4 nodes) and the
set of links B = {(1, 3), (1, 4), (2, 3), (2, 4)}. (Hence there are no link between
the nodes 1 and 2 and no link between the nodes 3 and 4, but there is a link
between any other node pair.) Every link (i, j) ∈ B has a given resistance Rij
Ohm. Now suppose that the current 500 mA is fed into node 1 and 100 mA
into node 2, while 500 mA is taken out in node 3 and 100 mA is taken out in
node 4. The total (heat) effect in the network is then given by

R13x
2
13 +R14x

2
14 +R23x

2
23 +R24x

2
24,

where xij = current in the link (i, j). (If xij > 0 the current in the link is
going from node i to node j, while if xij < 0 the current in the link is going
from node j to node i.)

Nature decides the currents xij in such a way that the above sum is minimized
under the constraints of balance of the currents in the first three nodes. The
current balance in the fourth node, −x14 − x24 = −100, follows from the cur-
rent balances in the other three nodes, as for all problems regarding balanced
networks or flows.

Your task is now to compute the currents in the links xij by solving the opti-
mization problem above, which has a convex quadratic objective function and
linear equality constraints. Use a general method for this type of quadratic
optimization.
For simplicity you may assume that Rij = 1 for all links.

5.2 (20070307-nr.3)

In the entire exercise

f(x) = (x1−x2)2+(x2−x3)2+(x3−x1)2, A =

[
1 2 3
3 2 1

]
and b =

(
10
14

)
is valid.

(a) Determine a symmetric 3×3–matrix H such that f(x) = 1
2xTHx. . (1p)

(b) Determine one solution x̄ to the system of equations Ax = b. . . . . . (1p)

(c) Determine a basis of N (A) (= Null-space to A). . . . . . . . . . . . . . . . . . . (2p)

(d) Use the results from (a)–(c) to determine an optimal solution x̂ to
the problem: minimize f(x) s.t. Ax = b. . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(e) Now let c ∈ IR3 be a given vector and consider the problem to minimize
f(x) + cTx s.t. x ∈ IR3, i.e. a quadratic optimization problem without
constraints. For some choices of the vector c it turns out that this problem
have at least one optimal solution, which therefore is a minimizer to
f(x) + cTx, while it for other choices of the vector c it turns out that
f(x) + cTx has no lower bound and hence does not have a minimizer.
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Your task is to show that there exist a vector a ∈ IR3, which you should
state, such that the following equivalence is valid:

f(x) + cTx has at least one minimizer ⇔ aTc = 0. . . . (4p)

5.3 (20040310-nr.4)

In this exercise c ∈ IRn and a ∈ IRn are two given vectors that fulfill that

aTa = 1, cTc = 1 and aTc = 0.

Now consider the following problem in the variable vector x ∈ IRn:

minimize 1
2 xTx− cTx

s.t. 1
2 xTx− aTx ≤ 0 .

(a) Make a Lagrange relaxation of the problem and determine an explicit
expression for the dual objective function ϕ. . . . . . . . . . . . . . . . . . . . . . . (4p)

(b) Determine an optimal solution ŷ to the dual problem. . . . . . . . . . . . . . (3p)

(c) Determine an optimal solution x̂ to the original (primal) problem
above and verify that (x̂, ŷ) fulfill the global optimality conditions. (3p)

5.4 (20060603-nr.2)

Let A =

[
1 1 −1 −1
1 −1 1 −1

]
and q =


4
2
0
−2

.

(a) First assume that you want to determine the vector x in the null-space
to A
which is closest to the vector q, i.e. you want to solve the problem

P1: minimize |x− q |2 s.t. x ∈ N (A),

where | · | means the standard Euclidean norm in IR4, i.e. |x−q |2 =
(x−q)T(x−q),
and N (A) = {x ∈ IR4 |Ax = 0}. Determine the optimal x. . . . . . . . (5p)

(b) Now suppose you want to determine the vector x in the range space of
AT

which is the closest to the vector q, i.e. you want to solve the problem

P2: minimize |x− q |2 s.t. x ∈ R(AT),

where R(AT) = {x ∈ IR4 |x = ATv for some v ∈ IR2}. Determine
optimal x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

5.5 (20060308-nr.4)

(a) Let a ∈ IR3 be a given vector and b ∈ IR a given constant.
Then P = {x ∈ IR3 | aTx = b } is a plane in IR3.
Let x̄ ∈ IR3 be a given point that fulfills aTx̄ < b.
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Determine the point x̂ ∈ P that is closest to x̄ among all points in P,
i.e. optimal solution to the problem to minimize |x− x̄ |2 s.t. aTx = b.
(The answer will of course contain x̄, a and b.)

Also show that the shortest distance d from x̄ to the plane P, i.e. | x̂− x̄ |,
is given by the expression d = (b− aTx̄)/|a|. . . . . . . . . . . . . . . . . . . . . . . (4p)

5.6 (20050331-nr.4)

Let U and V be the following two subsets of IR4:

U = {u ∈ IR4 | Ru = p}, where R =

 1 0 0 1
0 1 0 1
0 0 1 1

 and p =

1
1
1

.

V = {v ∈ IR4 | Sv = q}, where S =

 1 1 0 0
1 0 1 0
1 0 0 1

 and q =

2
2
2

.

Determine the shortest (Euclidean) distance d between U and V. Determine
also
the two points û ∈ U and v̂ ∈ V between which the distance is the smallest.
(10p)

5.7 (20050307-nr.3)

In this exercise A =

[
1 −1

−1 1

]
and b =

(
b1

b2

)
, where b1 and b2 are given

numbers.

The Euclidean norm of a vector x are as usual denoted by |x | , so that

|x |2 = xTx and |Ax− b |2 = (Ax− b)T(Ax− b).

(a) Determine all optimal solutions x to the following problem:

P1: minimize |Ax− b |2

s.t. x ∈ IR2.

The answer can of course contain b1 and b2. . . . . . . . . . . . . . . . . . . . . . . . (2p)

(b) Let X(b) = be the set of optimal solutions x to the problem P1 above.

Determine the unique optimal solution to the following problem:

P2: minimize |x |2

s.t. x ∈ X(b).

The answer may of course contain b1 and b2. . . . . . . . . . . . . . . . . . . . . . . (2p)

(c) Let x̂(b) denote the optimal solution to the problem P2 above.

Show that x̂(b) = A+b for a certain matrix A+. State A+. . . . . . . . . (1p)

(d) Now let ε be a given number that fulfills ε > 0.

Determine the unique optimal solution to the following problem:

P3: minimize |Ax− b |2 + ε |x |2

s.t. x ∈ IR2.

The answer may of course contain b1, b2 and ε. . . . . . . . . . . . . . . . . . . . (3p)
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(e) Let x̃ε(b) denote the optimal solution to the problem P3 above.

Show that x̃ε(b) = Ãεb for a certain matrix Ãε which depends on ε.
Show also that if ε goes to 0, then every element of the matrix Ãε goes
to the corresponding element in the matrix A+. . . . . . . . . . . . . . . . . . . . (2p)

5.8 (20041016-nr.3)

Let L1 and L2 be two given lines on parameter form in IR3:

L1 = { x ∈ IR3 | x = a + α·u, for α ∈ IR} and

L2 = { y ∈ IR3 | y = b + β ·v, for β ∈ IR},
where a, b, u and v are given vectors in IR3.

We assume that the direction vectors of the lines u and v are normalized,
i.e. uTu = vTv = 1, and that they are not parallel.

You want to connect the lines with a thread. The question is between which
two points x̂ ∈ L1 and ŷ ∈ L2 the thread should be tied to make it as short
as possible.

(a) Formulate this as an optimization problem in two variables (α and β).
Determine specifically if your formulation is convex! . . . . . . . . . . . . . . . (4p)

(b) Solve the problem you formulated above analytically, with the help of
well-known optimality conditions, for the special case that the given vec-
tors u and v are orthogonal, i.e. fulfills uTv = 0. Denote the optimal
points x̂ and ŷ expressed in a, b, u and v. . . . . . . . . . . . . . . . . . . . . . . . . (6p)

5.9 (20040415-nr.3)

Consider the quadratic optimization problem to minimize 1
2xTHx when Ax =

b,

where H =


2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2

, A =

 1 0 1 0 0
0 1 0 1 0
0 0 1 0 1

 and b =

2
2
2

.

A feasible (but not optimal) solution to the problem is x̄ = ( 1, 1, 1, 1, 1 )T.

(a) Show that the vectors z1 = ( 0, −1, 0, 1, 0 )T and z2 = ( 1, 0, −1, 0, 1 )T

is a basis to N (A) (= the null-space of A). . . . . . . . . . . . . . . . . . . . . . . . (2p)

(b) Use the above information to solve the considered optimization problem
with a null-space method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(6p)

(c) Let x̂ denote the optimal solution to the problem. Determine a vector û
that together with x̂ satisfies the optimality conditions to the problem.
(2p)

5.10 (20040310-nr.2)

This exercise is about an electrical network with resistances on the links.
The network consists of 5 nodes, and there is a link between every pair of
nodes. Hence there are in total 10 links (i, j) with 1 ≤ i < j ≤ 5.
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For simplicity every link (i, j) is assumed to have the resistance rij = 1 Ohm.

Assume that you send in the current 1 Ampere in a node, say node 1, and
take it out in another node, say node 5. The total (heat-)effect in the network
is then given by

∑
rijx

2
ij , where xij = the current in the link (i, j) and where

the sum goes over to all the other 10 links in the network. (If xij > 0, the
current in the link goes from node i to node j, whereas if xij < 0, the current
goes in the link from node j to node i.)

Nature chooses the currents xij in a way that minimizes the mentioned sum∑
rijx

2
ij under constraints on current balances in the nodes, i.e. 4 linearly

independent flow constraints. (Balance in the fifth node follows from balance
in the other four nodes, as for all network flow problems.)

Your task is now to compute the currents in the links xij by solving the mini-
mization problem above, which has a quadratic objective function and linear
constraints. State also the total effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

The following might be useful for the computations:
4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4


−1

=
1

5
·


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

.
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6. Nonlinear programming

6.1 (20070601-nr.5)

In the following optimization problem c1 is a constant.

minimize c1x1 − 4x2 − 2x3

s.t. x21 + x22 ≤ 2,

x21 + x23 ≤ 2,

x22 + x23 ≤ 2.

(a) Decide whether it is a convex optimization problem or not.
Motivate your answer carefully.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

(b) Write down the KKT-conditions for the problem. . . . . . . . . . . . . . . . . (1p)

(c) Are there any values for the constant c1 which make the point
x = (1.4, 0.2, 0.2)T an optimal solution to the problem?
If there are any such values, determine all of these values for c1. . .(4p)

(d) Are there any values for the constant c1 which make the point
x = (1, 1, 1)T an optimal solution to the problem?
If there are any such values, determine all of these values for c1. . . (4p)

Optional help:

 1 1 0
1 0 1
0 1 1


−1

=
1

2
·

 1 1 −1
1 −1 1
−1 1 1

.

(e) In this final task we will throughout assume that c1 = −6.
The dual objective function ϕ(y) of the problem above is, as known,
defined with Lagrangian relaxation. Your task is to compute the value of
the dual objective function ϕ(ŷ) in the point ŷ = (1, 1, 1)T, and determine
whether ŷ is an optimal solution to the dual problem. . . . . . . . . . . . . . (4p)

6.2 (20070307-nr.4)

Let δ1, δ2, δ3 and δ4 be four given numbers (which typically are pretty “small”)
and consider the following non-linear least squares problem in the variable-
vector x ∈ IR2:

minimize f(x) = 1
2(h1(x)2 + h2(x)2 + h3(x)2 + h4(x)2),

where the functions hi are given by

h1(x) = x21 − x2 − δ1 ,
h2(x) = x21 + x2 − δ2 ,
h3(x) = x22 − x1 − δ3 ,
h4(x) = x22 + x1 − δ4 .

(a) First assume that δ1 = δ2 = δ3 = δ4 = 0.
Show that then x̂ = (0, 0)T is a global minimizer to f(x).
(This motivates that we use this point as starting point below.) . . . (1p)
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(b) Now assume that δ1 = −0.1, δ2 = 0.1, δ3 = −0.2 and δ4 = 0.2.
Perform one iteration with the Gauss-Newton method starting from x(1) =
(0, 0)T.
Make sure that your obtained point x(2) satisfies f(x(2)) < f(x(1)).
Then decide whether x(2) is a local minimizer to f(x). . . . . . . . . . . . . (5p)

6.3 (20060603-nr.3)

In the following QP-problem with inequality constraints the number c3 is a
constant.

minimize 1
2x

2
1 + 1

2x
2
2 + 1

2x
2
3 − x1 − x2 + c3x3

s.t. x1 + x2 ≥ 4

x1 + x3 ≥ 4

x2 + x3 ≥ 4

(a) Are there any values of the constant c3 which makes the point
x = (2, 2, 2)T an optimal solution to the problem?
If that is the case, then determine all such values on c3. . . . . . . . . . . . (4p)

(b) Is there any values of the constant c3 which makes the point
x = (2, 2, 4)T an optimal solution to the problem?
If that is the case, then determine all such values on c3. . . . . . . . . . . . (3p)

(c) Is there any value of the constant c3 such that the point
x = (3, 3, 1)T is an optimal solution to the problem?
If that is the case, then determine all such values on c3. . . . . . . . . . . . (3p)

Optional help:

 1 1 0
1 0 1
0 1 1


−1

=
1

2
·

 1 1 −1
1 −1 1
−1 1 1

.

6.4 (20060603-nr.4)

In this exercise f(x) = x21x
4
2x

6
3 , where x = (x1, x2, x3)

T ∈ IR3.

(a) Determine whether x̂ = (0, 0, 0)T is a global optimal solution to the prob-
lem to
minimize f(x) under the constraint x21 + x22 + x23 ≤ 1. . . . . . . . . . . . . . (1p)

(b) Determine whether x̂ = (0, 0, 0)T is a local optimal solution to the prob-
lem to
minimize f(x) under the constraint x21 + x22 + x23 ≤ 1. . . . . . . . . . . . . . (1p)

(c) Determine whether f is a convex function on IR3 or not. . . . . . . . . . . (3p)

(d) Determine all global optimal solutions to the problem to
maximize f(x) under the constraint x21 + x22 + x23 ≤ 1.
Observe that now, in contrary to above, it is a maximization problem!
(5p)

6.5 (20051024-nr.4)
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Consider the following quadratic optimization problem with four variables and
six linear inequality constraints (of which four are in the form of non-negativity
constraints on the variables).

minimize 1
2 xTx

s.t. Ax ≥ b ,

x ≥ 0,

where A =

[
2 −2 1 1
1 1 2 −2

]
and b =

(
20
30

)
.

Use for example the optimality constraints to answer the following questions:

(a) Is there for the above problem any optimal solution x̂ that satisfies both
that Ax̂ = b and that all four variables are strictly positive, i.e. x̂j > 0 ?
(5p)

(b) Is there to the above problem any optimal solution x̂ that satisfies both
that Ax̂ = b and that x̂3 = x̂4 = 0 ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

6.6 (20050307-nr.4)

(a) Determine whether x̂ = (2, 1, 0)T is a global optimal solution or not to
the following problem in the variable vector x = (x1, x2, x3)

T ∈ IR3. (5p)

minimize (x1 + x2)
2 + (x2 + x3)

2 + (x3 + x1)
2 − 12x1 − 8x2 − 4x3

s.t. 0 ≤ xj ≤ 2, for j = 1, 2, 3.

(b) Determine values on the three constants k1, k2 and k3 so that x̂ =
(2, 1, 0)T becomes a global optimal solution to the following problem.
(5p)

minimize (x1 + x2)
2 + (x2 + x3)

2 + (x3 + x1)
2 − 12x1 − 8x2 − 4x3

s.t. (x1 − k1)2 + (x2 − k2)2 + (x3 − k3)2 ≤ 1.

6.7 (20041016-nr.5)

Consider the following non-linear optimization problem.

minimize f0(x)

s.t. fi(x) ≤ 0, i = 1, 2

x ∈ X,

where X is given by X = {x ∈ IRn | − 1 ≤ xj ≤ 1, j = 1, . . . , n},
while the functions fi(x) are given by the following expression, for i = 0, 1, 2 :

fi(x) =
n∑
j=1

(
pij

2− xj
+

qij
xj + 2

)
+ri . Note that this holds also for i = 0, i.e. the objective function.

Here pij and qij are given strictly positive constants for i = 0, 1, 2 and all j,

while ri are given constants such that ri < −
n∑
j=1

(
pij
2

+
qij
2

)
for i = 1, 2.
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In the following subproblems known theorems may be used without proof if
they
first are correctly formulated.

(a) Determine whether the functions fi are convex on X. . . . . . . . . . . . . . (2p)

(b) Determine whether the feasible region is non-empty. . . . . . . . . . . . . . . (1p)

(c) Determine whether the feasible region to the problem is a convex set.
(1p)

(d) Formulate carefully the KKT-conditions to the problem. . . . . . . . . . . (3p)

(e) Make a Lagrangian relaxation to the problem with respect to the con-
straints fi(x) ≤ 0, i = 1, 2,
and determine an explicit expression of the dual objective function ϕ.
(3p)

6.8 (20040415-nr.4)

Three components are placed out on a board with the coordinates:

( 1 , 2 ) , (−2 , −1 ) and ( 1 , −1 ).

Now you want to connect these components with a fourth one, so that from
each of the first three there is a (direct) thread to the fourth. The question
is where on the board this fourth component should be placed. One could
think of at least two different criteria, represented in each of the following to
sub-exercises.

(a) First assume that you want to place the fourth component in such a way
that the sum of the three distances from the fourth component to each
of the original three components is as small as possible.

Formulate this problem on mathematical form (with variables, objective
function and possible constraints) and decide whether the point (0, 0)
fulfills the optimality conditions for your formulated problem. . . . . . (5p)

(b) Now assume that you want to place the fourth component in such a way
that the biggest of the three distances from the fourth component to each
of the original three components is as small as possible.

Formulate this problem on mathematical form (with variables, objective
function and possible constraints) and decide whether the point (0, 0)
fulfills the optimality conditions for your formulated problem. . . . . . (5p)
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7. Mixed examples

7.1 Consider the following approximation problem.

Given is a set T ∈ IRk, and the continuous functions f and fj , j = 1, . . . , n on
T . The aim is to approximate f by a linear combination of the functions fj ,
j = 1, . . . , n.

This leads to the following optimization problem.

(P ) min
xj ,j=1,...,n

max
t∈T
|f(t)−

n∑
j=1

xjfj(t)|

For numerical solution of (P ), a set of points t1, . . . , tm are selected in T and
the following problem is solved.

(P ′) min
xj ,j=1,...,n

max
i=1,...,m

|f(ti)−
n∑
j=1

xjfj(ti)|

(a) What conclusions can be drawn concerning the optimal value of (P ) from
an optimal solution to (P ′)?

(b) (P ′) looks complex, with an inner maximization and an outer minimiza-
tion. Reformulate (P ′) as a mathematical programming problem of sim-
plest possible kind.

(c) Determine the dual problem to the problem formulated in Exercise 7.1b
and simplify as far as possible.

7.2 Throughout this exercise, let

f(x) = x21 − x1x2 + x22 + x23 − 2x1 + 4x2,

g1(x) = −x1 − x2,
g2(x) = 1− x3.

(a) Consider the problem

(Pd)
min f(x)
s.t. x ∈ IR3.

Determine a global minimum to (Pd). (Motivate the answer.)

(b) Consider the problem

(Pc)
min f(x)
s.t. gi(x) ≤ 0, i = 1, 2,

x ∈ IR3.

Show that x∗ = (1 –1 1)T fulfills the KT-conditions for (Pc).

(c) Show that the dual problem (Dc) corresponding to (Pc) is

(Dc)
max −λ21 + 2λ1 −

λ22
4

+ λ2 − 4

s.t. λ1 ≥ 0,
λ2 ≥ 0.
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(d) Determine globally optimal solutions to (Pc) and (Dc). (Motivate global
optimality.)

Hint: The results from 7.2a and 7.2b can be used in conjunction with
weak duality.

7.3 Consider the problem (P ), defined as

(P )

min −2x21 + 12x1x2 + 7x22 − 8x1 − 26x2

s.t. x1 + 2x2 ≤ 6,
0 ≤ x1 ≤ 3,
x2 ≥ 0.

(a) Find all points that satisfy the KT-conditions for (P ).

(b) Find a global minimizer to (P ).

(Note that the amount of computation required would be very large using this
strategy on larger problems.)

7.4 (20070601-nr.4)

Let n be a given (big) integer, and let the n-variable function f be given by

f(x) =
n∑
j=1

(x4j − x3j + x2j − xj), where x = (x1, . . . , xn)T ∈ IRn.

(a) Decide whether f is a convex function on whole IRn. . . . . . . . . . . . . . . (4p)

(b) Now suppose you want to minimize f(x) without any constraints.
Your task is to make one complete iteration of the Newton method from
the starting point x(1) = (1, . . . , 1)T.
Make sure that your obtained point x(2) fulfills f(x(2)) < f(x(1)). . (4p)

7.5 (20050331-nr.5)

Let g1, . . . , gm and f be given nonlinear n-variable functions which are all con-
vex and continuously differentiable on the entire IRn and consider the following
problem:

P: minimize f(x)

s.t. gi(x) ≤ 0 , i = 1, . . . ,m

x ∈ IRn .

Assume that the problem is regular, i.e. that there is at least one point x
which fulfills all constraints with strict inequality.

Assume furthermore that you in some way have found a point x̂ ∈ IRn which
you believe is an optimal solution to P. One way of investigating whether x̂
really is optimal is to linearize the m+1 nonlinear functions g1, . . . , gm and
f in the point x̂ (i.e. compute the first order Taylor polynomial in x̂ for
each function) and then consider the LP-problem that is formed, if you in the
problem P replace each of the nonlinear functions with its linearization. Your
task is to prove the following statement:
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The point x̂ is an optimal solution to the problem P if and only if the same
point x̂ is an optimal solution to the above mentioned LP-problem (which is
formed by approximating all functions in P with the first order Taylor poly-
nomials in x̂ ).

Theorems from the course may be used without proof if they are correctly
formulated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

7.6 (20041016-nr.4)

In this exercise A =

 2 −1

−1 2

1 1

 and b =

 2

1

4

.

(a) First consider the following quadratic minimization problem in the vari-
able vector x ∈ IR2:

minimize 1
2 |Ax− b|2 = 1

2 (Ax− b)T(Ax− b).

Determine an optimal solution to this problem. . . . . . . . . . . . . . . . . . . . (4p)

(b) Assume that you add the constraint that all components in the “error
vector”
Ax− b must be non-negative, you instead obtain the problem

minimize 1
2 |Ax− b|2

s.t. Ax ≥ b.

Now show that x =

(
13

6
,

11

6

)T

is an optimal solution. . . . . . . . . . . (6p)

7.7 (20040415-nr.5)

Let f and g be two given non-linear n-variable functions which both are convex
and continuously differentiable on the entire IRn, and denote the following
problem NLP.

NLP: minimize f(x)

s.t. g(x) ≤ 0 ,

x ∈ IRn .

Let x1,x2, . . . ,xK be a number of given points in IRn, and denote the following
LP-problem in the variables x ∈ IRn and z ∈ IR by LP.

LP: minimize z

s.t. z −∇f(xk) x ≥ f(xk)−∇f(xk) xk , k = 1, . . . ,K,

−∇g(xk) x ≥ g(xk)−∇g(xk) xk , k = 1, . . . ,K.

Assume that you solve this LP-problem and obtain an optimal solution (x̂, ẑ).

(a) Show that ẑ is a lower bound of the optimal value to NLP,
i.e. that f(x) ≥ ẑ for every feasible solution x to NLP. . . . . . . . . . . . . (5p)
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(b) Assume that the above mentioned x̂ happens to be one of the given points
xk.
Show that x̂ is an optimal solution to NLP. . . . . . . . . . . . . . . . . . . . . . . . (5p)
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Answers/Solutions to the examples

8. Linear programming

8.1 (20070601-nr.1a)

Introduce the following variables:

x1 = number of units of product A manufactured per day
x2 = number of units of product B manufactured per day
x3 = number of units of product C manufactured per day

The coverage contribution per day is then given by 12x1 + 9x2 + 8x3.

The capacity constraint in the cutting department can be written as
x1

2000
+

x2
1600

+
x3

1100
≤ 8.

The capacity constraint in the pressing department can be written as
x1

1000
+

x2
1500

+
x3

2400
≤ 8.

That gives us the following problem formulation:

maximize 12x1 + 9x2 + 8x3

s.t.
x1

2000
+

x2
1600

+
x3

1100
≤ 8,

x1
1000

+
x2

1500
+

x3
2400

≤ 8,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

8.2 (20070601-nr.2)

(a)

If we introduce slack variables x5 and x6, to transform the inequality con-
straints to equality constraints, we obtain a LP-problem on standard form

minimize cTx

s.t. Ax = b ,

x ≥ 0 ,

where A =

[
1 1 −1 −1 1 0
1 −1 1 −1 0 1

]
, b =

(
8
4

)
and cT = (−3, 4,−2, 5, 0, 0).

The initial solution should have the basic variables x5 and x6, i.e. β = (5, 6)
and δ = (1, 2, 3, 4).

The corresponding basic matrix is given by Aβ =

[
1 0
0 1

]
, while Aδ =[

1 1 −1 −1
1 −1 1 −1

]
.
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The values of the basic variables in the basic solution are given by xβ = b̄,
where the vector b̄ is computed from the equation system
Aβb̄ = b,

i.e.

[
1 0
0 1

](
b̄1
b̄2

)
=

(
8
4

)
, with solution b̄ =

(
b̄1
b̄2

)
=

(
8
4

)
.

The vector y with the values of the simplex multipliers is obtained from the
system AT

βy = cβ,

i.e.

[
1 0
0 1

](
y1
y2

)
=

(
0
0

)
, with the solution y =

(
y1
y2

)
=

(
0
0

)
.

The reduced costs of the non-basic variables are obtained from

rTδ = cTδ −yTAδ = (−3, 4,−2, 5)−(0, 0)

[
1 1 −1 −1
1 −1 1 −1

]
= (−3, 4,−2, 5).

Since rδ1 = r1 = −3 is the smallest, and < 0, we should let x1 become the
new basic variable.

We then need to compute the vector ā1 from the system Aβā1 = a1,

i.e.

[
1 0
0 1

](
ā11
ā21

)
=

(
1
1

)
, with the solution ā1 =

(
ā11
ā21

)
=

(
1
1

)
.

The biggest value that the new basic variable x1 can be assigned to is given
by

tmax= min
i

{
b̄i
āi1
| āi1 > 0

}
= min

{
8

1
,

4

1

}
=

4

1
=

b̄2
ā21

.

The minimizing index is i = 2, and hence xβ2 = x6 will leave the set of basic
variables.
Its place will be taken by x1.

Hence β = (5, 1) and δ = (6, 2, 3, 4).

The corresponding basic matrix is given by Aβ =

[
1 1
0 1

]
, while Aδ =[

0 1 −1 −1
1 −1 1 −1

]
.

The values of the basic variables in the basic solution are given by xβ = b̄,
where the vector b̄ is computed from the equation system Aβb̄ = b,

i.e.

[
1 1
0 1

](
b̄1
b̄2

)
=

(
8
4

)
, with the solution b̄ =

(
b̄1
b̄2

)
=

(
4
4

)
.

The vector y with the values of the simplex multipliers is obtained from the
system AT

βy = cβ,

i.e.

[
1 0
1 1

](
y1
y2

)
=

(
0
−3

)
, with the solution y =

(
y1
y2

)
=

(
0
−3

)
.

The reduced costs of the non-basic variables are given by

rTδ = cTδ − yTAδ = (0, 4,−2, 5)− (0,−3)

[
0 1 −1 −1
1 −1 1 −1

]
= (3, 1, 1, 2).

Since rδ ≥ 0 the current basic solution is optimal.
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Hence the point x1 = 4, x2 = 0, x3 = 0, x4 = 0 is optimal to the original
problem. The optimal value is z = −12.

(b)

Now suppose cT = (−3, 4,−2, 2, 0, 0) instead of (−3, 4,−2, 5, 0, 0).

If we start from the final solution above, with β = (5, 1) and δ = (6, 2, 3, 4),

Aβ =

[
1 1
0 1

]
, Aδ =

[
0 1 −1 −1
1 −1 1 −1

]
, b̄ =

(
4
4

)
and y =

(
0
−3

)
is still valid.

But the reduced costs of the non-basic variables are now given by

rTδ = cTδ − yTAδ = (0, 4,−2, 2)− (0,−3)

[
0 1 −1 −1
1 −1 1 −1

]
= (3, 1, 1,−1).

Since rδ4 = r4 = −1 is the smallest, and < 0, we should let x4 become the
new basic variable.

Then we need to compute the vector ā4 from the system Aβā4 = a4,

i.e.

[
1 1
0 1

](
ā14
ā24

)
=

(
−1
−1

)
, with the solution ā4 =

(
ā14
ā24

)
=

(
0
−1

)
.

Since ā4 ≤ 0, x4 can increase without constraint, the value of the objective
function goes to −∞.
Hence the problem lacks finite optimal solution and the algorithm is canceled.

Extra comments (that are not required):

If you set x4 = t and let t increase from 0, while the other non-basic variables
stays at 0, the objective function is changed according to z = z̄+r4t = −12−t,
while the values of the basic variables are affected according to xβ = b̄− ā4t,

i.e.

(
x5
x1

)
=

(
4
4

)
−
(

0
−1

)
t .

This can be written as x(t) =



x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)


=



4
0
0
0
4
0


+ t ·



1
0
0
1
0
0


= x0 + t · d.

Then Ax(t) = b and x(t) ≥ 0 for all t ≥ 0, i.e. x(t) is a feasible solution for
every t ≥ 0,

while cTx(t) = cTx0 + t · cTd = −12− t→ −∞ when t→ +∞.

(c)

If the primal problem is on standard form

minimize cTx
s.t. Ax = b,

x ≥ 0,
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then the dual problem is on the form maximize bTy s.t. ATy ≤ c, which
here becomes:

maximize 8y1 + 4y2

s.t. y1 + y2 ≤ −3,
y1 − y2 ≤ 4,
−y1 + y2 ≤ −2,
−y1 − y2 ≤ 5,
y1 ≤ 0,

y2 ≤ 0.

If you draw the feasible region to this problem in a figure with y1 and y2 on
the axis, you see that it is a pentagon with corners in (−0.5 , −2.5), ( 0 , −3),
( 0 , −4), (−0.5 , −4.5) and (−1.5 , −3.5).

(d)

In the figure above we will now replace the constraint −y1 − y2 ≤ 5 with
−y1 − y2 ≤ 2.
But then we see that there is no y that fulfills both y1 + y2 ≤ −3
and−y1−y2 ≤ 2. (Which is also understood when summing these inequalities.)
Hence the dual problem has no feasible solutions, which is what we expected,
since the primal problem had feasible solutions, but did not have a (finite)
optimal solution.

8.3 (20070307-nr.1a)

(a) Let:

XA = number of hectoliters Applecider produced each week.
XP = number of hectoliters Pearcider produced each week.
XB = number of hectoliters Mixed cider produced each week.
XC = number of hectoliters Original cider produced each week.

We get the problem formulation

maximize 196XA + 210XP + 280XB + 442XC

s.t. 1.6XA + 1.8XP + 3.2XB + 5.4XC ≤ 80
1.2XA + 1.2XP + 1.2XB + 1.8XC ≤ 40
−0.8XA + 0.2XP + 0.2XB + 0.2XC ≤ 0
−0.3XA + 0.7XP − 0.3XB − 0.3XC ≤ 0
XA ≥ 0, XP ≥ 0, XB ≥ 0, XC ≥ 0.

8.4 (20070307-nr.2)

(a)

The current LP-problem on standard form is

minimize cTx

s.t. Ax = b ,

x ≥ 0 ,

where A =

[
1 2 3 4 1 0
2 3 4 5 0 1

]
, b =

(
10
12

)
and cT = (0, 0, 0, 0, 1, 1).
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The natural starting basic solution has the basic variables x5 and x6, which
means that β = (5, 6) and δ = (1, 2, 3, 4).

The corresponding basic matrix is given by Aβ =

[
1 0
0 1

]
, while Aδ =[

1 2 3 4
2 3 4 5

]
.

The values of the basic variables in the basic solution are given by xβ = b̄,
where the vector b̄ is calculated from the system of equations Aβb̄ = b,

i.e.

[
1 0
0 1

](
b̄1
b̄2

)
=

(
10
12

)
, with the solution b̄ =

(
b̄1
b̄2

)
=

(
10
12

)
.

The vector y with the values of the simplex multipliers is obtained from the
system AT

βy = cβ,

i.e.

[
1 0
0 1

](
y1
y2

)
=

(
1
1

)
, with the solution y =

(
y1
y2

)
=

(
1
1

)
.

The reduced costs for the non-basic variables is given by

rTδ = cTδ − yTAδ = (0, 0, 0, 0)− (1, 1)

[
1 2 3 4
2 3 4 5

]
= (−3, −5, −7, −9).

Since rδ4 = r4 = −9 is the smallest, and < 0, we let x4 become new basic
variable.

Then we need to compute the vector ā4 from the system Aβā4 = a4,

i.e.

[
1 0
0 1

](
ā14
ā24

)
=

(
4
5

)
, with the solution ā4 =

(
ā14
ā24

)
=

(
4
5

)
.

The biggest value that the new basic variable x4 can be incremented to is given
by

tmax= min
i

{
b̄i
āi4
| āi4 > 0

}
= min

{
10

4
,

12

5

}
=

12

5
=

b̄2
ā24

.

The minimizing index is i = 2 and hence xβ2 = x6 can no longer be a basic
variable.
Its place is taken by x4.

Hence, now β = (5, 4) and δ = (1, 2, 3, 6).

The corresponding basic matrix is given by Aβ =

[
1 4
0 5

]
, while Aδ =[

1 2 3 0
2 3 4 1

]
.

The values of the basic variables in the basic solution is given by xβ = b̄,
where the vector b̄ is computed from the system of equations Aβb̄ = b,

i.e.

[
1 4
0 5

](
b̄1
b̄2

)
=

(
10
12

)
, with the solution b̄ =

(
b̄1
b̄2

)
=

(
0.4
2.4

)
.

The vector y with the values of the simplex multipliers is obtained from the
system AT

βy = cβ,

i.e.

[
1 0
4 5

](
y1
y2

)
=

(
1
0

)
, with the solution y =

(
y1
y2

)
=

(
1
−0.8

)
.
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The reduced costs for the non-basic variables are given by

rTδ = cTδ −yTAδ = (0, 0, 0, 1)−(1, −0.8)

[
1 2 3 0
2 3 4 1

]
= (0.6, 0.4, 0.2, 0.8).

Since rδ ≥ 0 the current basic solution is optimal.

Hence the point x1 = 0, x2 = 0, x3 = 0, x4 = 2.4, x5 = 0.4, x6 = 0 is optimal.

The optimal value is given by x5 + x6 = 0.4 > 0.

If there is a feasible solution (x̂1, x̂2, x̂3, x̂4)
T to the original system, then

x̂ = (x̂1, x̂2, x̂3, x̂4, 0, 0)T is a feasible solution to the LP-problem with the
objective function value = 0.
Since the objective function value never can be negative x̂ is an optimal solu-
tion to the LP-problem.

Hence: If there is a feasible solution to the original system, then the optimal
solution to the LP-problem = 0. But above we found that the optimal value
of the LP-problem is 0.4, which means that the original problem can not have
a solution.

(b)

Suppose that ŷ = (ŷ1, ŷ2, ŷ3)
T is an optimal solution to the dual problem.

From the duality theorem it follows that ŷ3 = x̂3 = −0.2.

From the complementarity theorem follows that since x̂1 > 0, then it must
hold that
−ŷ1 + 3ŷ2 + ŷ3 = 0 and since x̂2 > 0 then it must hold that 2ŷ1− 4ŷ2 + ŷ3 = 0.

Together this gives that ŷ1 = 0.7 and ŷ2 = 0.3, which also fulfills the other
constraints in the dual problem.

Hence: ŷ1 = 0.7, ŷ2 = 0.3 and ŷ3 = −0.2 is an optimal solution to the dual
problem (in reality the unique optimal solution).

8.5 (20070603-nr.1)

(a)

We here have a LP-problem on standard form

minimize cTx

s.t. Ax = b ,

x ≥ 0 ,

where A =

[
4 3 2 1 0
0 1 2 3 4

]
, b =

(
5
3

)
and cT = (4, 3, 2, 3, 4).

The given starting solution should have the basic variables x1 and x5, which
implies that
β = (1, 5) and δ = (2, 3, 4).

The corresponding basic matrix is given by Aβ =

[
4 0
0 4

]
, while Aδ =[

3 2 1
1 2 3

]
.
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The values of the basic variables in in the basic solution are given by xβ = b̄,
where the vector b̄ is computed from the system of equations Aβb̄ = b,

i.e.

[
4 0
0 4

](
b̄1
b̄2

)
=

(
5
3

)
, with the solution b̄ =

(
b̄1
b̄2

)
=

(
1.25
0.75

)
.

The vector y with the values of the simplex multipliers is obtained from the
system AT

βy = cβ,

i.e.

[
4 0
0 4

](
y1
y2

)
=

(
4
4

)
, with the solution y =

(
y1
y2

)
=

(
1
1

)
.

The reduced costs for the non-basic variables is given by

rTδ = cTδ − yTAδ = (3, 2, 3)− (1, 1)

[
3 2 1
1 2 3

]
= (−1, −2, −1).

Since rδ2 = r3 = −2 is the smallest, and < 0, we will let x3 become new basic
variable.

Then we need to compute the vector ā3 from the system Aβā3 = a3,

i.e.

[
4 0
0 4

](
ā13
ā23

)
=

(
2
2

)
, with the solution ā3 =

(
ā13
ā23

)
=

(
0.5
0.5

)
.

The biggest value to which the new basic variable x3 can be incremented to is
given by

tmax= min
i

{
b̄i
āi3
| āi3 > 0

}
= min

{
1.25

0.5
,

0.75

0.5

}
=

0.75

0.5
=

b̄2
ā23

.

The minimizing index is i = 2, and therefore xβ2 = x5 is removed as basic
variable.
Its place is taken by x3.

Hence, now β = (1, 3) and δ = (2, 5, 4).

The corresponding basic matrix is given by Aβ =

[
4 2
0 2

]
, while Aδ =[

3 0 1
1 4 3

]
.

The values of the basic variables in the basic solution is given by xβ = b̄,
where the vector b̄ in computed from the equation system Aβb̄ = b,

i.e.

[
4 2
0 2

](
b̄1
b̄2

)
=

(
5
3

)
, with the solution b̄ =

(
b̄1
b̄2

)
=

(
0.5
1.5

)
.

The vector y with the values of the simplex multipliers is obtained from the
system AT

βy = cβ,

i.e.

[
4 0
2 2

](
y1
y2

)
=

(
4
2

)
, with the solution y =

(
y1
y2

)
=

(
1
0

)
.

The reduced costs for the non-basic variables are given by

rTδ = cTδ − yTAδ = (3, 4, 3)− (1, 0)

[
3 0 1
1 4 3

]
= (0, 4, 2).

Since rδ ≥ 0, the current basic solution is optimal.

Hence the point x1 = 0.5, x2 = 0, x3 = 1.5, x4 = 0, x5 = 0 is optimal.
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The optimal value is cTx = 5.

(b)

Since rδ1 = r2 = 0 we can let x2 become new basic variable (and increase from
zero)
without that the objective function value is changed.

Then we need to compute the vector ā2 from the system Aβā2 = a2,

i.e.

[
4 2
0 2

](
ā12
ā22

)
=

(
3
1

)
, with the solution ā2 =

(
ā12
ā22

)
=

(
0.5
0.5

)
.

The biggest value that the new basic variable x2 can be incremented to is given
by

tmax= min
i

{
b̄i
āi2
| āi2 > 0

}
= min

{
0.5

0.5
,

1.5

0.5

}
=

0.5

0.5
=

b̄1
ā12

.

The minimizing index is i = 1, and therefore xβ1 = x1 is no longer kept as
basic variable.
Its place is taken by x2.

Hence, now β = (2, 3) and δ = (1, 5, 4).

The corresponding basic matrix is given by Aβ =

[
3 2
1 2

]
, while Aδ =[

4 0 1
0 4 3

]
.

The values of the basic variables in the basic solution are given by xβ = b̄,
where the vector b̄ is computed from the system Aβb̄ = b,

i.e.

[
3 2
1 2

](
b̄1
b̄2

)
=

(
5
3

)
, with the solution b̄ =

(
b̄1
b̄2

)
=

(
1
1

)
.

Hence the new basic solution is x1 = 0, x2 = 1, x3 = 1, x4 = 0, x5 = 0.

The value of the objective function is (of course) still cTx = 5, so also this
basic solution is optimal.

Here you can stop, but as a control we can go on:

The vector y with the values of the simplex multipliers are now obtained from
the system AT

βy = cβ,

i.e.

[
3 1
2 2

](
y1
y2

)
=

(
3
2

)
, with the solution y =

(
y1
y2

)
=

(
1
0

)
.

The reduced costs for the non-basic variables are given by

rTδ = cTδ − yTAδ = (4, 4, 3)− (1, 0)

[
4 0 1
0 4 3

]
= (0, 4, 2).

Since rδ ≥ 0 the new basic solution is optimal.

(c)

If the primal problem is on standard form

minimize cTx
s.t. Ax = b,

x ≥ 0,

47



then the dual problem is on the form: maximize bTy s.t. ATy ≤ c, which
written out becomes:

maximize 5y1 + 3y2

s.t. 4y1 ≤ 4,
3y1 + y2 ≤ 3,
2y1 + 2y2 ≤ 2,
y1 + 3y2 ≤ 3,

4y2 ≤ 4.

It is well-known that an optimal solution to this dual problem is given by the
vector y with
“the simplex multipliers” in the optimal basic solution in the (a)-task, i.e.
y = (1, 0)T.
You can quickly verify that this is a feasible solution of the dual problem above.
Further the dual objective function value is bTy = 5y1 + 3y2 = 5 − 0 = 5 =
the optimal value to the primal problem in the (a)-task.

8.6 (20060308-nr.1)

(a)

Introduce slack variables x4, x5 and x6 so that the problem is on standard
form

minimize cTx

s.t. Ax = b,

x ≥ 0,

where A =

 1 1 0 −1 0 0
1 0 1 0 −1 0
0 1 1 0 0 −1

, b =

 2
2
2

 and c = (1, 5, 2, 0, 0, 0)T.

The given starting solution corresponds to that x1, x2 and x3 are basic vari-
ables, i.e. that β = (1, 2, 3) and δ = (4, 5, 6).

The corresponding basic matrix is given by Aβ =

 1 1 0
1 0 1
0 1 1

.

The values of the basic variables in the basic solution are given by xβ = b̄,
where the vector b̄ is computed from the system Aβb̄ = b,

i.e.

 1 1 0
1 0 1
0 1 1


 b̄1
b̄2
b̄3

 =

 2
2
2

, with the solution b̄ =

 b̄1
b̄2
b̄3

 =

 1
1
1

.

This is the basic solution we were supposed to start from.

The vector y with the values of the simplex multipliers is obtained from the
system AT

βy = cβ,

i.e.

 1 1 0
1 0 1
0 1 1


 y1
y2
y3

 =

 1
5
2

, with the solution y =

 y1
y2
y3

 =

 2
−1

3

.
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The reduced costs for the non-basic variables are given by rTδ = cδ − yTAδ =

= (0, 0, 0)− (2, −1, 3)

 −1 0 0
0 −1 0
0 0 −1

 = (2, −1, 3).

Since rδ2 = r5 = −1 is the smallest, and < 0, we will let x5 become new basic
variable.

Then we need to calculate the vector ā5 from the system Aβā5 = a5,

i.e.

 1 1 0
1 0 1
0 1 1


 ā15
ā25
ā35

 =

 0
−1

0

, with the solution ā5 =

 ā15
ā25
ā35

 =

 −0.5
0.5
−0.5

.

The biggest value that the new basic variable x5 can be incremented to is given
by

tmax= min
i

{
b̄i
āi5
| āi5 > 0

}
=

b̄2
ā25

=
1

0.5
.

The minimizing index is i = 2, and hence xβ2 = x2 can no longer be a basic
variable.

Hence β = (1, 5, 3) and δ = (4, 2, 6).

The corresponding basic matrix is given by Aβ =

 1 0 0
1 −1 1
0 0 1

.

The values of the basic variables in the basic solution are given by xβ = b̄,
where the vector b̄ in computed from the system of equations
Aβb̄ = b,

i.e.

 1 0 0
1 −1 1
0 0 1


 b̄1
b̄2
b̄3

 =

 2
2
2

, with the solution b̄ =

 b̄1
b̄2
b̄3

 =

 2
2
2

.

The vector y with values of the simplex multipliers is obtained from the system
AT
βy = cβ,

i.e.

 1 1 0
0 −1 0
0 1 1


 y1
y2
y3

 =

 1
0
2

, with the solution y =

 y1
y2
y3

 =

 1
0
2

.

The reduced costs for the non-basic variables are given by rTδ = cδ − yTAδ =

= (0, 5, 0)− (1, 0, 2)

 −1 1 0
0 0 0
0 1 −1

 = (1, 2, 2).

Since rδ ≥ 0 the current basic solution is optimal.
Hence the point x1 = 2, x2 = 0, x3 = 2, x4 = 0, x5 = 2, x6 = 0 is optimal.
The optimal value is cTx = 6.

49



(b)
If the primal problem is on standard form

minimize cTx

s.t. Ax = b,

x ≥ 0,

then the dual problem

maximize bTy s.t. ATy ≤ c,

which written out becomes:

maximize 2y1 + 2y2 + 2y3

s.t. y1 + y2 ≤ 1,
y1 + y3 ≤ 5,
y2 + y3 ≤ 2,
−y1 ≤ 0,
−y2 ≤ 0,
−y3 ≤ 0.

It is well known that an optimal solution to this dual problem is given by
the vector y with the simplex multipliers in the optimal basic solution in the
(a)-task, i.e. y = (1, 0, 2)T.
You can quickly verify that this is a feasible solution to the dual problem.
Further the optimal value bTy = 6 = the optimal value to the primal problem
above.

8.7 (20060308-nr.4b)

(b).

First a comment. Since according to the conditions all bi > 0, for example
x = 0 is a point which is both in Ω, and do not touch any of the walls in Ω.
Hence there is place for at least a small sphere in Ω.

Now to the formulation. Let x ∈ Ω be the mean point to our searched sphere
and let r be its radius. We can assume that x does not touch any of the walls
in Ω, i.e. that aT

i x < bi for all i. Then the distance di(x) from the point x to
the plane Pi can be written di(x) = (bi − aT

i x)/|ai|.
If the sphere has the mean point in x it fits in Ω if and only if its radius r
fulfills that r ≤ di(x) for all i = 1, . . . ,m.

We hence obtain the following LP-problem in the variables x ∈ IR3 and r ∈ IR
(four variables):

maximize r

s.t. r ≤ di(x), i = 1, . . . ,m.

or, equivalently

maximize r

s.t. |ai| r + aT
i x ≤ bi, i = 1, . . . ,m.
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8.8 (20051024-nr.1)

(a)

Introduce the slack variables x4 and x5, and change the sign of the objective
function so that the problem is on standard form

minimize cTx

s.t. Ax = b,

x ≥ 0,

where A =

[
1 −1 1 1 0
1 1 −1 0 1

]
, b =

(
1
1

)
and c = (−1, −1, −2, 0, 0)T.

That x4 and x5 are basic variables corresponds to that β = (4, 5) and δ =
(1, 2, 3).

The corresponding basic matrix is given by Aβ = [a4 a5] =

[
1 0

0 1

]
.

The values of the basic variables in the basic solution are given by xβ = b̄,
where the vector b̄ is computed from the system

Aβb̄ = b, i.e.

[
1 0

0 1

](
b̄1

b̄2

)
=

(
1

1

)
, with the solution b̄ =

(
b̄1

b̄2

)
=(

1

1

)
.

This is a feasible basic solution since b̄ ≥ 0.

The values of the simplex multipliers are given by the system AT
βy = cβ,

i.e.

[
1 0

0 1

](
y1

y2

)
=

(
0

0

)
, with the solution

(
y1

y2

)
=

(
0

0

)
.

The reduced costs for the non-basic variables are given by c̄Tδ = cδ − yTAδ =

= (−1, −1, −2)− (0, 0)

[
1 −1 1

1 1 −1

]
= (−1, −1, −2).

Since c̄δ3 = c̄3 = −2 is the smallest, and < 0, we will let x3 become the new
basic variable.

Then we need to compute the vector ā3 from the system Aβā3 = a3,

i.e.

[
1 0

0 1

](
ā13

ā23

)
=

(
1

−1

)
, with the solution ā3 =

(
ā13

ā23

)
=

(
1

−1

)
.

The biggest value that the new basic variable x3 can be incremented to is given
by

xmax
3 = min

i

{
b̄i
āi3
| āi3 > 0

}
=

b̄1
ā13

=
1

1
.

The minimizing index is i = 1, and hence xβ1 = x4 can no longer be a basic
variable.

Hence, now β = (3, 5) and δ = (1, 2, 4).
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The corresponding basic matrix is given by Aβ = [a3 a5] =

[
1 0

−1 1

]
.

The values of the variables of the basic solution are given by xβ = b̄, where
the vector b̄ is calculated from the system

Aβb̄ = b, i.e.

[
1 0

−1 1

](
b̄1

b̄2

)
=

(
1

1

)
, with the solution b̄ =

(
b̄1

b̄2

)
=(

1

2

)
.

This is, as expected, a feasible basic solution.

The values of the simplex multipliers are given by the system AT
βy = cβ,

i.e.

[
1 −1

0 1

](
y1

y2

)
=

(
−2

0

)
, with the solution

(
y1

y2

)
=

(
−2

0

)
.

The reduced costs for the non-basic variables are given by c̄Tδ = cδ − yTAδ =

= (−1, −1, 0)− (−2, 0)

[
1 −1 1

1 1 0

]
= (1, −3, 2).

Since c̄δ2 = c̄2 = −3 is the smallest, and < 0, we will let x2 become new basic
variable.

Then we need to compute the vector ā2 from the system Aβā2 = a2,

i.e.

[
1 0

−1 1

](
ā12

ā22

)
=

(
−1

1

)
, with the solution ā2 =

(
ā12

ā22

)
=

(
−1

0

)
.

Since ā2 ≤ 0, x2 can increment without limit, and the objective function value
(for the minimization problem) goes to −∞. Hence the problem lacks finite
optimal value and the algorithm is canceled.

(b) When x2 is increased from 0 the values of the basic variables are affected
according to xβ = b̄− ā2x2,

i.e.

(
x3

x5

)
=

(
1

2

)
−
(
−1

0

)
x2, while x1 and x4 stays at 0. Expressed in

the original variables x1, x2 and x3 this corresponds to that x2 = t, x3 = 1 + t
and x1 = 0,

which can be written as x(t) =

 x1(t)

x2(t)

x3(t)

 =

 0

0

1

+ t ·

 0

1

1

 = x0 + t · d.

Then Px(t) ≤ b and x(t) ≥ 0 for all t ≥ 0, while qTx(t) = 1+3t→ +∞ when
t→ +∞.

(c) If the primal problem is

maximize qTx s.t. Px ≤ b and x ≥ 0,

then the corresponding dual problem

minimize bTy s.t. PTy ≥ q and y ≥ 0,
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which written out becomes

minimize y1+y2 s.t. y1+y2 ≥ 1, −y1+y2 ≥ 1, y1−y2 ≥ 2, y1 ≥ 0 and y2 ≥ 0 .

With the help of a figure you immediately see that there is no y that fulfills
both −y1 +y2 ≥ 1 and y1−y2 ≥ 2. (Which is also understood if you add these
inequalities.) Hence the dual problem lacks feasible solutions, which is exactly
what we expected, since the primal problem had feasible solutions, but lacked
finite optimal solution.

8.9 (20051024-nr.3)

Let S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} and B = {(i, j) | i ∈ S, j ∈ S and i 6=
j}.
We have the following given:

12 constants pi, for i ∈ S, 12 constants qj , for j ∈ S,
and 132 constants rij , for (i, j) ∈ B.

Further we have 132 unknowns xij , for (i, j) ∈ B.
These xij become our variables in the optimization formulation.

The demand on consistency implies that∑
j∈J(i)

xij = pi, for i ∈ S, and that
∑
i∈I(j)

xij = qj , for j ∈ S,

where J(i) = {j ∈ S | j 6= i} and I(j) = {i ∈ S | i 6= j}.
Furthermore we demand that xij ≥ 0 for (i, j) ∈ B.

Given that the variables xij fulfill these consistency demands we want to choose
them as close to the constants rij as possible. There are several ways to define
what you mean by “close”. Here are some possible measures of the “distance”
between the variables xij and the constants rij :

(A1):
∑

(i,j)∈B
(xij − rij)2.

(A2):
∑

(i,j)∈B
|xij − rij |.

(A3): max
(i,j)∈B

{|xij − rij |}.

(A1) leads to a convex QP-problem, while (A2) and (A3) both leads to LP-
problems. If you for instance use (A3) you get the following LP-problem in
the variables xij and z:

minimize z

s.t. xij + z ≥ rij , for (i, j) ∈ B,

xij − z ≤ rij , for (i, j) ∈ B,∑
j∈J(i)

xij = pi, for i ∈ S,

∑
i∈I(j)

xij = qj , for j ∈ S,

xij ≥ 0, f0r (i, j) ∈ B.
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The first two constraints says that z ≥ |xij − rij | for all (i, j) ∈ B.
Hence in the optimal it will hold that z = max

(i,j)∈B
{|xij − rij |}.

8.10 (20050331-nr.2)

Every sub-exercise can be handled by the following methodology.

First draw the feasible region to P in a coordinate system with x1 and x2 on
the axes.
Then draw (in the same figure) the curvature of the objective function cTx.
Then make your conclusion about the optimal solution of P.

Draw the feasible region of D in a coordinate system with y1 and y2 on the
axes.
Then draw (in the same figure) the curvature of the objective function bTy.
The make conclusions about the optimal solution to D.

(a) Here b = ( 1, −1 )T and c = (−2, 2 )T.
Optimal solution to P is x = (1, 1)T, with the optimal value cTx = 0.
Optimal solution to D is y = (2, 2)T, with the optimal value bTy = 0.
Both P and D hence have the the optimal value = 0.

(b) Here b = ( 1, −1 )T and c = ( 2, 2 )T.
Optimal solution to P is x = (0, 1)T, with the optimal value cTx = 2.
Optimal solution to D is y = (2, 0)T, with the optimal value bTy = 2.
Both P and D hence have the the optimal value = 2.

(c) Here b = (−1, −1 )T and c = (−2, 2 )T.
Optimal solution to P is x = (1, 0)T, with the optimal value cTx = −2.
Optimal solution to D is y = (0, 2)T, with the optimal value bTy = −2.
Both P and D hence have the the optimal value = −2.

(d) Here b = (−1, 1 )T and c = ( 2, 2 )T.
The problem P now lacks feasible solutions.
For the problem D holds that if you let y(t) = t · (0, 1)T, then y(t) is feasible
to D for
all t ≥ 0, and bTy(t) −→∞ where t −→∞. This means that D lacks a finite
optimal solution.
In this case you say that both P and D have the optimal value +∞.

(e) Here b = (−1, −1 )T and c = ( 2, −2 )T.
The problem D now lacks feasible solutions.
For the problem P holds that if you let x(t) = t · (0, 1)T then x(t) is feasible
to P for
all t ≥ 0, and cTx(t) −→ −∞ where t −→∞. This means that P lacks a finite
optimal solution.
In this case you say that both P and D have the optimal value −∞.

8.11 (20050307-nr.2)

(a) That x1, x3 and x5 are basic variables corresponds to that β = (1, 3, 5)
and δ = (2, 4, 6).
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The corresponding basic matrix is given by Aβ = [a1 a3 a5] =

 1 0 0

2 2 0

2 2 2

.

This matrix is non- singular, i.e. a basic matrix, since it is triangular with
nonzero elements on the diagonal.

The values of the basic variables in the basic solution are given by xβ = b̄,
where the vector b̄ is computed from the system

Aβb̄ = b, i.e.

 1 0 0

2 2 0

2 2 2


 b̄1

b̄2

b̄3

 =

 1

3

5

 , with the solution b̄ =

 b̄1

b̄2

b̄3

 =

 1

0.5

1

.

This is a feasible basic solution Since b̄ ≥ 0.

(b) The values of the simplex multipliers are given by the system AT
βy = cβ,

i.e.

 1 2 2

0 2 2

0 0 2


 y1

y2

y3

 =

 2

1

2

 , with the solution

 y1

y2

y3

 =

 1

−0.5

1

.

The reduced costs for the non-basic variables are given by c̄Tδ = cδ − yTAδ =

= (1, 1, 1)− (1, −0.5, 1)

 1 1 0

2 1 2

0 1 1

 = (1, −0.5, 1).

Since c̄δ2 = c̄4 = −0.5 < 0 we will let x4 become new basic variable.

Then we need to compute the vector ā4 from the system Aβā4 = a4,

i.e.

 1 0 0

2 2 0

2 2 2


 ā14

ā24

ā34

 =

 1

1

1

 , with the solution ā4 =

 ā14

ā24

ā34

 =

 1

−0.5

0

.

The biggest value that the new basic variable x4 can be incremented to is given
by

xmax
4 = min

i

{
b̄i
āi4
| āi4 > 0

}
=

b̄1
ā14

=
1

1
.

The minimizing index is i = 1, and hence xβ1 = x1 will no longer be basic
variable.

Hence now β = (4, 3, 5) and δ = (2, 1, 6).

The corresponding basic matrix is given by Aβ = [a4 a3 a5] =

 1 0 0

1 2 0

1 2 2

.

55



The values of the basic variables in the basic solution are given by xβ = b̄,
where the vector b̄ in computed from the system

Aβb̄ = b, i.e.

 1 0 0

1 2 0

1 2 2


 b̄1

b̄2

b̄3

 =

 1

3

5

 , with the solution b̄ =

 b̄1

b̄2

b̄3

 =

 1

1

1

.

This is as expected a feasible basic solution.

The values of the simplex multipliers are given by the system AT
βy = cβ,

i.e.

 1 1 1

0 2 2

0 0 2


 y1

y2

y3

 =

 1

1

2

 , with the solution

 y1

y2

y3

 =

 0.5

−0.5

1

.

The reduced costs for the non-basic variables are given by c̄Tδ = cδ − yTAδ =

= (1, 2, 1)− (0.5, −0.5, 1)

 1 1 0

2 2 2

0 2 1

 = (1.5, 0.5, 1).

Since c̄δ ≥ 0 the current basic solution is optimal,
i.e. x4 = x3 = x5 = 1 and x2 = x1 = x6 = 0, with the optimal value z = 4.

(c) The dual problem can be written as:

maximize bTy s.t. ATy ≤ c,

with A, b and c as above.

Hence we have three variables and six inequality constraints in the dual prob-
lem D.
The optimal solution to D is given by y = (0.5, −0.5, 1)T from the (b)-task
above.
You can quickly confirm that this is a feasible solution to D.
Furthermore bTy = 4 = cTx, with x according to above.

8.12 (20050307-nr.5)

(a) We look for a vector a ∈ IRn such that aTpi ≤ 1, aTqj ≥ 1 and a ≥ 0.
(Since p1 = 0 there exist no vector a ∈ IRn such that aTp1 ≥ 1.)

With slack variables ui and vj , the above can be written as:
pT
i a + ui = 1, i = 1 . . . k, qT

j a− vj = 1, j = 1 . . . `, a ≥ 0, u ≥ 0, v ≥ 0.

To determine whether this system has a solution we form a Phase1-problem,
with artificial variables wj , j = 1 . . . `.

minimize w1 + · · ·+ w`

s.t. pT
i a + ui = 1, i = 1 . . . k

qT
j a− vj + wj = 1, j = 1 . . . `

a ≥ 0, u ≥ 0, v ≥ 0, w ≥ 0.
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A feasible starting basic solution is obtained with u1 . . . uk and w1 . . . w` as
basic variables.

If and only if the optimal solution to this LP-problem has all wj = 0 there is
a weakly separating plane, whose coefficients are given by optimal a.

(b) Now we are looking for a strictly separating plane.

Such a plane exists if there is a number δ > 0 and an a ∈ IRn such that
aTpi ≤ 1− δ, i = 1 . . . k, aTqj ≥ 1 + δ, j = 1 . . . `, a ≥ 0.

With slack variables ui and vj the above can be written as:
pT
i a+ui+δ = 1, i = 1 . . . k, qT

j a−vj−δ = 1, j = 1 . . . `, a ≥ 0, u ≥ 0, v ≥ 0.

Now treat δ as a non-negative variable that shall be maximized. This leads to
the following LP-problem.

maximize δ

s.t. pT
i a + ui + δ = 1, i = 1 . . . k

qT
j a− vj − δ = 1, j = 1 . . . `

a ≥ 0, u ≥ 0, v ≥ 0, δ ≥ 0.

If and only if δ > 0 in the optimal solution to this LP-problem there exists a
strictly separating plane, whose coefficients are given by optimal a.

A feasible starting basic solution is for example the optimal basic solution to
the LP-problem in the a)-task above.

8.13 (20041016-nr.2)

(a). The cost vector to the LP-problem is obviously cT = ( 0, 0, 0, 0, 1, 1, 1 ),

while the constraint matrix is given by G =

 1 0 −1 1 1 0 0

−1 1 0 1 0 1 0

0 1 −1 1 0 0 1

.

The proposed solution corresponds to that the columns 1, 2 and 7 are the basic
columns,

so that we obtain the basic matrix Gβ =

 1 0 0

−1 1 0

0 1 1

. The values of the

basic variables are given by the system

Gβxβ = b, i.e.

 1 0 0

−1 1 0

0 1 1


 x1

x2

v3

 =

 2

3

6

, with the solution

 x1

x2

v3

 =

 2

5

1

 , OK!

The values of the simplex multipliers are given by the system GT
βy = cβ, i.e.1 −1 0

0 1 1

0 0 1


 y1

y2

y3

 =

 0

0

1

, with the solution

 y1

y2

y3

 =

−1

−1

1

.
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The reduced costs for the non-basic variables are given by

c̄Tδ = cδ−yTGδ = ( 0, 0, 1, 1 )−(−1,−1, 1 )

−1 1 1 0

0 1 0 1

−1 1 0 0

 = ( 0, 1, 2, 2 ).

Since c̄δ ≥ 0, the proposed feasible basic solution is optimal.

We can also conclude that the optimal value of the stated LP-problem is = 1.

(b). The answer is NO because of the following:

Suppose there were scalars xj ≥ 0 such that b = a1x1 + a2x2 + a3x3 + a4x4.
These scalars would then together with v = 0 be a feasible solution with the
objective function value eTv = 0 to the (a)-task’s LP-problem. But this is not
possible, since we have already seen that the optimal value of this LP-problem
is = 1.

(c). The dual problem corresponding to the LP-problem above can be written
as

maximize bTy

s.t. ATy ≤ 0,

Iy ≤ e.

Since the primal problem had the optimal value = 1 also the dual problem has
the optimal value = 1 (the duality theorem). Hence every optimal solution to
the dual problem fulfills that bTy = 1 and ATy ≤ 0, and therefore bTy > 0
and aT

j y ≤ 0 for all j.
But an optimal solution to the dual problem is given by the vector of multipliers
in the optimal basic solution to the primal problem, i.e. y = (−1,−1, 1 )T.
You can quickly verify that this vector y really fulfills the inequalities.

8.14 (20040415-nr.2)

(a)

If the primal problem is on the form

minimize cTx

s.t. Ax = b ,

x ≥ 0 ,

then the corresponding dual problem is

maximize bTy

s.t. ATy ≤ c .

It is well-known that if
(i) x is a feasible solution to the primal problem,
(ii) y is a feasible solution to the dual problem, and
(iii) cTx = bTy,
then x and y are optimal solutions to their respective problem.
But the from the program proposed x and y fulfill
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Ax = b, x ≥ 0, ATy ≤ c and cTx = bTy.
Hence they are optimal to P and D respectively.

(b) If the primal problem is on the form

minimize cTx

s.t. Ax ≥ b ,

x ≥ 0 ,

then the corresponding dual problem is

maximize bTy

s.t. ATy ≤ c ,

y ≥ 0 .

But x and y from the (a)-task above fulfill that
Ax ≥ b, x ≥ 0, ATy ≤ c, y ≥ 0 and cTx = bTy.
Hence they are optimal also to these two problems.

(c) If the problem is on the form

minimize cTx

s.t. Ax ≤ b ,

x ≥ 0 ,

with the given A, b and c, then it is realized by “inspection” that x̂ =
(0, 0, 0, 0, 0, 0)T is the unique optimal solution. This is a feasible solution with
the objective function value cTx̂ = 0, and for every other feasible solution x
it holds that cTx > 0, since c > 0, x ≥ 0 and at least one xj > 0.
As an alternative to “inspection” you can introduce slack variables and let
these be starting basic variables in the simplex method. You then immedi-
ately realize that the starting basic solution is optimal.

8.15 (20040310-nr.5)

(a): With β = (1, 101) and δ = (2, 3, . . . , 99, 100) it is obtained that

Aβ =

[
100 0
0 100

]
.

The vector b̄ with values of the basic variables in the basic solution is given
by the equation system Aβb̄ = b, with the solution b̄ = (1, 2)T (i.e. x1 = 1
and x101 = 2 in the current basic solution).

The reduced costs for the non-basic variables are given by c̄Tδ = cTδ − yTAδ,
where y is given by the equation system yTAβ = cTβ = (50, 50), with the

solution yT = (0.5, 0.5).

For every non-basic index j we hence have
c̄j = cj − yTaj = | 51− j | − 0.5(101− j)− 0.5(j − 1) = | 51− j | − 50.

The least reduced cost is obviously obtained for j = 51 so we set k = 51.
Then c̄k = −50 < 0 and the non-basic variable xk = x51 shall be new basic
variable.
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We compute āk from the equation system Aβāk = ak, where ak = a51 =
(50, 50)T, which gives that āk = (0.5, 0.5)T.

Then we compare the quotas
b̄1
ā1k

=
1

0.5
and

b̄2
ā2k

=
2

0.5
.

The first quota is the smallest, so xβ1 = x1 shall be removed from the basis.

Now β = (51, 101) and Aβ =

[
50 0
50 100

]
.

The vector b̄ with the values of the basic variables in the basic solution is given
by the equation system Aβb̄ = b, with the solution b̄ = (2, 1)T (i.e. x51 = 2
and x101 = 1 in the current basic solution).

The reduced costs for the non-basic variables are given by c̄Tδ = cTδ − yTAδ,
where y is given by the equation system yTAβ = cTβ = (0, 50), with the

solution yT = (−0.5, 0.5).

For every non-basic index j we hence have that
c̄j = cj −yTaj = | 51− j |+ 0.5(101− j)− 0.5(j− 1) = | 51− j |+ (51− j) ≥ 0,
with equality for all j ≥ 51.

The current basic solution x51 = 2, x101 = 1 and the other xj = 0 is hence
optimal.

The optimal value to the problem is c51x51 + c101x101 = 50.

(b): Suppose that β = (p, q) with p < q, then Aβ =

[
101−p 101−q
p−1 q−1

]
.

The vector b̄ with the values of the basic variables in the basic solution is
given by the equation system Aβb̄ = b.

Computations and simplifications give that xp = b̄1 =
3q − 203

q − p
and xq =

b̄2 =
203− 3p

q − p
.

The basic solution is hence feasible if and only if 3q−203 ≥ 0 and 203−3p ≥
0, i.e. if and only if q ∈ {68, 69, 70, . . . , 100, 101} and p ∈ {1, 2, 3, . . . , 66, 67} .

This gives in total 34 · 67 = 2278 feasible basic solutions.

(c): Suppose that β = (p, q) with p ∈ {1, 2, 3, . . . , 66, 67} and q ∈
{68, 69, 70, . . . , 100, 101} .

Then xp =
3q − 203

q − p
> 0 and xq =

203− 3p

q − p
> 0 .

The objective function value of the basic solution is given by

z̄ = cpxp + cqxq = | 51− p |xp + | 51− q |xq = | 51− p |xp + (q − 51)xq , since
q ≥ 68 > 51.

We obtain two cases, depending on whether p ≥ 51 or p < 51 (while of course
q ≥ 68 in both cases).

If p ≥ 51, then | 51− p | = p− 51, and then

z̄ = (p− 51) · 3q − 203

q − p
+ (q − 51) · 203− 3p

q − p
= . . . = 50.
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If p < 51, then | 51− p | = 51− p, and then

z̄ = (51−p)·3q − 203

q − p
+(q−51)·203− 3p

q − p
= . . . = 50 +

2(51− p)(3q − 203)

q − p
>

50.

The basic solution is hence optimal if and only if
q ∈ {68, 69, . . . , 100, 101} and p ∈ {51, 52, . . . , 66, 67} .

This gives in total 34 · 17 = 578 optimal feasible basic solutions.
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9. Network problems

9.1 (20070601-nr.1b)

Given the feasible basic solution we get the corresponding simplex multipliers
ui and vj , calculated from the relation cij = ui− vj for the basic variables and
v4 = 0.

cij customer 1 customer 2 customer 3 customer 4 ui
fac 1 116 125 136 147

fac 2 125 136 136

fac 3 125 125

fac 4 116 116

vj 31 22 11 0

From that we get the following reduced cost rij for the non-basic variables
computed from the relation rij = cij − ui + vj .

rij customer 1 customer 2 customer 3 customer 4 ui
fac 1 2 147

fac 2 4 2 136

fac 3 10 6 2 125

fac 4 16 10 4 116

vj 31 22 11 0

Since all rij ≥ 0 the proposed basic solution is optimal.

9.2 (20070307-nr.1b)

(b)

That the problem is a minimum cost flow problem follows from the fact that
every column in A consists of one element +1, one element −1, and the rest
zeros. Every row in A then corresponds to a node in the network problem and
every column in A corresponds to an edge in the network, i.e. an edge from
the node that corresponds to the row with +1 to the node which corresponds
to the row with −1.
Hence the network consists of 6 nodes and the set of edges
B = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}.
Node 1, 2 and 3 are source nodes, while node 4, 5 and 6 are sink nodes.

In the following we denote the variables xij and the corresponding costs cij ,
i.e. x = (x14, x15, x16, x24, x25, x26, x34, x35, x36)

T

and c = (c14, c15, c16, c24, c25, c26, c34, c35, c36)
T.

The proposed solution fulfills Ax̂ = b and x̂ ≥ 0.
Furthermore it corresponds to a spanning tree in the network with the basic
edges
Bβ = {(1, 4), (1, 6), (2, 6), (3, 5), (3, 6)}.
The proposed solution x̂ is hence a feasible basic solution.
The reduced costs are now given from the formula

rij = cij − yi + yj for all non-basic edges,
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where the scalars (simplex multipliers) yi are given from the formula

yi − yj = cij for all basic edges and y6 = 0.

The scalars yi can for example be computed in the following order:
First y6 = 0, which holds per definition.
The basic edge (3, 6) then gives that y3 − y6 = c36, i.e. y3 = c36 = 4.
The basic edge (2, 6) then gives that y2 − y6 = c26, i.e. y2 = c26 = 4.
The basic edge (1, 6) then gives that y1 − y6 = c16, i.e. y1 = c16 = 4.
The basic edge (1, 4) then gives that y1−y4 = c14, i.e. y4 = y1−c14 = 4−2 = 2.
The basic edge (3, 5) then gives that y3−y5 = c35, i.e. y5 = y3−c35 = 4−2 = 2.

Next step is to compute the reduced costs for the non-basic variables, which
gives
r15 = c15 − y1 + y5 = 3− 4 + 2 = 1,
r24 = c24 − y2 + y4 = 3− 4 + 2 = 1,
r25 = c25 − y2 + y5 = 3− 4 + 2 = 1,
r34 = c34 − y3 + y4 = 3− 4 + 2 = 1.

Since all rij ≥ 0 the given basic solution is optimal.

Comment: The problem can also be solved as a transportation problem!

9.3 (20060603-nr.5)

First comes an example of a LP-formulation.

First we choose the following variables:

Let xj denote the number of tonnes that are manufactured on normal working
time in month j.

Let yj denote the number of tonnes that are manufactured on overtime in
month j.

Let zj denote the number of tonnes that are delivered to the customer in the
end of each month j.

Let sj denote the number of tonnes that are stored in the storage during month
j.

Let uj denote the number of tonnes that you are “owing” the customer in the
beginning of month j
(Not including pj , pj+1 etc.).

Then the objective function, which should be minimized, can be written as
3∑
j=1

(c xj + d yj + ` sj + fuj).

The constraints that have to be fulfilled are the following:

s1 = 0, u1 = 0,

x1 + y1 − z1 − s2 = 0,

x2 + y2 − z2 + s2 − s3 = 0,

63



x3 + y3 − z3 + s3 = 0,

z1 + u2 = p1,

z2 + u3 − u2 = p2,

z3 − u3 = p3,

xj ≤ a and yj ≤ b for j = 1, 2, 3,

and all variables must be ≥ 0.

If you want you can eliminate the variables zj , and then the constraints have
the following form:

s1 = 0, u1 = 0,

x1 + y1 + u2 − s2 = p1,

x2 + y2 + u3 − u2 + s2 − s3 = p2,

x3 + y3 − u3 + s3 = p3,

u2 ≤ p1,
u3 − u2 ≤ p2,
xj ≤ a and yj ≤ b for j = 1, 2, 3,

and all variables must be ≥ 0.

9.4 (20060308-nr.5)

(a).

We obtain the following feasible basic solution with help of the NWC-method:

xij customer1 customer2 customer3 customer4 si
sup 1 20 40 20 80

sup 2 40 20 60

sup 3 40 40

sup 4 20 20

dj 20 40 60 80

(b). Corresponding to the feasible basic solution above we obtain the following
simplex multipliers ui and vj , computed with help of the relation cij = ui− vj
for basic variables and v4 = 0.

cij customer1 customer2 customer3 customer4 ui
sup 1 16 25 36 47

sup 2 25 36 36

sup 3 25 25

sup 4 16 16

vj 31 22 11 0

Then we obtain the following reduced costs rij for the non-basic variables,
computed with the relation rij = cij − ui + vj .
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rij customer1 customer2 customer3 customer4 ui
sup 1 2 47

sup 2 4 2 36

sup 3 10 6 2 25

sup 4 16 10 4 16

vj 31 22 11 0

All rij ≥ 0, which implies that this basic solution is optimal.

(c). Try to use the same collection of basic variables as in the optimal solution
above. That gives the new solution:

xij customer1 customer2 customer3 4 si
sup 1 40 40 0 80

sup 2 60 0 60

sup 3 40 40

sup 4 40 40

dj 40 40 60 80

All xij were ≥ 0, so it is still a feasible basic solution (but degenerated since
it has basic variables with the value 0). Hence the computation of ui, vj and
rij will be identical with the one above, so all rij will still be ≥ 0. Hence the
solution in the table is optimal to the new problem.

(d). x22 is a non-basic variable in the optimal solution, so if c22 is decreased
with δ22, then r22 is decreased with δ22 while the other rij not are affected.
Hence it follows that the given solution is still optimal if and only if δ22 ≤ 2.

9.5 (20051024-nr.2)

The proposed solution in the exercise corresponds to a spanning tree in the
network, i.e. to a basic solution of the problem. Further it is a feasible basic
solution, since the balance equations are fulfilled in all nodes and no variables
are negative.

You compute the simplex multipliers yi from the constraints yi − yj = cij
for basic variables (i.e. edges of the tree) and y6 = 0. This gives that y =
(9, 6, 7, 2, 3, 0)T.
After that the reduced costs for the non-basic variables are computed from
c̄ij = cij − yi + yj .
This gives that c̄23 = 2, c̄34 = −1, c̄45 = 2 and c̄56 = 0.
Since c̄34 = −1 we shall let x34 become new basic variable. The corresponding
edge (3, 4) forms a loop in the network together with the tree edges (2, 4)
(backwards), (1, 2) (backwards) and (1, 3) (forward). The flow in the edge
(3, 4), i.e. x34, can increment to 10 before one of the backward edges, x12,
has reached 0. Hence x34 becomes new basic variable instead of x12. The new
feasible basic solution becomes:
x13 = 25, x24 = 10, x34 = 10, x35 = 15, x46 = 20, other xij = 0.

You compute the simplex multipliers yi again from the constraints yi−yj = cij
for basic variables (i.e. edges of the trees), and y6 = 0. This gives that
y = (8, 6, 6, 2, 2, 0)T.
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After that the reduced costs of the non-basic variables are computed from
c̄ij = cij − yi + yj .
It gives that c̄12 = 1, c̄23 = 1, c̄45 = 1 and c̄56 = 1.
Since all c̄ij ≥ 0 the current feasible basic solution is optimal.
The optimal value is

∑
cijxij = 230.

A LP-formulation of the problem above is

minimize
∑

(i,j)∈B
cijxij

s.t.
∑

j∈J (i)

xij −
∑

k∈K(i)
xki = bi , for i ∈ N ,

xij ≥ 0 , for (i, j) ∈ B,

where J (i) = {j ∈ N | (i, j) ∈ B}, K(i) = {k ∈ N | (k, i) ∈ B} and

(b1, b2, b3, b4, b5, b6) = (25, 10, 0, 0,−15,−20).

The corresponding dual LP-problem is then

maximize
∑
i∈N

biyi

s.t. yi − yj ≤ cij , for (i, j) ∈ B.

An optimal solution is given by the simplex multipliers corresponding to the
optimal basic solution above, i.e. y = (8, 6, 6, 2, 2, 0)T.
This is a feasible solution to the dual problem (since yi − yj = cij for basic
edges and yi − yj = cij − 1 for non-basic edges). Further

∑
biyi = 25 · 8 + 10 ·

6− 15 · 2− 20 · 0 = 230, which corresponds to the optimal value of the primal
problem above.

9.6 (20050331-nr.1)

The problem can be modeled as a minimum cost flow problem (MCFP) in a
network with 7 nodes and 10 edges. The of the head of the transport division
suggested solution is a feasible basic solution, since it corresponds to a spanning
tree in the network. Applying the MCFP-algorithm (i.e. the simplex method
applied on MCFP) gives that there is a negative reduced cost in the proposal,
and hence you should change basis, etc.

It is even easier to model the problem as a transportation problem (TP) with
two source nodes (factories) and three sink nodes (customers). The trans-
portation cost from for example F2 to K2 is given by the least of the the two
numbers 4+7=11 resp 5+9=14, where 4+7 is the transportation cost via T1
whereas 5+9 is the transportation cost via T2. This gives us transportation
costs according to the left table beneath.

K1 K2 K3

F1 12 14 11

F2 10 11 10

K1 K2 K3

F1 100 200

F2 100 200

The TP-algorithm gives an unique optimal solution in accordance with the
right table above.
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If you translate this optimal solution to the same format as the head of the
transportations had, with help of the cheapest ways between the current pairs
of plants and customers, you get the following tables:

T1 T2

F1 0 300

F2 300 0

K1 K2 K3

T1 100 200 0

T2 100 0 200

This solution is some 100 SEK-bills cheaper that the original proposal.

9.7 (20050307-nr.1)

(a) Only the answers are given here.

A maximum flow is given by (for example) x12 = x26 = x68 = 1, x13 = x35 =
x58 = 1, the rest xij = 0. Its value is = 2. A minimum cut is given by the edges
(S, S̄), where S = {1, 2, 4, 6} and S̄ = {3, 5, 7, 8}, i.e. (S, S̄) = {(1, 3), (6, 8)}.
Its capacity is = 1 + 1 = 2.

(b).

The problem can be modeled as a maximum flow problem in the network
beneath, where you want to determine the flow from node A to node B.

The edges most to the left, from the node A to the student-nodes, all have the
capacity 2 (since all students work 2 days a week).

The edges most to the right, from the 7 day-nodes to the node B, also have
the capacity 2 (since every day 2 students are required).

The edges in the middle, from the student-nodes to the day-nodes, have capac-
ity one, (since for example student one can work at most one Monday a week).
Which middle edges that are in the network is given by the list of wishes.

If and only if the maximum flow from node A to node B has the value 14,
there is a working schedule that fulfills the wishes of the students.

S1 Mon

S2 Tue

S3 Wed

A S4 Thu B

S5 Fri

S6 Sat

S7 Sun

(According to the exercise it is not necessary to solve the formulated maximum
flow problem, but if you still want to do it, you easily find a feasible flow of
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value 13. There are several. But then there are no way from A to B in the
increment network, so the maximum flow algorithm stops. Hence it is not
possible to work out a schedule that fulfills all wishes.)

9.8 (20041016-nr.1)

(a) Let:
xij = number of tonnes of fuel that the air-company orders from supplier i to
airport j,
si = the capacity at supplier i (s1 = s2 = s3 = 400),
dj = the demand at airport j (d1 = d2 = d3 = d4 = 300),
cij = cost per tonne from supplier i to airport j (c11 = 5, c12 = 4, etc.).

Since s1 + s2 + s3 = d1 + d2 + d3 + d4 the problem can be formulated as:

TP: minimize
3∑
i=1

4∑
j=1

cijxij

s.t.
4∑
j=1

xij = si , for i = 1, . . . , 3

−
3∑
i=1

xij = −dj , for j = 1, . . . , 4

xij ≥ 0 , for all i and j.

(b) Starting basic solution, with the “Northwest”-method:

xij A1 A2 A3 A4 si
S1 300 100 400

S2 200 200 400

S3 100 300 400

dj 300 300 300 300

Corresponding to this basic solution we obtain the following simplex multipliers
ui and vj , computed with the relation cij = ui − vj for basic variables and
v4 = 0, and the following reduced costs c̄ij for non-basic variables, computed
with the relation c̄ij = cij − ui + vj .

c̄ij A1 A2 A3 A4 ui
S1 0 -1 6

S2 2 1 6

S3 2 1 7

vj 1 2 2 0

Let x14 become new basic variable. That gives the following new basic solution:

xij A1 A2 A3 A4 si
S1 300 100 400

S2 300 100 400

S3 200 200 400

dj 300 300 300 300
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Corresponding to this basic solution we get the following simplex multipliers
ui and vj , and the reduced costs c̄ij .

c̄ij A1 A2 A3 A4 ui
S1 1 1 5

S2 1 1 6

S3 1 1 7

vj 0 2 2 0

Now all c̄ij ≥ 0, which imply that this basic solution is optimal. The optimal
value becomes
3∑
i=1

4∑
j=1

cijxij = 5 ·300 + 5 ·100 + 4 ·300 + 4 ·100 + 5 ·200 + 7 ·200 = 6000 kSEK.

(c) The dual problem in the variables ui and vj can be written:

D: maximize
3∑
i=1

siui −
4∑
j=1

djvj

s.t. ui − vj ≤ cij , for all i and j.

An optimal solution to this dual problem is given by the simplex multipliers
in the optimal basic solution to the primal problem above, i.e. u1 = 5, u2 =
6, u3 = 7, v1 = 0, v2 = 2, v3 = 2, v4 = 0. The optimal value becomes

3∑
i=1

siui−
4∑
j=1

djvj = 400 · 5 + 400 · 6 + 400 · 7− 300 · 2− 300 · 2 = 6000 kSEK.

OK!

9.9 (20040415-nr.1)

The starting basic solution, with the “Northwest”-method, becomes:

xij P Q R S T

A 50 40

B 80 20

C 60

D 30 70 90

Corresponding to this basic solution we get the following simplex multipliers
ui and vj , computed with help of the relation cij = ui − vj for basic variables
and v5 = 0, and the following reduced costs c̄ij for the non-basic variables,
computed with help of the relation c̄ij = cij − ui + vj .

c̄ij P Q R S T ui
A 0 0 −1 4

B 1 0 0 6

C 2 2 1 1 4

D 1 2 5

vj −2 −2 −1 −2 0

Let x15 become the new basic variable. This gives the new basic solution:
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xij P Q R S T

A 50 20 20

B 100

C 60

D 50 70 70

Corresponding to this basic solution we get the following simplex multipliers
ui and vj , and the following reduced costs c̄ij for the non-basic variables:

c̄ij P Q R S T ui
A 1 1 3

B 1 1 1 1 5

C 1 1 1 1 4

D 0 1 5

vj −3 −3 −1 −2 0

All c̄ij ≥ 0, which implies that this basic solution is optimal.
Since c̄41 = 0, x41 can become new basic variable without that the value of the
objective function is affected.
This gives the following new basic solution:

xij P Q R S T

A 20 70

B 100

C 60

D 50 50 70 20

This basic solution is also optimal.

9.10 (20040310-nr.1)

Our network have 6 nodes. Let node 1 and node 2 be the source-nodes, node 3
and node 4 the intermediate nodes, and node 5 and node 6 the sink-nodes. The
set of links is then B = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 5), (3, 6), (4, 5), (4, 6)}.
The minimum cost flow problem corresponding to the given network can be
written on the following form:

MCF : minimize cTv

s.t. Av = b,

v ≥ 0,

where v = (v13, v14, v23, v24, v35, v36, v45, v46)
T = (x11, x12, x21, x22, z11, z12, z21, z22)

T,

c = ( 5, 2, 3, 2, 5, 5, 7, 6 )T,

A =


1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
−1 0 −1 0 1 1 0 0

0 −1 0 −1 0 0 1 1
0 0 0 0 −1 0 −1 0

 and b =


30
20
0
0

−40

,

where we have ignored the redundant balance equation for the last node.

The proposed solution corresponds to a spanning tree (and is hence a basic
solution) consisting of the links Bβ = {(1, 4), (2, 3), (3, 5), (4, 5), (4, 6)}.
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The values of the basic variables can be determined in for example the following
order:
v14 = x12 = 30, because of the flow balance condition in node 1.
v23 = x21 = 20, because of the flow balance condition in node 2.
v35 = z11 = 20, because of the flow balance condition in node 3.
v45 = z21 = 20, because of the flow balance condition in node 5.
v46 = z22 = 10, because of the flow balance condition in node 4.
This agrees perfectly with the proposed solution.

It remains to check if this feasible solution is optimal.

The vector y is computed from the equations yi − yj = cij for all (i, j) ∈ Bβ,
where y6 = 0.
The basic link (4, 6) gives that y4 − y6 = c46, i.e. y4 = c46 = 6.
The basic link (4, 5) then gives that y4−y5 = c45, i.e. y5 = y4−c45 = 6−7 = −1.
The basic link (3, 5) then gives that y3−y5 = c35, i.e. y3 = y5+c35 = −1+5 = 4.
The basic link (2, 3) then gives that y2−y3 = c23, i.e. y2 = y3+c23 = 4+5 = 7.
The basic link (1, 4) then gives that y1−y4 = c14, i.e. y1 = y4+c14 = 6+2 = 8.

The next step is to compute the reduced costs from the formula
c̄ij = cij − yi + yj for all (i, j) ∈ Bδ (i.e. for all non-basic link). We get that
c̄13 = c13 − y1 + y3 = 5− 8 + 4 = 1, c̄24 = c24 − y2 + y4 = 2− 7 + 6 = 1
and c̄36 = c36 − y3 + y6 = 5− 4 + 0 = 1.

Since all c̄ij ≥ 0 the proposed optimal solution is optimal.
The optimal value is

∑
cijvij = 2 · 30 + 3 · 20 + 5 · 20 + 7 · 20 + 6 · 10 = 420.

(b) The corresponding dual LP-problem is

maximize
6∑
i=1

biyi

s.t. yi − yj ≤ cij , for all (i, j) ∈ B.

An optimal solution is given by the scalars yi computed above, i.e. y =
(8, 7, 4, 6,−1, 0)T .
This is a feasible solution to the dual problem (since yi−yj = cij for basic links
and yi−yj < cij for non-basic links). Further

∑
biyi = 30·8+20·7+40·1 = 420,

which is the same as the optimal value of the primal problem above.
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10. Convexity

10.1 (c) Take two points a and b in C + D. Show that λa + (1 − λ)b belongs to
C +D for all λ ∈ [0, 1].

a ∈ C +D =⇒ a = xa + ya for some xa ∈ C and ya ∈ D
b ∈ C +D =⇒ b = xb + yb for some xb ∈ C and yb ∈ D

Using the above we get

λa+ (1− λ)b = λ(xa + ya) + (1− λ)(xb + yb) =

= λxa + λya + (1− λ)xb + (1− λ)yb =

= λxa + (1− λ)xb + λya + (1− λ)yb ∈ C +D

since C and D are convex. This shows that C +D is convex.

10.2 Take two points a and b in
⋂
α∈ACα. Show that λa + (1 − λ)b belongs to⋂

α∈ACα for all λ ∈ [0, 1]. This is true for if a and b are in
⋂
α∈ACα, then for

each α ∈ A we have a ∈ Cα and b ∈ Cα. Since Cα is a convex set, λa+(1−λ)b
belongs to Cα. Since this is true for every α ∈ Cα, we have λa + (1 − λ)b in⋂
α∈ACα. This shows that

⋂
α∈ACα is a convex set.

10.3 (a) Let x and y be two points in C. Show that (f + g)(λy + (1 − λ)x) ≤
λ(f + g)(y)(1− λ)(f + g)(x) for all λ ∈ [0, 1].

(f + g)(λy + (1− λ)x) = f(λy + (1− λ)x) + g(λy + (1− λ)x) ≤
{f and g are convex} ≤ λ(f(y) + g(y)) + (1− λ)(f(x) + g(x)) =

= λ(f + g)(y) + (1− λ)(f + g)(x)

This shows that f + g is convex.

10.4 Let x and y be two points in C. Show that sup
α∈A

fα(λy+(1−λ)x) ≤ λsup
α∈A

fα(y)+

(1− λ)sup
α∈A

fα(x) for all λ ∈ [0, 1].

λsup
α∈A

fα(y) + (1− λ)sup
α∈A

fα(x) ≥ λfβ(y) + (1− λ)fβ(x) ≥

{fβ, β ∈ A is convex } ≥ fβ(λy + (1− λ)x)

Since the inequality above holds for all β ∈ A it must hold that

sup
β∈A

fβ(λy + (1− λ)x) ≤ λsup
α∈A

fα(y) + (1− λ)sup
α∈A

fα(x)

This shows that sup
α∈A

fα is convex.
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10.5 Let x and y be two points in C, and let λ ∈ [0, 1]. Since g is convex on C, it
follows that

g((1− λ)x+ λy) ≤ (1− λ)g(x) + λg(y).

Hence, since f is a nondecreasing function on I, we have

f(g((1− λ)x+ λy)) ≤ f((1− λ)g(x) + λg(y)).

Finally, since f is a convex function on I, we have

f((1− λ)g(x) + λg(y)) ≤ (1− λ)f(g(x)) + λf(g(y)).

The required result now follows by combining the last two inequalities.

10.6 (a) Convex.

(b) Convex.

(c) Convex.

(d) f(x) = x21/x2, x2 > 0 is convex if and only if the Hessian matrix ∇2f(x)
is positive semidefinite for all x2 > 0, i.e., if all the eigenvalues are non-
negative. The eigenvalues can be determined by solving the equation
det(∇2f(x)− Iλ) = 0.

∇2f(x) =

 2
x2

−2x1
x2

−2x1
x2

2x21
x32


The equation becomes

det(∇2f(x)− Iλ) = (
2

x2
− λ)(

2x21
x32
− λ)− 4x21

x42
= λ(λ− 2

x21 + x22
x32

) = 0

This yields λ1 = 0 and λ2 = 2
x21 + x22
x32

> 0 for x2 > 0. This shows

that f is convex for x2 > 0. (For 2 × 2-matrices there are easier ways
of checking if they are positive semidefinite, for example you can use
Sylvester’s criterion.)

(e) Convex.

(f) Convex.

10.7 Since ln is an increasing function which is well-defined for positive arguments,
it holds that(

n∏
i=1

xi

)1/n

≤ 1

n

n∑
i=1

xi ⇐⇒ 1

n

n∑
i=1

lnxi ≤ ln

(
1

n

n∑
i=1

xi

)
,

for xi > 0, i = 1, . . . , n.

The proof is by induction. Consider the inequality

1

n

n∑
i=1

lnxi ≤ ln

(
1

n

n∑
i=1

xi

)
.
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for xi > 0, i = 1, . . . , n. lnx is a concave function for x > 0, and hence the
inequality holds for n = 2. Now, suppose the inequality holds for n = k. We
want to show that it holds also for n = k + 1.

For some xi > 0, i = 1, . . . , n, consider the identity

1

k + 1

k+1∑
i=1

lnxi =
k

k + 1

(
1

k

k∑
i=1

lnxi

)
+

1

k + 1
lnxk+1.

Since the inequality in question is assumed to be valid for k = n, it follows
that

1

k + 1

k+1∑
i=1

lnxi ≤
k

k + 1
ln

(
1

k

k∑
i=1

xi

)
+

1

k + 1
lnxk+1.

The concavity of ln now gives

1

k + 1

k+1∑
i=1

lnxi ≤ ln

(
k

k + 1

1

k

k∑
i=1

xi +
1

k + 1
xk+1

)
= ln

(
1

k + 1

k+1∑
i=1

xi

)
,

as required.

10.8 (a) Let x and y be arbitrary points in C and let λ ∈ [0, 1]. Since x ∈ C, there
exist ti ≥ 0, i = 1, . . . ,m such that

x =
m∑
i=1

tixi and
m∑
i=1

ti = 1.

Similarly, since y ∈ C, there exist si ≥ 0, i = 1, . . . ,m such that

y =
m∑
i=1

sixi and
m∑
i=1

si = 1.

But then,

(1− λ)x+ λy = (1− λ)
m∑
i=1

tixi + λ
m∑
i=1

sixi =
m∑
i=1

((1− λ)ti + λsi)xi.

Hence, if we define ri = (1− λ)ti + λsi, i = 1, . . . ,m, we have

(1− λ)x+ λy =
m∑
i=1

rixi,

and the properties of si and ti give ri ≥ 0, i = 1, . . . ,m and
∑m
i=1 ri = 1.

Consequently, (1− λ)x+ λy ∈ C, as required.

(b) The proof is by induction.

For m = 2, the statement is that if x1 ∈ X and x2 ∈ X, t1 ≥ 0, t2 ≥ 0
and t1 + t2 = 1, then t1x1 + t2x2 ∈ X. This is true from the convexity of
X.

Suppose that the statement is true for m = k, i.e., if x1, . . . , xk ∈ X,
ti ≥ 0, i = 1, . . . , k and

∑k
i=1 ti = 1, then

∑k
i=1 tixi ∈ X. We want to

show that the statement is true also for m = k + 1.
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Let x1, . . . , xk+1 ∈ X, ti ≥ 0, i = 1, . . . , k + 1 and
∑k+1
i=1 ti = 1. We want

to show that
∑k+1
i=1 tixi ∈ X. If tk+1 = 1, then we must have ti = 0,

i = 1, . . . , k and the statement is true since
∑k+1
i=1 tixi = xk+1 ∈ X. Now

consider the case when tk+1 < 1. Then,

k+1∑
i=1

tixi =
k∑
i=1

tixi + tk+1xk+1 = (1− tk+1)
k∑
i=1

ti
1− tk+1

xi + tk+1xk+1.

Since ti ≥ 0, i = 1, . . . , k + 1 and
∑k+1
i=1 ti = 1, it follows that

ti
1− tk+1

≥ 0, i = 1, . . . k and
k∑
i=1

ti
1− tk+1

= 1.

Hence, since it is assumed that the statement is true for m = k, it holds
that

k∑
i=1

ti
1− tk+1

xi ∈ X.

But then, since tk+1 ∈ [0, 1], the convexity of X ensures that

k+1∑
i=1

tixi = (1− tk+1)
k∑
i=1

ti
1− tk+1

xi + tk+1xk+1 ∈ X,

and the induction proof is complete.

10.9 (20060308-nr.5)

The chain rule gives that g ′(x) = 2f(x)f ′(x) and g ′′(x) = 2f(x)f ′′(x) +
2(f ′(x))2.

(a). That f is twice continuously differentiable implies that according to above
also g is twice continuously differentiable. Hence we obtain: f convex on IR
⇒ f ′′(x) ≥ 0 for all x ∈ IR ⇒
⇒ g ′′(x) ≥ 0 for all x ∈ IR (since f(x) > 0 and (f ′(x))2 ≥ 0) ⇒ g convex on
IR.

(b). Take for example f(x) = (x2 + 1)2/5 , and then g(x) = (x2 + 1)4/5.
Straightforward computations show that g ′′(x) ≥ 0 for all x ∈ IR, while
f ′′(x) < 0 for x ∈ IR big enough. g is hence convex on IR although f is
not!

(c). If x̂ is a local minimizer to f(x) then there is a number δ > 0 such that
f(x) − f(x̂) ≥ 0 for all x ∈ IR such that |x − x̂| < δ. But for all those x it
also holds that h(x)−h(x̂) = f(x)2− f(x̂)2 = (f(x)− f(x̂))(f(x) + f(x̂)) ≥ 0.
Hence x̂ is a local minimizer also to h(x).

(d). If x̂ is a local minimizer to h(x) then there is a number δ > 0 such
that h(x) − h(x̂) ≥ 0 for all x ∈ IR such that |x − x̂| < δ. But for all
these x it also holds that f(x) − f(x̂) = (f(x)2 − f(x̂)2)/(f(x) + f(x̂)) =
(h(x)− h(x̂))/(f(x) + f(x̂)) ≥ 0.
Hence x̂ is a local minpoint also to f(x).
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(e). We have that x1 = x0 −
f ′(x0)

f ′′(x0)
and x̄1 = x0 −

g ′(x0)

g ′′(x0)
= x0 −

f(x0)f
′(x0)

f(x0)f ′′(x0) + (f ′(x0))2
,

such that
x̄1 − x0
x1 − x0

=
f(x0)f

′′(x0)

f(x0)f ′′(x0) + (f ′(x0))2
which is both > 0 and < 1

(since f(x0)f
′′(x0) > 0 and (f ′(x0))

2 > 0).

Hence x̄1 − x0 and x1 − x0 has the same sign, and |x̄1 − x0| < |x1 − x0|.

10.10 (20051024-nr.5)

(a). Let x̃ =
∑
k ŵkx

(k).
Since LP1 only has two constraints (except the non-negativity demands), and
ŵ is an optimal basic solution, it follows that at most two components in ŵ
(the basic variables) are > 0, say ŵp and ŵq, which then fulfill that ŵp+ŵq = 1.
We hence have that x̃ = ŵpx

(p) + ŵqx
(q).

Since f and g are convex it holds that

f(x̃) = f(ŵpx
(p) + ŵqx

(q)) ≤ ŵpf(x(p)) + ŵqf(x(q)) =
∑
k ŵkf(x(k)) and

g(x̃) = g(ŵpx
(p) + ŵqx

(q)) ≤ ŵpg(x(p)) + ŵqg(x(q)) =
∑
k ŵkg(x(k)) ≤ 0,

where the last inequality follows from that ŵ is optimal, and hence feasible to
LP1.

Hence the point x̃ is a feasible solution to P0, with the objective function value
f(x̃) ≤

∑
k ŵkf(x(k)), and hence it follows that the optimal value f(x̂) to P0

must be ≤
∑
k ŵkf(x(k)).

(An option is to use the Jensen inequality which directly gives that f(
∑
k ŵkx

(k)) ≤∑
k ŵkf(x(k)), without need for using that only two components in the vector

ŵ are > 0.)

(b)
Assume that x̂ = x(k) for a given k, say for simplicity that x̂ = x(1) (where x̂
as before is an optimal solution to P0).

Let ŵ = (1, 0, . . . , 0)T. Then:∑
k ŵkg(x(k)) = ŵ1g(x(1)) = g(x(1)) = g(x̂) ≤ 0 (Since x̂ is optimal and hence

feasible to P0).∑
k ŵkf(x(k)) = ŵ1f(x(1)) = f(x(1)) = f(x̂).

This shows that ŵ is a feasible solution to LP1 (since
∑
k ŵkg(x(k)) ≤ 0) with

the objective function value
∑
k ŵkf(x(k)) = f(x̂).

But each feasible solution w to LP1 fulfills according to the a)-task that∑
k wkf(x(k)) ≥ f(x̂), i.e. that

∑
k wkf(x(k)) ≥

∑
k ŵkf(x(k)).

This shows that ŵ = (1, 0, . . . , 0)T is an optimal solution to LP1. Furthermore
the optimal values of P0 and LP1 are now equal (Since

∑
k ŵkf(x(k)) = f(x̂)).
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11. Lagrange relaxations and duality

11.1 We first note that if b ≤ 0, then the optimal solution is x̂ = 0 and that if aj ≤ 0,
then it is optimal to set x̂j = 0. This index j can then be removed from the
problem. We can hence in the following assume that aj > 0, j = 1, . . . , n and
that b > 0.

We relax the constraint with a multiplier λ ≥ 0 and solve the problem

min
∑n
j=1 x

2
j + λ(b−

∑n
j=1 ajxj)

xj ≥ 0, j = 1, . . . , n

This problem has the solution xj(λ) = λaj/2. We thereafter adjust λ so that∑n
j=1 ajxj(λ) = b, i.e.

∑n
j=1 λa

2
j/2 = b. I.e., we choose λ = 2b/

∑n
j=1 a

2
j .

The optimal solution is hence given by x̂j = baj/
∑n
j=1 a

2
j , with the objective

function value b2/
∑n
j=1 a

2
j .

11.2 Switch to minimization and Lagrangean relax the first constraint to obtain the
problem, λ ≥ 0:

(PL)

min
∑n
j=2− lnxj + λ(

∑n
j=1 ajxj − b) =

−λb+ min
∑n
j=1(− lnxj + λajxj)

s.t. x > 0

This problem can be separated into n independent problems, one for each xj .
Let fj(xj) = − lnxj + λajxj . The problems can then be written

(PLj)
min fj(xj)

s.t. xj > 0

Since the objective function is convex fj assumes its global minimum when
f ′j(xj) = − 1

xj
+ λaj = 0. This yields that x̂j(λ) = 1

λaj
. If the objective

function of the Lagrangean relaxed problem is to yield the same value as the
objective function of the unrelaxed problem it must hold that

∑n
j=1 aj x̂j(λ) = b

since λ 6= 0, i.e. b =
∑n
j=1

aj
λaj

= 1
λ

∑n
j=1 1 = n

λ . This yields that λ = n
b and

x̂j(
n
b ) = x̂j = b

naj
> 0. This x̂ is also a feasible solution to the unrelaxed

problem. Thus x̂j = b
naj

, j = 1, . . . , n is the optimal solution to the unrelaxed

problem.

11.3 x̂j =

∑n
k=1

√
akbk

b0

√
bj
aj

, j = 1, . . . , n.

11.4 x̂j =
b0∑n

k=1 akbk

√
aj
bj
, j = 1, . . . , n.

11.5 x̂j =

(
b−

n∑
k=1

ak
ck

ln
ak
ck

)

cj

n∑
i=1

ai
ci

+
1

cj
ln
aj
cj
, j = 1, . . . , n.
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11.6 (a) The problem can be formulated as

max
N∑
n=1

pn ln qn

s.t.
N∑
n=1

qn = 1,

qn ≥ 0, n = 1, . . . , N.

(b) q̂n = pn, n = 1, . . . , N.

11.7 Let

f(x) = x41 + 2x1x2 + x22 + x83,

g1(x) = (x1 − 2)2 + (x2 − 2)2 + (x3 − 3)2 − 6,

g2(x) = x1x2x3 − 10,

g3(x) = 1− x1,
g4(x) = −x2,
g5(x) = −x3,

so that the problem is on standard form

(P )

min f(x)

s.t. gi(x) ≤ 0, i = 1, . . . , 5,
x ∈ IR3.

Since g1(x̂) = 0, g2(x̂) = −9, g3(x̂) = 0, g4(x̂) = −1 and g5(x̂) = −1, it
follows that x̂ is feasible to (P ). For x̂ to be globally optimal to (P ), it must
in particular be locally optimal. Hence, we try to satisfy the KT conditions
at x̂, i.e., find λ̂ ∈ IR5 such that λ̂1 ≥ 0, λ̂2 = 0, λ̂3 ≥ 0, λ̂4 = 0, λ̂5 = 0 and
∇f(x̂) + λ̂1∇g1(x̂) + λ̂3∇g3(x̂) = 0. Differentiation gives

∇f(x)T =


4x31 + 2x2

2x1 + 2x2

8x73

 , ∇g1(x)T =


2(x1 − 2)

2(x2 − 2)

2q(x3 − 3)

 , ∇g3(x)T =


−1

0

0


so λ̂1 och λ̂3 must satifsy

6

4

8

+


−2

−2

−4

 λ̂1 +


−1

0

0

 λ̂3 =


0

0

0

 .
This system of equations has a unique solution λ̂1 = 2, λ̂3 = 2. With λ̂ as
above, i.e., λ̂ = (2 0 2 0 0)T , let fλ̂(x) = f(x) +

∑5
i=1 λ̂igi(x) and consider the

Lagrangean-relaxed problem

(Pλ̂)
min fλ̂(x)

s.t. x ∈ IR3.
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We have

fλ̂(x) = x41 + 2x1x2 + x22 + x83 + 2((x1 − 2)2 + (x2 − 2)2 + (x3 − 3)2 − 6) + 2(1− x1),

∇fλ̂(x)T =


4x31 + 2x2 + 4(x1 − 2)− 2

2x1 + 2x2 + 4(x2 − 2)

8x73 + 4(x3 − 3)

 ,

∇2fλ̂(x) =


12x21 + 4 2 0

2 2 0

0 0 56x63 + 4

 .
The matrix ∇2fλ̂(x) is positive definite for all x, and hence (Pλ̂) is a convex

problem. Since λ̂ is chosen so that ∇fλ̂(x̂) = 0, it follows that x̂ is globally
optimal to (Pλ̂). In addition, it holds that

(i) gi(x̂) ≤ 0, i = 1, . . . , 5.

(ii) λ̂igi(x̂) = 0, i = 1, . . . , 5.

(iii) λ̂i ≥ 0, i = 1, . . . , 5.

The main theorem of Lagrangean relaxation now guarantees that x̂ is globally
optimal to (P ).

11.8 The dual problem is given by

(D)
max −λ2

n∑
i=1

a2i
4
− λb

s.t. λ ∈ IR.

11.9 For each fixed value of λ minimize the Lagrangean with respect to x, i.e. solve
the problem

min
x

l(x, λ) =
∑n
i=1(

ai
xi

+ λbixi)− λb0
s.t. li ≤ xi ≤ ui

This is a separable problem so the minimization can be carried out for each
xi separately. Let fi(xi) = ai

xi
+ λbixi. Then fi(xi) is a convex function and a

necessary and sufficient condition for optimality is that f ′i(xi) = −ai 1
xi2

+λbi =

0. This yields that xi
2 = ai

λbi
.

Now considering the constraint li ≤ xi ≤ ui the optimal, feasible choice of xi
is given by

1) λbi ≤ 0 =⇒ x̂i = ui

2) λbi > 0 and li ≤
√

ai
λbi
≤ ui =⇒ x̂i =

√
ai
λbi

3) λbi > 0 and
√

ai
λbi
≤ li =⇒ x̂i = li

4) λbi > 0 and
√

ai
λbi
≥ ui =⇒ x̂i = ui

With x̂1, x̂2, x̂3, . . . , x̂n determined according to the above the dual objective
function becomes φ(λ) =

∑n
i=0(

ai
xi

+λbix̂i)−λb0 for the chosen λ. In the same
way φ(λ) can be determined for every λ. The dual problem is

(D) max
λ
φ(λ)
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11.10 Lagrangean relax the first two constraints and determine the dual objective
function

φ(λ) = min
x≥0


m∑
i=1

n∑
j=1

xij ln(xij) +
n∑
j=1

λj

(
bj −

m∑
i=1

xij

)
+

m∑
i=1

µi

ai − n∑
j=1

xij

 =

=
n∑
j=1

λjbj +
m∑
i=1

µiai + min
x≥0


m∑
i=1

n∑
j=1

xij(ln(xij)− λj − µi)

 =

=
n∑
j=1

λjbj +
m∑
i=1

µiai + min
x≥0

h(x)

h(x) is a convex function. Therefore if ∇h(x̂) = 0 and x̂ ≥ 0 then x̂ is a feasible
optimum.

dh(x)

dxij
= ln(xij)− λj − µi + 1 = 0

=⇒ x̂ij = exp(λj − µi − 1) ≥ 0

The dual problem is given by

(D)
max

n∑
j=1

bjλj +
m∑
i=1

aiµi −
m∑
i=1

n∑
j=1

eλj+µi−1

s.t. λ ∈ IRn, µ ∈ IRm.

11.11 (a) For a fixed λ (λ ≥ 0), we obtain

(Pλ)
min fλ(x)

s.t. xj ≥ 0, j = 1, . . . , n.

with

fλ(x) =
n∑
j=1

x3j + λ(b−
n∑
j=1

ajxj).

Since fλ is a separable function which is convex on the positive orthant,
the minimizing x(λ) can be determined analytically as

xj(λ) =

√
λaj
3
, j = 1, . . . , n.

Hence, the dual objective function is given by

ϕ(λ) = fλ(x(λ)) = . . . = λb− 2

(
λ

3

)3/2 n∑
j=1

a
3/2
j .

Finally, we obtain the dual problem as

max ϕ(λ)

s.t. λ ≥ 0,

with ϕ(λ) as above.
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(b) Assume that the constraint λ ≥ 0 is inactive. Then, since ϕ is a concave
function for λ ≥ 0, the maximizing λ̂ is given by

0 = ϕ′(λ̂) = b−

√
λ̂

3

n∑
j=1

a
3/2
j ,

i.e.,

λ̂ =
3b2∑n
j=1 a

3/2
j

.

Since this value of λ̂ is positive, it was correct to assume that the con-
straint λ ≥ 0 is inactive, and we have found the maximizer.

11.12 (20040310-nr.4)

The Lagrange function to the problem, with x ∈ IRn and y ∈ IR, is given by

L(x, y) = 1
2 xTx− cTx + y (12 xTx− aTx) =

1 + y

2
xTx − (c + ay)Tx .

The Lagrange relaxed problem KPRy consists in that, for a given y ≥ 0,
minimize L(x, y) with respect to x ∈ IRn.

The optimal solution to KPRy becomes in our case x(y) =
1

1 + y
(c + ay).

Then the dual objective function becomes

ϕ(y) = L(x(y), y) = − (c + ay)T(c + ay)

2 (1 + y)
= − 1 + y2

2 (1 + y)
,

where we have used the given relations aTa = 1, cTc = 1 and aTc = 0.

The dual problem consists in maximizing ϕ(y) with respect to y ≥ 0.

Straightforward differentiation gives that ϕ′(y) =
1− 2y − y2

2 (1 + y)2
.

In particular ϕ′(0) = 1
2 > 0, which means that y = 0 does not maximize ϕ(y).

That y is optimal to the dual problem is therefore equivalent to that
ϕ′(y) = 0 and y > 0, which in turn is equivalent to that 1 − 2y − y2 = 0 and
y > 0,
which is fulfilled for (and only for) ŷ =

√
2− 1.

Let x̂ = x(ŷ) =
1√
2

(c + a(
√

2− 1)) = a +
√

0.5 · (c− a).

Then the following is fulfilled:

(1): x̂ minimizes L(x, ŷ) with respect to x, since x̂ = x(ŷ).

(2): x̂ is a feasible solution to the primal problem, since 1
2 x̂Tx̂−aTx̂ = · · · =

0 .

(3): ŷ ≥ 0 .

(4): ŷ · (12 x̂Tx̂− aTx̂) = 0 .

Hence (x̂, ŷ) fulfills the global optimality conditions,
which implies that x̂ is an optimal solution to the primal problem.
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12. Quadratic programming

12.1 (20070601-nr.3)

Let x = (x13, x14, x23, x24)
T ∈ IR4.

Since all Rij = 1 the effect minimizing problem is equivalent to the QR-
problem

minimize 1
2 xTI x ( = half the heat effect)

s.t. Ax = b ,

where I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, A =

 1 1 0 0
0 0 1 1
−1 0 −1 0

 and b =

 500
100
−500

.

This QP-problem is equivalent to the following linear system of equations

I x − ATu = 0

Ax = b

From I x −ATu = 0 is obtained that x = ATu, which in Ax = b gives the
equation system AATu = b.

In our case AAT =

 2 0 −1
0 2 −1
−1 −1 2

 and b =

 500
100
−500

.

The Gauss-Jordan method (or gauss elimination) applied on the system 2 0 −1
0 2 −1
−1 −1 2


u1u2
u3

 =

 500
100
−500

 gives the solution u =

 150
−50
−200

.

Then x = ATu =


1 0 −1
1 0 0
0 1 −1
0 1 0


 150
−50
−200

 =


350
150
150
−50

,

i.e. x13 = 350, x14 = 150, x23 = 150 and x24 = −50.
The current in link (2, 4) is hence going from node 4 to node 2!

12.2 (20070307-nr.3)

f(x) = (x1−x2)2 +(x2−x3)2 +(x3−x1)2 = 2x21 +2x22 +2x23−2x1x2−2x2x3−
2x3x1 =

= 1
2 xTHx with H =

 4 −2 −2
−2 4 −2
−2 −2 4

.

Since f(x) is a sum of three squares, f(x) ≥ 0 for all x ∈ IR3, which implies
that H is positive semidefinite. (But not positive definite, since f(x) = 0 if
x1 = x2 = x3.)
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Gauss-Jordan gives after some elementary row operations that the system

Ax = b is equivalent to the system

[
1 0 −1
0 1 2

]
x =

(
2
4

)
. From this follows

that one feasible solution to the system is x̄ = (2, 4, 0)T.

By setting the right-hand side to zero we obtain that the system Az = 0 is

equivalent to the system

[
1 0 −1
0 1 2

]
z =

(
0
0

)
. From this follows that a

basis to N (A) is given by the single vector z = (1,−2, 1)T. (z3 = 1⇒ z1 = 1
and z2 = −2.)

We now search an optimal solution to the QP-problem

minimize 1
2 xTHx

s.t. Ax = b ,

We know that Ax = b is equivalent to x = x̄ + z v for v ∈ IR.

Insertion of this expression in the objective function leads the following opti-
mization problem in the single variable v:

minimize 1
2 vz

THzv + zTHx̄v + 1
2 x̄THx̄ = 18v2 − 36v + 24.

This is a convex quadratic function which is minimized by v̂ = 1.

Hence the optimal solution to the QP-problem is x̂ = x̄ + z v̂ = (3, 2, 1)T.

Since H according to above is positive semidefinite x̂ is a minimizer to 1
2 xTHx+

CTx
if and only if Hx̂ + c = 0. Hence there exists at least one minimizer to
1
2 xTHx + CTx if and only if the system of equations Hx = −c has at least
one solution.
But this system has at least one solution if and only if c ∈ R(H) = N (HT)⊥.

Gauss-Jordan gives after some simple row operations that the system HTz = 0

is equivalent to the system

 1 0 −1
0 1 −1
0 0 0

 z =

0
0
0

. From this follows that a

basis for N (HT) is given by z = (1, 1, 1)T.

Let us call this single basis vector a, i.e. a = (1, 1, 1)T.

Then it holds that c ∈ N (HT)⊥ if and only if c is orthogonal to this basis
vector a.

Hence: 1
2 xTHx + CTx has at least one minimizer if and only if aTc = 0.

12.3 (20060603-nr.2)

(a)

For simplicity we multiply the objective function with the factor 1
2 , which

do not influence the optimal solution x to the problem. Then the objective
function becomes

1
2 (x−q)T(x−q) = 1

2 xTI x− qTx + 1
2 qTq,
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so the problem P1 is equivalent to a quadratic optimization problem with
linear equality constraints on the form

minimize 1
2 xTHx + cTx + c0

s.t. Ax = b ,

where H = I, c = −q, c0 = 1
2 qTq, A =

[
1 1 −1 −1
1 −1 1 −1

]
, b =

(
0
0

)
.

The matrix H = I is positive definite, so we have a convex QP-problem.

The optimality constraints are then given by Hx−ATu = −c and Ax = b,
i.e. x−ATu = q and Ax = 0.

The first equations give that x = ATu + q , which inserted in Ax = 0 gives
the equations system

AATu = −Aq, i.e.

[
4 0
0 4

](
u1
u2

)
=

(
−8
−4

)
, with the solution û =(

û1
û2

)
=

(
−2
−1

)
.

Then the optimal solution x̂ is x̂ = ATû + q =


−3
−1

1
3

+


4
2
0
−2

 =


1
1
1
1

.

(b)

Insert x = ATv to the objective function, which then becomes the following
quadratic function, after multiplication with the factor 1

2 :

f(v) = 1
2 (ATv − q)T(ATv − q) = 1

2 vT(AAT)v − (Aq)Tv + 1
2 qTq.

AAT =

[
4 0
0 4

]
is positive definite.

f(v) is hence a strictly convex quadratic function that is minimized when its
gradient is the null vector i.e. when AATv −Aq = 0.

This gives the system AATv = Aq, i.e.

[
4 0
0 4

](
v1
v2

)
=

(
8
4

)
,

with the solution v̂ =

(
v̂1
v̂2

)
=

(
2
1

)
.

The optimal solution x̂ is then given by x̂ = ATv̂ =


3
1
−1
−3

.

You can note that the optimal x to P1 and optimal x to P2 are orthogonal and
sum up to q. This is of course not a surprise since the two subspaces N (A)
and R(AT) are each others orthogonal complements.

12.4 (20060308-nr.4a)
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The problem to minimize 1
2 |x − x̄ |2 s.t. aTx = b is a QP-problem with

equality constraints.

It can be written on the form

minimize 1
2 xTHx + cTx

s.t. Ax = b ,

where H = I, c = −x̄, A = aT and b = b. (Since 1
2 |x − x̄ |2 =

1
2xTx− x̄Tx + 1

2 x̄Tx̄).

Since H is positive definite, the following optimality conditions are both nec-
essary and sufficient:

Hx + c = ATu and Ax = b, which can be written as x − x̄ = au and
aTx = b.

We obtain that x = x̄ + au , which inserted in aTx = b gives that u =
(b− aTx̄)/|a|2.
An optimal solution to our problem is hence given by x̂ = x̄ + au , with
u = (b− aTx̄)/|a|2.
According to the prerequisites aTx̄ < b, and hence u > 0.

The shortest distance is then d = | x̂ − x̄ | = |au| = |a| |u| = |a|u = (b −
aTx̄)/|a|.

12.5 (20050331-nr.4)

The problem can be formulated as:

minimize 1
2 |u− v|2 = 1

2(u− v)T(u− v)

s.t. Ru = p ,
S v = q .

With “Lagrange multipliers” y ∈ IR3 and z ∈ IR3 the optimality conditions
become

u−v−RTy = 0, v−u−STz = 0, Ru = p and S v = q.

This is just a linear system of equations, but since there are 14 unknowns and
there is no obvious way to simplify the system (and we have no computer on
the exam) we try a null-space method instead!

Simple computations give that Ru = p ⇔ u = u0 + gx1, where u0 =
(1, 1, 1, 0)T, g = (−1,−1,−1, 1 )T and x1 is an arbitrary real number.

Just as simple computations give that S v = q ⇔ v = v0 + hx2, where
v0 = (0, 2, 2, 2)T, h = ( 1,−1,−1,−1 )T and x2 is an arbitrary real number.

Note that g is a basis to N (R) while h is a basis to N (S).

Our original problem can then be written as the following problem in the
variables x1 and x2:

minimize 1
2 |u0 − v0 + gx1 − hx2|2,

which is equivalent to the MC-problem to minimize 1
2 |Ax− b|2, where
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x =

(
x1
x2

)
, A =


−1 −1
−1 1
−1 1

1 1

, b = v0 − u0 =


−1

1
1
2

.

The normal equations ATAx = ATb become

[
4 0
0 4

](
x1
x2

)
=

(
1
5

)
,

with the solution x = (x1, x2)
T = (1/4, 5/4)T.

Hence û = (3/4, 3/4, 3/4, 1/4)T and v̂ = (5/4, 3/4, 3/4, 3/4)T.

The shortest distance between the two sets (lines) is hence d = |û−v̂| = 1/
√

2.

Now that we know û and v̂, we can conclude that the optimality condi-
tions that we relaxed before are fulfilled with y = (1/2, 0, 0 )T and z =
( 0, 0, −1/2)T.

12.6 (20050307-nr.3)

(a) A vector x is optimal to the MC-problem P1 if and only if ATAx = ATb.

In our case ATA =

[
2 −2

−2 2

]
and ATb =

(
b1 − b2
b2 − b1

)
, so the solutions to

the normal equations above, and hence also the optimal solutions to P1, are
given by

x1 = b1/2− b2/2 + t and x2 = t, where t is an arbitrary real number.

(b) Let X(b) = { x ∈ IR2 | x1 = b1/2− b2/2 + t and x2 = t, for t ∈ IR }.
For x ∈ X(b) it holds that xTx = (b1/2− b2/2 + t)2 + t2 , which is minimized
by

t = b2/4− b1/4, and hence x1 = b1/4− b2/4 and x2 = b2/4− b1/4.

This is hence the optimal solution x̂(b) to P2.

(c) From the above we see that x̂(b) = A+b, with A+ =

[
1/4 −1/4

−1/4 1/4

]
.

(d) A vector x is optimal to the problem P3 if and only if (ATA + ε I)x =
ATb.

In our case ATA + ε I =

[
2 + ε −2

−2 2 + ε

]
and ATb =

(
b1 − b2
b2 − b1

)
, so the

solution to this system of equations, and hence also the optimal solution to
P3, is given by

x1 = (b1 − b2)/(4 + ε); and x2 = (b2 − b1)/(4 + ε);.

This is hence the optimal solution x̃ε(b) to P3.

(e) From the above follows that x̃ε(b) = Ãεb, with Ãε =

[
1/(4 + ε) −1/(4 + ε)

−1/(4 + ε) 1/(4 + ε)

]
.

We see that Ãε −→
[

1/4 −1/4

−1/4 1/4

]
= A+ if ε→ 0.
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12.7 (20041016-nr.3)

(a). Let x(α) = a + α · u ∈ L1 and y(β) = b + β · v ∈ L2.
The quadratic distance between x(α) and y(β) is given, with c = b− a and

z =

(
α

β

)
, by

f(z) = (y(β)− x(α))T(y(β)− x(α)) = (c + β · v− α · u)T(c + β · v− α · u) =

= cTc− 2(cTu)α+ 2(cTv)β + (uTu)α2 + (vTv)β2 − 2(uTv)αβ =

= cTc− 2 gTz + zTHz, where g =

(
cTu

−cTv

)
and H =

[
uTu −uTv

−uTv vTv

]
=[

1 −ρ
−ρ 1

]
.

Since u and v according to the prerequisites not are parallel, |ρ| < 1, which
implies that the matrix H is positive definite, which in turn implies that f is
a strictly convex quadratic function.

(b). Global minimum is obtained when ∇f(z)T = 0, i.e. when Hz = g.

Especially when ρ = uTv = 0 then H = I = is the unitary matrix, and the
optimal solution is given by z = g, i.e. α = cTu and β = −cTv.

Insertion of this in x(α) and y(β) gives that x̂ = a + (cTu) · u and ŷ =
b− (cTv) · v.

Especially then ŷ − x̂ = c − u cTu − v cTv, and the quadratic length of the
thread in is given by

| ŷ − x̂ |2 = | c− u cTu− v cTv |2 = · · · = cTc− (cTu)2 − (cTv)2.

12.8 (20040415-nr.3)

(a)

You quickly realize (for example with Gauss-Jordan) that the matrix A has
the rank r = 3.
Hence N (A) has the dimension n− r = 5− 3 = 2, so a basis to N (A) consists
of two linearly independent vectors that both are in N (A). But the in the text
given vectors z1 and z2 are linearly independent and fulfill Az1 = Az2 = 0.
Hence they are a basis for N (A).
You can also conclude that the in the text given vector x̄ fulfills Ax̄ = b.

(b)

We have a QP-problem on the form: minimize 1
2xTHx + cTx s.t. Ax = b,

where H, A and b is the given from the text, while c = 0.

A feasible solution x̄ and a null-space matrix Z is given according to above by

x̄ =


1
1
1
1
1

 and Z =


0 1
−1 0

0 −1
1 0
0 1

.
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Every feasible solution x can now be written on the form x = x̄ + Zv, for
v ∈ IR2.

The optimal v is obtained by solving the system (ZTHZ)v = −ZT(Hx̄ + c),

which becomes

[
4 0
0 6

](
v1
v2

)
=

(
0
−2

)
, with the solution v̂ =

(
0
−1/3

)
.

Then the optimal solution to the original problem is x̂ = x̄ + Zv̂ =


2/3
3/3
4/3
3/3
2/3

.

The optimal value of the problem is 1
2 x̂THx̂ =

26

3
.

(c)

The wanted vector û shall together with the above computed optimal solution

x̂ fulfill that

[
H −AT

A 0

](
x̂

û

)
=

(
−c

b

)
.

But Ax̂ = b and c = 0, so we obtain the constraint that ATû = Hx̂, i.e.
1 0 0
0 1 0
1 0 1
0 1 0
0 0 1


 û1û2
û3

 =


7/3

12/3
14/3
12/3
7/3

 , which is fulfilled by (and only by) û =

 7/3
12/3
7/3

.

12.9 (20040310-nr.2)

Let x = (x12, x13, x14, x15, x23, x24, x25, x34, x35, x45)
T ∈ IR10.

Since all rij = 1, the effect minimizing problem is equivalent with the QP-
problem

minimize 1
2 xTI x ( = half the heat effect)

s.t. Ax = b ,

where A =


1 1 1 1 0 0 0 0 0 0
−1 0 0 0 1 1 1 0 0 0

0 −1 0 0 −1 0 0 1 1 0
0 0 −1 0 0 −1 0 −1 0 1

 and b =


1

0

0

0

.

This QP-problem is in turn equivalent to the linear equation system

I x − ATu = 0

Ax = b
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From I x−ATu = 0 it is obtained that x = ATu, which inserted in Ax = b
gives the equation system AATu = b.

In our case AAT =


4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4

 and b =


1
0
0
0

,

so the given computational help gives that u = (AAT)−1b = (0.4, 0.2, 0.2, 0.2)T.

This gives in turn that the optimal solution x = ATu = (0.2, 0.2, 0.2, 0.4, 0, 0, 0.2, 0, 0.2, 0.2)T.

Hence the heat-effect xTI x = 0.4 (= the total resistance between node 1 and
node 5.)
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13. Nonlinear programming

13.1 (20070601-nr.5)

(a) The problem can be written as: minimize f(x) s.t. gi(x) ≤ 0, i = 1, 2, 3,
where

f(x) = c1x1 − 4x2 − 2x3, g1(x) = x21 + x22 − 2, g2(x) = x21 + x23 − 2, g3(x) =
x22 + x23 − 2.

The objective function is linear and hence convex. The constraint functions

have the second derivative matrices

 2 0 0
0 2 0
0 0 0

,

 2 0 0
0 0 0
0 0 2

 and

 0 0 0
0 2 0
0 0 2

,

which are positive semidefinite for all x.

Hence also the constraint functions are convex, which makes the whole problem
convex. Furthermore for example x = (0, 0, 0)T fulfills all constraints with
strict inequality, so the studied problem is a regular convex problem. This
implies that a point x̂ is a global optimal solution to the problem if and only
if x̂ is a KKT-point.

(b) The Lagrangian can be written as L(x,y) = f(x) +
3∑
i=1

yigi(x) =

= c1x1 − 4x2 − 2x3 + y1(x
2
1 + x22 − 2) + y2(x

2
1 + x23 − 2) + y3(x

2
2 + x23 − 2).

The KKT-constraints can be divided into four groups in the following way.

(KKT–1) ∂L/∂xj = 0 for j = 1, 2, 3 :
c1 + 2x1(y1 + y2) = 0,
−4 + 2x2(y1 + y3) = 0,
−2 + 2x3(y2 + y3) = 0.

(KKT–2) Feasible point, i.e. gi(x) ≤ 0 for i = 1, 2, 3 :
x21 + x22 − 2 ≤ 0,
x21 + x23 − 2 ≤ 0,
x22 + x23 − 2 ≤ 0.

(KKT–3) Lagrangian multipliers non-negative:
y1 ≥ 0,
y2 ≥ 0,
y3 ≥ 0.

(KKT–4) Complementarity, i.e yigi(x) = 0 for i = 1, 2, 3 :
y1(x

2
1 + x22 − 2) = 0,

y2(x
2
1 + x23 − 2) = 0,

y3(x
2
2 + x23 − 2) = 0.

(c) First suppose x = (1.4, 0.2, 0.2)T.

Then x21 + x22 − 2 = 0, x21 + x23 − 2 = 0, x22 + x23 − 2 < 0.

The complementarity constraints the give that y3 = 0, and the KKT–1 con-
straints can be written as

c1 + 2.8(y1 + y2) = 0,
−4 + 0.4(y1 + 0) = 0,
−2 + 0.4(y2 + 0) = 0.
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We see that this system has no solution if c1 6= −42.
If c1 = −42 then x = (1.4, 0.2, 0.2)T, together with y = (10, 5, 0)T fulfills all
KKT-constraints, and x is a global optimal solution to the problem.

(d)

Now suppose x = (1, 1, 1)T.

Then x21 + x22 − 2 = 0, x21 + x23 − 2 = 0, x22 + x23 − 2 = 0.

The KKT–1 constraints can now be written as

y1 + y2 = −0.5 c1,
y1 + y3 = 2,
y2 + y3 = 1.

The solution of this system of equations in y becomes, with help of the given
help,y1y2
y3

 =

 1 1 0
1 0 1
0 1 1


−1−0.5 c1

2
1

 =
1

2
·

 1 1 −1
1 −1 1
−1 1 1


−0.5 c1

2
1

 =

1

4
·

−c1 + 2
−c1 − 2
c1 + 6

.

We see that the KKT–3 constraints will be fulfilled if and only if −6 ≤ c1 ≤
−2.

For these values of the constant c,

x = (1, 1, 1)T together with

y =

(
2− c1

4
,
−2− c1

4
,

6 + c1
4

)T

, fulfills all KKT-constraints, and hence x is

a global optimal solution.

(e) The Lagrangian for the problem now becomes, with c1 = −6,

L(x,y) = −6x1−4x2−2x3+y1(x
2
1+x22−2)+y2(x

2
1+x23−2)+y3(x

2
2+x23−2) =

= ((y1+y2)x
2
1−6x1)+((y1+y3)x

2
2−4x2)+((y2+y3)x

2
3−2x3)−2(y1+y2+y3).

To obtain the dual objective function value ϕ(ŷ), where ŷ = (1, 1, 1)T,

one should minimize L(x, ŷ) with respect to x ∈ IR3.

But L(x, ŷ) = 2x21 − 6x1 + 2x22 − 4x2 + 2x23 − 2x3 − 6,

so the minimized values on xj are given by

x1(ŷ) = 1.5, x2(ŷ) = 1.0, x3(ŷ) = 0.5,

and the dual objective function value is given by

ϕ(ŷ) = L(x(ŷ), ŷ) = 4.5− 9 + 2− 4 + 0.5− 1− 6 = −13.

The (d)-exercise makes us guess that ỹ = (2, 1, 0)T is an optimal solution for
the dual problem.

Now L(x, ỹ) = 3x21 − 6x1 + 2x22 − 4x2 + x23 − 2x3 − 6,

so the minimized values of xj are given by

x1(ỹ) = 1, x2(ỹ) = 1, x3(ỹ) = 1,
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and the dual objective function value is given by

ϕ(ŷ) = L(x(ŷ), ŷ) = 3− 6 + 2− 4 + 1− 2− 6 = −12.

Since ϕ(ŷ) < ϕ(ỹ), ŷ can not be an optimal solution to the dual problem

(which consists of maximizing ϕ(y) s.t. y ≥ 0).

13.2 (20070307-nr.4)

(a)

We have that h(x) =


x21 − x2 − δ1
x21 + x2 − δ2
x22 − x1 − δ3
x22 + x1 − δ4

 and f(x) = 1
2h(x)Th(x) ≥ 0 for all

x ∈ IR2.

As a special case, if all δi = 0 and x̂ = (0, 0)T then h(x̂) = (0, 0, 0, 0)T and
f(x̂) = 0.

Then f(x̂) ≤ f(x) for all x ∈ IR2, which means that x̂ is a global minimizer
to f(x).

(b)

Now δ1 = −0.1, δ2 = 0.1, δ3 = −0.2, δ4 = 0.2 and x(1) = (0, 0)T.

Differentiation gives

∇h1(x) = (2x1, −1), ∇h2(x) = (2x1, 1), ∇h3(x) = (−1, 2x2), ∇h4(x) =
( 1, 2x2).

Hence ∇h(x) =


2x1 −1
2x1 1
−1 2x2

1 2x2

 , such that ∇h(x(1)) =


0 −1
0 1
−1 0

1 0

 and h(x(1)) =


0.1
−0.1

0.2
−0.2

.

In the Gauss-Newton method you should solve the system of equations

∇h(x(1))T∇h(x(1))d = −∇h(x(1))Th(x(1))

In our case ∇h(x(1))T∇h(x(1)) =

[
2 0
0 2

]
and ∇h(x(1))Th(x(1)) =

(
−0.4
−0.2

)
,

so the system of equations becomes

[
2 0
0 2

](
d1
d2

)
=

(
0.4
0.2

)
, with the solu-

tion d(1) =

(
0.2
0.1

)
.

We test t1 = 1, so that x(2) = x(1) + t1d
(1) = x(1) + d(1) =

(
0.2
0.1

)
.

Then
h1(x

(2)) = 0.04− 0.1 + 0.1 = 0.04,
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h2(x
(2)) = 0.04 + 0.1− 0.1 = 0.04,

h3(x
(2)) = 0.01− 0.2 + 0.2 = 0.01,

h4(x
(2)) = 0.01 + 0.2− 0.2 = 0.01,

such that f(x(2)) = 0.0017 < 0.05 = f(x(1)). Hence the step t1 = 1 was fine.
Hence we have performed a complete iteration with the Gauss-Newton method
and ended up in the point x(2) = (0.2, 0.1)T.

The gradient of the objective function in this point x(2) is given by

∇f(x(2))T = ∇h(x(2))Th(x(2)) =

[
0.4 0.4 −1 1
−1 1 0.2 0.2

]
0.04
0.04
0.01
0.01

 =

(
0.032
0.004

)
6=

(
0
0

)
.

Since the gradient is not the null vector, x(2) can not be a local minimizer.

13.3 (20060603-nr.3)

There are several ways of solving the problem. Here follows one of them.

The problem is a convex QP-problem, and hence the KKT-constraints are
both necessary and sufficient constraints for a global optimal solution.

The Lagrangian function to the problem can be written as:

L(x,y) = 1
2x

2
1 + 1

2x
2
2 + 1

2x
2
3 − x1 − x2 + c3x3 + y1(4 − x1 − x2) + y2(4 − x1 −

x3) + y3(4− x2 − x3).
The KKT-constraints then becomes:

x1 − y1 − y2 = 1 ∂L/∂x1 = 0 (KKT1)
x2 − y1 − y3 = 1 ∂L/∂x2 = 0 (KKT2)

x3 − y2 − y3 = −c3 ∂L/∂x3 = 0 (KKT3)
x1 + x2 ≥ 4 primal feasibility (KKT4)
x1 + x3 ≥ 4 primal feasibility (KKT5)
x2 + x3 ≥ 4 primal feasibility (KKT6)

y1 ≥ 0 dual feasibility (KKT7)
y2 ≥ 0 dual feasibility (KKT8)
y3 ≥ 0 dual feasibility (KKT9)

y1(x1 + x2 − 4) = 0 complementarity (KKT10)
y2(x1 + x3 − 4) = 0 complementarity (KKT11)
y3(x2 + x3 − 4) = 0 complementarity (KKT12)

(a). With x = (2, 2, 2)T (KKT4)–(KKT6) is fulfilled with equality, and hence
(KKT10)–(KKT12) are fulfilled. (KKT1)–(KKT3) then gives (after solving a
system of equations) that y1 = −c3/2 and y2 = y3 = 1 + c3/2. In order to
have (KKT7)–(KKT9) fulfilled it is required that −2 ≤ c3 ≤ 0.
The KKT-constraints are hence fulfilled if and only if c3 ∈ [−2, 0].

(b). With x = (2, 2, 4)T (KKT4) is fulfilled with equality and (KKT5)–
(KKT6) with strict inequality. Hence (KKT10) is fulfilled, while (KKT11)–
(KKT12) requires that y2 = y3 = 0. (KKT1)–(KKT2) then gives that y1 = 1,
and to fulfill (KKT3), c3 = −4 must be fulfilled. Then also (KKT7)–(KKT9)
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are fulfilled.
The KKT-constraints are hence fulfilled if and only if c3 = −4.

(c). With x = (3, 3, 1)T, (KKT5)–(KKT6) are fulfilled with equality and
(KKT4) with strict inequality. Hence (KKT11)–(KKT12) are fulfilled, while
(KKT10) requires that y1 = 0. (KKT1)–(KKT2) then gives that y2 = y3 = 2,
so to make (KKT3) fulfilled c3 = 3 is required. Then also (KKT7)–(KKT9)
are fulfilled.
The KKT-constraints are hence fulfilled if and only if c3 = 3.

13.4 (20060603-nr.4)

(a)

Since f(x) = (x1x
2
2x

3
3)

2, f(x) ≥ 0 for all x. But x̂ is a feasible solution with
f(x̂) = 0. Hence f(x̂) ≤ f(x) for all feasible solutions x, which per definition
implies that x̂ is a global optimal solution to the minimization problem.

(b)

Every global optimal solution is also a local optimal solution, so x̂ is a local
optimal solution to the minimization problem.

(c)

f is convex if f(tu + (1− t)v) ≤ tf(u) + (1− t)f(v) for all u,v ∈ IR3 and
t ∈ [0, 1].
Let (for example) u = (1, 0, 1)T, v = (1, 1, 0)T, t = 0.5.
Then f(u) = f(v) = 0 while f(tu + (1−t)v) > 0. f is hence not convex.

(d)

You realize that the biggest value that f(x) can obtain in the unit circle is
strictly positive, i.e. all three variables are separated from zero in the maximum
point/points.
Since (−x1)2 = (+x1)

2, (−x2)4 = (+x2)
4 and (−x3)6 = (+x3)

6 we can assume
that all three variables are strictly positive without loss of generalization.

To maximize f(x) is then equivalent to maximizing ln(f(x)) = 2 ln(x1) +
4 ln(x2) + 6 ln(x3) (which is a concave function!) under the constraint x21 +
x22 +x23 ≤ 1 and the implicit requirement that the variables should be positive.

This is equivalent to minimizing −2 ln(x1) − 4 ln(x2) − 6 ln(x3) (which is a
convex function!) under the constraint x21 + x22 + x23 ≤ 1 and the implicit
requirement that the variables should be positive.

The KKT-constraints, or Lagrange relaxation, gives that x =

(
1√
6
,

1√
3
,

1√
2

)T

is optimal.

Hence we have 8 maximum points to f(x) in the unit sphere: x =

(
± 1√

6
, ± 1√

3
, ± 1√

2

)T

.

13.5 (20051024-nr.4)

The problem can be formulated in the following way, where I is the identity
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matrix:
minimize 1

2 xTI x

s.t. Ax ≥ b ,

I x ≥ 0.

x̂ ∈ IR4 is an optimal solution to this convex QP-problem if and only if there
are vectors u ∈ IR2 and v ∈ IR4 such that all the following constraints are
fulfilled:

(1) x̂ = ATu + Iv,
(2) Ax̂ ≥ b,
(3) x̂ ≥ 0,
(4) u ≥ 0,
(5) v ≥ 0,
(6) ui(Ax̂− b)i = 0, for i = 1, 2,
(7) vj x̂j = 0, for j = 1, 2, 3, 4.

(a)
Here we will assume that Ax̂ = b and that all x̂j > 0.
Then (7) gives that v = 0, where-after (1) gives that x̂ = ATu. If this is
compared with the given assumption that Ax̂ = b, then the following system
of equations is obtained AATu = b, with the unique solution u = (2, 3)T.
But then it must hold that x̂ = ATu = (7, −1, 8, −4)T, which contradicts
that all x̂j > 0.
Hence there is no optimal solution x̂ that fulfills both that Ax̂ = b and that
all x̂j > 0.

(b)
Now we will assume that Ax̂ = b and that x̂3 = x̂4 = 0.
The only solution to this is x̂ = (20, 10, 0, 0)T.
The constraint (7) then gives that v1 = v2 = 0, and then the first two con-
straints in (1) gives that 20 = 2u1 + u2 and 10 = −2u1 + u2, with the unique
solution u = (2.5, 15)T.
The last two constraints in (1) then gives that 0 = u1 + 2u2 + v3 and 0 =
u1−2u2 +v4, i.e. v3 = −32.5 and v4 = 27.5. But v3 < 0 contradicts constraint
(5).
Hence there is no optimal solution x̂ that fulfills both that Ax̂ = b and that
x̂3 = x̂4 = 0.

13.6 (20050307-nr.4)

(a) The problem can be written on the form: minimize 1
2xTHx+cTx s.t. Ax ≥

b,

where H =

 4 2 2

2 4 2

2 2 4

, c =

−12

−8

−4

, A =



1 0 0

−1 0 0

0 1 0

0 −1 0

0 0 1

0 0 −1


, b =



0

−2

0

−2

0

−2


.
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The matrix H is positive definite (can be controlled by for example LDLT–
factorization), so x̂ is optimal if and only if there is a vector y ∈ IR6 such
that

KKT-1: Hx̂ + c = ATy,
KKT-2: Ax̂ ≥ b,
KKT-3: y ≥ 0,
KKT-4: yi(Ax̂− b)i = 0, i = 1, . . . , 6.

With x̂ = (2, 1, 0)T, Ax̂− b = (2, 0, 1, 1, 0, 2)T, so KKT-2 is fulfilled,

while KKT-4 gives that y1 = y3 = y4 = y6 = 0.

Since Hx̂+c = (−2, 0, 2)T, KKT-1 leads to the following system of equations
in y2 and y5:

−1·y2+0·y5 = −2, 0·y2+0·y5 = 0, 0·y2+1·y5 = 2, (since y1 = y3 = y4 = y6 = 0),

with the solution y2 = y5 = 2, which also fulfills KKT-3.

All the KKT-constraints are now fulfilled, and x̂ is hence a global optimal
solution.

(b) Now we have a problem on the form: minimize f0(x) s.t. f1(x) ≤ 0,

with f0(x) = (x1 + x2)
2 + (x2 + x3)

2 + (x3 + x1)
2 − 12x1 − 8x2 − 4x3

and f1(x) = (x1 − k1)2 + (x2 − k2)2 + (x3 − k3)2 − 1.

Differentiation gives that

∇f0(x) = ( 4x1 + 2x2 + 2x3 − 12, 2x1 + 4x2 + 2x3 − 8, 2x1 + 2x2 + 4x3 − 4 ),

∇f1(x) = ( 2(x1 − k1), 2(x2 − k2), 2(x3 − k3) ),

∇2f0(x) =

 4 2 2

2 4 2

2 2 4

, ∇2f1(x) =

 2 0 0

0 2 0

0 0 2

.

Since both ∇2f0(x) and ∇2f1(x) are positive definite for all x, both f0 and f1
are convex functions. Furthermore for example x = (k1, k2, k3)

T fulfills that
f1(x) < 0, which means that the problem is regular.

The KKT-conditions are then both necessary and sufficient for x̂ to be a global
optimal solution.

These conditions say that there is a scalar y1 so that

KKT-1: ∇f0(x̂)T + y1∇f1(x̂)T = 0.
KKT-2: f1(x̂) ≤ 0,
KKT-3: y1 ≥ 0,
KKT-4: y1f1(x̂) = 0.

KKT-1 gives that (−2, 0, 2) + y1( 2(2− k1), 2(1− k2), 2(0− k3) ) = (0, 0, 0).

We can here directly exclude that y1 = 0. Hence it must hold that y1 > 0
(according to KKT-3).

But then it must hold that 2− k1 = 1/y1, 1− k2 = 0 and 0− k3 = −1/y1.

KKT-4 gives that f1(x̂) = 0 (Since y1 > 0), i.e. (2−k1)2+(1−k2)2+(0−k3)2 =
1,
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which hence can be written as (1/y1)
2 + 02 + (−1/y1)

2 = 1.

Since y1 > 0 this equation has the unique solution y1 =
√

2,

and k1 = 2− 1/
√

2, k2 = 1 and k3 = 1/
√

2.

With these values of the constants all KKT-conditions will be fulfilled,
and hence x̂ is a global optimal solution.

13.7 (20041016-nr.5)

(a) The Hessian∇2fi(x) is a n×n diagonal matrix with the diagonal elements

[∇2fi(x)]jj =
2pij

(2− xj)3
+

2qij
(xj + 2)3

, j = 1, . . . , n.

Since all these diagonal elements are > 0 for all x ∈ X, ∇2fi(x) is positive
definite for all x ∈ X, and hence the function fi is strictly convex on X.

(b) That the feasible region in non-empty is equivalent to that there are at
least one x ∈ X such that fi(x) ≤ 0 for i = 1, 2.

But 0 = (0, 0)T ∈ X and fi(0) =
n∑
j=1

(
pij
2

+
qij
2

)
+ ri < 0 according to the

prerequisites.
Hence the feasible region contain at least the point x = 0.

(c) Let S = {x ∈ X | fi(x) ≤ 0, i = 1, . . . ,m}. We will show that S is
convex.

Take arbitrary u ∈ S and v ∈ S, and take an arbitrary t ∈ (0, 1).
Set x = (1− t)u + tv. We will show that x ∈ S.
That xj is between −1 and 1 follows from that xj is between uj and vj which
both is between −1 and 1. Further it holds that fi(x) = fi((1 − t)u + tv) ≤
(1 − t)fi(u) + tfi(v) ≤ 0, where the first inequality follows from that fi is
convex and the second inequality from that t < 1, fi(u) ≤ 0, t > 0 and
fi(v) ≤ 0.

Hence it holds that x ∈ S, which shows that S is convex.

(d) The KKT-conditions become the following, with the Lagrangian multipli-
ers yi, ξj , ηj , and with the notation

y = (y1, y2)
T, pj(y) = p0j + p1jy1 + p2jy2 and qj(y) = q0j + q1jy1 + q2jy2.

pj(y)

(2− xj)2
− qj(y)

(xj + 2)2
− ξj + ηj = 0, j = 1, . . . , n (∂L/∂xj = 0)

fi(x) ≤ 0, i = 1, 2 (primal feasibility)
−1 ≤ xj ≤ 1, j = 1, . . . , n (primal feasibility)

yi ≥ 0, i = 1, 2 (dual feasibility)
ξj ≥ 0 and ηj ≥ 0, j = 1, . . . , n (dual feasibility)

yifi(x) = 0, i = 1, 2 (complementary slackness)
ξj(xj + 1) = 0, j = 1, . . . , n (complementary slackness)
ηj(1− xj) = 0, j = 1, . . . , n (complementary slackness)
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(e) The Lagrangian function to the problem, with the vector of multipliers
y = (y1, y2)

T, is given by

L(x,y) = f0(x)+y1f1(x)+y2f2(x) =
n∑
j=1

(
pj(y)

2− xj
+

qj(y)

xj + 2

)
+r0+y1r1+y2r2,

where as above pj(y) = p0j + p1jy1 + p2jy2 and qj(y) = q0j + q1jy1 + q2jy2.

The Lagrange relaxed problem KPRy consists in, for a given y ≥ 0, minimize
L(x,y) with respect to x ∈ X. This falls apart to a problem for each j,
minimizing
pj(y)

2− xj
+

qj(y)

xj + 2
with respect to xj ∈ [−1, 1].

Since both pj(y) > 0 and qj(y) > 0 this is a convex one-variable problem
which unique optimal solution xj(y) is given by the following:

If pj(y) ≥ 9 qj(y), then xj(y) = −1.

If qj(y) ≥ 9 pj(y), then xj(y) = 1.

If both pj(y) < 9 qj(y) and qj(y) < 9 pj(y) then xj(y) = 2

√
qj(y)−

√
pj(y)√

pj(y) +
√
qj(y)

.

The dual objective function is then given by

ϕ(y) = L(x(y),y) =
n∑
j=1

(
pj(y)

2− xj(y)
+

qj(y)

xj(y) + 2

)
+ r0 + y1r1 + y2r2.

13.8 (20040415-nr.4)

(a)

Let the three given points be denoted (pi, qi), i = 1, 2, 3, and let (x, y) be the
wanted coordinates for the fourth point. Then the problem can be formulated
as:

minimize f(x, y) =
3∑
i=1

√
(x− pi)2 + (y − qi)2 , without constraints.

A necessary condition for a point (x, y) in which f has continuous derivatives

to be optimal is that
∂f

∂x
(x, y) =

∂f

∂y
(x, y) = 0.

Differentiation gives the following, where ri(x, y) =
√

(x− pi)2 + (y − qi)2,
and where we suppose that (x, y) 6= (pi, qi) for i = 1, 2, 3.

∂f

∂x
(x, y) =

3∑
i=1

x− pi
ri(x, y)

and
∂f

∂y
(x, y) =

3∑
i=1

y − qi
ri(x, y)

.

Hence
∂f

∂x
(0, 0) =

−1√
5

+
2√
5

+
−1√

2
< 0 and

∂f

∂y
(0, 0) =

−2√
5

+
1√
5

+
1√
2
> 0.

Hence the point (x, y) = (0, 0) does not fulfill the mentioned necessary opti-
mality conditions above and is hence not an optimal solution.

(b)
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The problem can (for example) be formulated as the following in the variables
x, y and z, where z denotes the squared distance from (x, y) to the point
(pi, qi) which is the furthest away from (x, y):

minimize z
s.t. z ≥ (x− pi)2 + (y − qi)2, i = 1, 2, 3

or, equivalently,

minimize z
s.t. −z + (x− 1)2 + (y − 2)2 ≤ 0,

−z + (x+ 2)2 + (y + 1)2 ≤ 0,
−z + (x− 1)2 + (y + 1)2 ≤ 0.

The problem is regular and convex, and hence the KKT-conditions are both
necessary and sufficient conditions for global optimality.

The Lagrange function (with the Lagrangian multipliers λ1, λ2 and λ3) to this
problem is

L(x, y, z, λ1, λ2, λ3) = z + λ1((x− 1)2 + (y − 2)2 − z) +
+ λ2((x+ 2)2 + (y + 1)2 − z) +
+ λ3((x− 1)2 + (y + 1)2 − z).

The KKT-conditions then become:

2λ1(x− 1) + 2λ2(x+ 2) + 2λ3(x− 1) = 0 ∂L/∂x = 0 (KKT1)
2λ1(y − 2) + 2λ2(y + 1) + 2λ3(y + 1) = 0 ∂L/∂y = 0 (KKT2)

1− λ1 − λ2 − λ3 = 0 ∂L/∂z = 0 (KKT3)
(x− 1)2 + (y − 2)2 − z ≤ 0 primal feasibility (KKT4)
(x+ 2)2 + (y + 1)2 − z ≤ 0 primal feasibility (KKT5)
(x− 1)2 + (y + 1)2 − z ≤ 0 primal feasibility (KKT6)

λ1 ≥ 0 dual feasibility (KKT7)
λ2 ≥ 0 dual feasibility (KKT8)
λ2 ≥ 0 dual feasibility (KKT9)

λ1((x− 1)2 + (y − 2)2 − z) = 0 complementarity (KKT10)
λ2((x+ 2)2 + (y + 1)2 − z) = 0 complementarity (KKT11)
λ3((x− 1)2 + (y + 1)2 − z) = 0 complementarity (KKT12)

With x = y = 0 you obtain the constraints

−2λ1 + 4λ2 − 2λ3 = 0 (KKT1)
−4λ1 + 2λ2 + 2λ3 = 0 (KKT2)
1− λ1 − λ2 − λ3 = 0 (KKT3)

5− z ≤ 0 (KKT4)
5− z ≤ 0 (KKT5)
2− z ≤ 0 (KKT6)
λ1 ≥ 0 (KKT7)
λ2 ≥ 0 (KKT8)
λ2 ≥ 0 (KKT9)

λ1(5− z) = 0 (KKT10)
λ2(5− z) = 0 (KKT11)
λ3(2− z) = 0 (KKT12)
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(KKT1)–(KKT3) are fulfilled if and only if (λ1, λ2, λ3) = (1/3, 1/3, 1/3).

But then (KKT10) and (KKT12) give that 5− z = 0 and 2− z = 0, which is
impossible!

The KKT-conditions can hence not be fulfilled if x = y = 0, and hence the
point (0, 0) is not an optimal location of the fourth component.
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14. Mixed examples

14.1 Let

f(x) = max
t∈T
|f(t)−

n∑
J=1

xjfj(t)|

fL(x) = max
t∈Tm

|f(t)−
n∑
J=1

xjfj(t)|

where Tm = {t1, t2, . . . , tm}. Since Tm is a subset of T if holds that fL(x) ≤
f(x), therefore (P ′) is a relaxation of (P ). Furthermore let x̂L be the optimal
solution to (P ′) and p the optimal value to (P ).

(a) Using the above notation we have

fL(x̂L) ≤ p ≤ f(x̂L) = max
t∈T
|f(t)−

n∑
j=1

x̂Ljfj(t)|

(b) (P ′) can be reformulated as

(P ′′)

min x0

s.t. x0 +
n∑
j=1

xjfj(ti) ≥ f(ti) i = 1, . . . ,m,

x0 −
n∑
j=1

xjfj(ti) ≥ −f(ti) i = 1, . . . ,m,

x0 ≥ 0.

(c) The dual of the problem formulated above is

(D′′)

max
m∑
i=1

(µi − νi)f(ti)

s.t.
m∑
i=1

(µi + νi) ≤ 1

m∑
i=1

(µi − νi)fj(ti) = 0 j = 1, . . . , n

µi, νi ≥ 0 i = 1, . . . ,m.

Since it is not optimal to have both µi and νi > 0, we can simplify (D′′)
by introducing the variables λi = µi − νi with |λi| = µi + νi. We then
obtain the following problem

(D̃′′)

max
m∑
i=1

λif(ti)

s.t.
m∑
i=1

|λi| ≤ 1

m∑
i=1

λifj(ti) = 0 j = 1, . . . , n
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14.2 Differentiation gives

∇f(x)T =


2x1 − x2 − 2

−x1 + 2x2 + 4

2x3

 , ∇g1(x)T =


−1

−1

0

 , ∇g2(x)T =


0

0

−1

 .
(a) Differentiation of f a second time gives

∇2f(x) =


2 −1 0

−1 2 0

0 0 2

 .
The symmetric matrix∇2f(x) has positive eigenvalues (3, 2 and 1). Hence
∇2f(x) is positive definite, independent of x, implying that (Pd) is a
convex problem. The solution x̂ to the system of equations ∇f(x̂) = 0 is
thus a globally optimal solution to (Pd). We have

2 −1 0

−1 2 0

0 0 2



x̂1

x̂2

x̂3

 =


2

−4

0

 ,
with solution x̂ = (0 –2 0).

(b) The point x∗ is feasible to (Pb) with constraints 1 and 2 binding. To fulfil
the KT-conditions we must find nonnegative λ∗1 and λ∗2 such that

1

1

2

+


−1

−1

0

λ∗1 +


0

0

−1

λ∗2 =


0

0

0

 .
This is fulfilled for λ∗1 = 1 and λ∗2 = 2. Hence, the KT-conditions are
satisfied at x∗.

(c) For nonnegative λ1 and λ2 we obtain the Lagrangean-relaxed problem

(Pλ)
min fλ(x)
s.t. x ∈ IR3,

where

fλ(x) = x21 − x1x2 + x22 + x23 − 2x1 + 4x2 + λ1(−x1 − x2) + λ2(1− x3).

Differentiation of fλ gives

∇fλ(x)T =


2x1 − x2 − 2− λ1
−x1 + 2x2 + 4− λ1

2x3 − λ2



∇2fλ(x) =


2 −1 0

−1 2 0

0 0 2

 .
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Since all constraints are linear, ∇2fλ(x) is identical to ∇2f(x), indepen-
dent of λ. Hence, (Pλ) is a convex problem, and the minimizing x(λ) is
uniquely determined by ∇fλ(x(λ)) = 0, i.e.,

2 −1 0

−1 2 0

0 0 2



x1(λ)

x2(λ)

x3(λ)

 =


2 + λ1

−4 + λ1

λ2

 .
The solution is

x(λ) =


λ1

−2 + λ1
λ2
2


and we obtain the dual objective function as

ϕ(λ) = fλ(x(λ)) = . . . = −λ21 + 2λ1 −
λ22
4

+ λ2 − 4.

Hence, we may write

(Dc)
max −λ21 + 2λ1 −

λ22
4

+ λ2 − 4

s.t. λ1 ≥ 0,
λ2 ≥ 0.

(d) Take x∗ and λ∗ as above, i.e., x∗ = (1 –1 1)T and λ∗ = (1 2)T . Then x∗
is feasible to (Pc) and λ∗ is feasible to (Dc). It also holds that f(x∗) =
ϕ(λ∗) = −2. It now follows from weak duality that x∗ is globally optimal
to (Pc) and λ∗ is globally optimal to (Dc).

14.3 (a) Let

f(x) = −2x21 + 12x1x2 + 7x22 − 8x1 − 26x2,

g1(x) = x1 + 2x2 − 6,

g2(x) = −x1,
g3(x) = x1 − 3,

g4(x) = −x2,

so that the problem is on standard form

(P )

min f(x)

s.t. gi(x) ≤ 0, i = 1, . . . , 4,
x ∈ IR2.

Differentiation gives

∇f(x)T =

(
−4x1 + 12x2 − 8

12x1 + 14x2 − 26

)
, ∇g1(x)T =

(
1

2

)
, ∇g2(x)T =

(
−1

0

)
,
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∇g3(x)T =

(
1

0

)
, ∇g4(x)T =

(
0

−1

)
.

We may now try all combinations of active constraints to find all KT
points. The following three combinations of active constraints give the
KT points. With no active constraints we get

−4x1 + 12x2 − 8 = 0,

12x1 + 14x2 − 26 = 0,

yielding the KT point x1 = (1 1)T with λ1 = (0 0 0 0)T . With constraint
2 active we get

−4x1 + 12x2 − 8− λ2 = 0,

12x1 + 14x2 − 26 = 0,

−x1 = 0,

yielding the KT point x2 = (0 13/7)T with λ2 = (0 100/7 0 0)T . With
constraints 3 and 4 active we get

−4x1 + 12x2 − 8 + λ3 = 0,

12x1 + 14x2 − 26− λ4 = 0,

x1 − 3 = 0,

−x2 = 0,

yielding a KT point x3 = (3 0)T with λ3 = (0 0 20 10)T .

(b) Since we are minimizing a continuous function over a closed and bounded
set, a global minimizer exists. In addition, linear constraints is a con-
straint qualification, implying that all local minimizers must satisfy the
KT conditions. The global minimizer is thus obtained as the KT point
with the minimum objective function value. We have f(x1) = −17,
f(x2) = −241

7 , f(x3) = −42, and hence conclude that x3 = (3 0)T is
the global minimizer.

¨

¨
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14.4 (20070601-nr.4)

(a)

The gradient is ∇f(x) =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
, where

∂f

∂xj
= 4x3j−3x2j +2xj−1.

The Hessian F(x) is in this example a diagonal matrix with the diagonal
elements

∂2f

∂x21
, . . . ,

∂2f

∂x2n
, where

∂2f

∂x2j
= 12x2j − 6xj + 2.

f is convex on IRn if and only if F(x) is positive semidefinite for all x ∈ IRn.
A diagonal matrix is positive semidefinite if and only if all diagonal elements
are ≥ 0.

But
∂2f

∂x2j
= 12(x2j − 1

2xj + 1
6) = 12((xj − 1

4)2− 1
16 + 1

6) > 0 for all values of xj .

Hence F(x) is positive definite for all x ∈ IRn, and hence f is (strictly) convex
on IRn.

(b)

The Newton direction d(1) is determined from the equation system F(x(1)) d =
−∇f(x(1))T, given that F(x(1)) is positive definite, which we already con-
firmed.

In our case F(x(1)) is a diagonal matrix, and hence the solution of the equation
system is

d
(1)
j = − ∂f

∂xj
(x(1))

/
∂2f

∂x2j
(x(1)) = −

4(x
(1)
j )3 − 3(x

(1)
j )2 + 2x

(1)
j − 1

12(x
(1)
j )2 − 6x

(1)
j + 2

, j = 1, . . . , n.

Since x
(1)
j = 1 for all j, d

(1)
j = −0.25 for all j.

We try with the step t1 = 1, so that x(2) = x(1) + t1d
(1) = x(1) + d(1) =

(0.75, . . . , 0.75)T.

Then f(x(2)) = −75n

256
< 0 = f(x(1)), so the step t1 = 1 was fine.

Hence we have made a complete iteration with Newton’s method.

14.5 (20070307-nr.5)

(a) We have a QP-problem on the form

minimize 1
2 xTHx + cTx

s.t. Ax ≥ b ,

where H =

 1 0 0
0 1 0
0 0 1

, c =

 4
2
6

, A =


1 1 1
1 0 0
0 1 0
0 0 1

 and b =


1
0
0
0

.

First Iteration: In the given starting point the constraints 1, 3 and 4 are
fulfilled with equality. Hence we start with α = (1, 3, 4) and γ = (2).
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Then x̄ =

 1
0
0

, Hx̄ + c =

5
2
6

, Aα =

 1 1 1
0 1 0
0 0 1

 and AT
α =

 1 0 0
1 1 0
1 0 1

.

We obtain the answer ”Yes” in Step 1, since Hx̄ + c = AT
αū with ū =

(5, −3, 1)T, so we go on to Step 2.

Here we conclude that ū2 < 0 (and the smallest), and hence α2 = 3 is moved
to the γ–vector.

Then we move to Step 3 with α = (1, 4), γ = (2, 3), Aα =

[
1 1 1
0 0 1

]
,

Aγ =

[
1 0 0
0 1 0

]
.

In step 3 we are to minimize 1
2dTHd + (Hx̄ + c)Td under the constraint

Aαd = 0,

The optimality conditions for this convex QP-problem with equality con-
straints is given by

Hd−AT
αu = −(Hx̄ + c) and Aαd = 0.

Since H = I, the first equations give that d = AT
αu− x̄− c ,

which inserted in Aαd = 0 gives the equations system AαAT
αu = Aα(x̄ + c),

i.e.[
3 1
1 1

](
u1
u2

)
=

(
13
6

)
, with the solution u =

(
3.5
2.5

)
, where-after d̂ =−1.5

1.5
0

.

Since x̄ + d̂ = (−0.5, 1.5, 0)T does not fulfill all constraints we compute

s = Aγx̄− bγ =

(
1
0

)
, g = Aγd̂ =

(
−1.5

1.5

)
and t̂ = min

i

{
si
−gi

| gi< 0

}
=

1

1.5
=

s2
−g2

.

Then x̄ is changed to x̄ + t̂ · d̂ =

1
0
0

 +
1

1.5
·

−1.5
1.5

0

 =

0
1
0

, while γ2 is

moved to the α–vector.

New Iteration. Now α = (1, 2, 4), γ = (3). Further

x̄ =

 0
1
0

, Hx̄ + c =

 4
3
6

, Aα =

 1 1 1
1 0 0
0 0 1

 and AT
α =

 1 1 0
1 0 0
1 0 1

.

We obtain the answer “Yes” in Step 1, since Hx̄+c = AT
αū with ū = (3, 1, 3)T,

so we move on to Step 2.

106



Here we conclude that ū ≥ 0, which means that the current iteration point
is optimal, and therefore the algorithm stops. Hence an optimal solution is
x̂ = (0, 1, 0)T.

(b)

The problem is a convex QP-problem, and hence the KKT-conditions are both
necessary and sufficient conditions for global optimality.

The Lagrange function to the problem can be written as:

L(x,y) = 1
2x

2
1 + 1

2x
2
2 + 1

2x
2
3 + 4x1 + 2x2 + 6x3 + y1(1− x1 − x2 − x3)− y2x1 −

y3x2 − y4x3.
The KKT-constraints then becomes:

x1 − y1 − y2 = −4 ∂L/∂x1 = 0 (KKT1)
x2 − y1 − y3 = −2 ∂L/∂x2 = 0 (KKT2)
x3 − y1 − y4 = −6 ∂L/∂x3 = 0 (KKT3)
x1 + x2 + x3 ≥ 1 primal feasibility (KKT4)

x1 ≥ 0 primal feasibility (KKT5)
x2 ≥ 0 primal feasibility (KKT6)
x3 ≥ 0 primal feasibility (KKT7)
y1 ≥ 0 dual feasibility (KKT8)
y2 ≥ 0 dual feasibility (KKT9)
y3 ≥ 0 dual feasibility (KKT10)
y4 ≥ 0 dual feasibility (KKT11)

y1(1− x1 − x2 − x3) = 0 complementarity (KKT12)
y2x1 = 0 complementarity (KKT13)
y3x2 = 0 complementarity (KKT14)
y4x3 = 0 complementarity (KKT15)

First suppose that x = (1, 0, 0)T. Then (KKT13) gives that y2 = 0, and then
(KKT1)-(KKT3) gives that y1 = 5, y3 = −3 and y4 = 1. But this contradicts
(KKT10).
Hence the KKT-constraints can not be fulfilled with x = (1, 0, 0)T.

Now suppose that x = x̂ = (0, 1, 0)T. Then (KKT13) gives that y3 = 0, and
then (KKT1)-(KKT3) gives that y1 = 3, y2 = 1 and y4 = 3. A quick check
gives that now all the KKT-conditions are fulfilled. The KKT-conditions are
hence fulfilled by x̂ = (0, 1, 0)T and ŷ = (3, 1, 0, 3)T.

(c)

Now we consider the problem to minimize f(x) s.t. g1(x) ≤ 0 and x ∈ X,

where g1(x) = 1− x1 − x2 − x3 and X = {x ∈ IR3 | x ≥ 0}.
The Lagrangian function to the problem can now be written as:

L(x, y1) = 1
2x

2
1 + 1

2x
2
2 + 1

2x
2
3 + 4x1 + 2x2 + 6x3 + y1(1− x1 − x2 − x3) =

= y1 + 1
2x

2
1 + (4− y1)x1 + 1

2x
2
2 + (2− y1)x2 + 1

2x
2
3 + (6− y1)x3.

To obtain the dual objective function ϕ(y1) you should minimize L(x, y1) with
respect to x ∈ X. As can be seen, this minimization can be performed on each
variable xj at a time.
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Note that if the expression 1
2x

2
j + (cj − y1)xj is to be minimized under the

condition that xj ≥ 0, the minimizing value of xj is given by:

xj(y1) = y1 − cj if y1 > cj and xj(y1) = 0 if y1 ≤ cj .
This can be written short as xj(y1) = max{ 0 , y1 − cj } = (y1 − cj)+
where the last equality is the definition of (y1 − cj)+ .

The dual objective function is now given by

ϕ(y1) = min
x∈X

L(x, y1) = L(x(y1), y1) = y1 +

+ 1
2(y1 − 4)2+ + (4 − y1)(y1 − 4)+ + 1

2(y1 − 2)2+ + (2 − y1)(y1 − 2)+ + 1
2(y1 −

6)2+ + (6− y1)(y1 − 6)+ =

= y1 − 1
2(y1 − 4)2+ − 1

2(y1 − 2)2+ − 1
2(y1 − 6)2+ .

From (a) and (b) we guess that ŷ1 = 3.

Insertion above gives that ϕ(3) = 3− 1
2(3−4)2+− 1

2(3−2)2+− 1
2(3−6)2+ = 2.5.

According to (a) and (b) x̂ = (0, 1, 0)T with f(x̂) = 2.5, i.e. f(x̂) = ϕ(ŷ1).

This shows that the guess ŷ1 = 3 was correct.

14.6 (20050331-nr.5)

The LP-problem that is obtained after linearization of all functions is

minimize f(x̂) +∇f(x̂)(x− x̂)

s.t. gi(x̂) +∇gi(x̂)(x− x̂) ≤ 0 , i = 1, . . . ,m

x ∈ IRn.

Let cT = ∇f(x̂), let A be a m×n matrix with the rows −∇gi(x̂), i = 1, . . . ,m,
and let the vector b ∈ IRm have the components bi = gi(x̂)−∇gi(x̂) x̂.

Then the LP-problem above can be written as

minimize cTx

s.t. Ax ≥ b ,

x ∈ IRn.

(Except from an in the context not important constant in the objective func-
tion that doesn’t affect the optimal solution to the LP-problem.)

The corresponding dual LP-problem can be written as

maximize bTy

s.t. ATy = c ,

y ≥ 0.

According to the duality theorem it holds that x̂ ∈ IRn is an optimal solution
to the primal LP-problem if and only if there is a (dual) vector ŷ ∈ IRm such
that x̂ and ŷ together fulfill the following four optimality conditions:

1. ATŷ = c.
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2. Ax̂ ≥ b.

3. ŷ ≥ 0.

4. cTx̂ = bTŷ.

If you put in what A, b and c really stand for, you obtain that these four
optimality conditions can be equivalently written as

1. −
∑
i ŷi∇gi(x̂)T = ∇f(x̂)T.

2. −∇gi(x̂) x̂ ≥ gi(x̂)−∇gi(x̂) x̂, for i = 1, . . . ,m.

3. ŷ ≥ 0.

4. ∇f(x̂) x̂ =
∑
i ŷi(gi(x̂)−∇gi(x̂) x̂).

Some re-formulations give the following equivalent formulations of these con-
straints.

1. ∇f(x̂) +
∑
i ŷi∇gi(x̂) = 0T.

2. gi(x̂) ≤ 0, for i = 1, . . . ,m.

3. ŷi ≥ 0, for i = 1, . . . ,m.

4.
∑
i ŷigi(x̂) = 0.

Using 2 and 3 gives that 4 is equivalent to

4. ŷigi(x̂) = 0, for i = 1, . . . ,m.

But now the conditions 1-4 are the well-known KKT-conditions for the NLP-
problem!

Since our original non-linear optimization problem NLP, according to the pre-
requisites, is a regular convex problem with continuously differentiable func-
tions, x̂ is an optimal solution to this NLP if and only if there is a vector
ŷ ∈ IRm that together with x̂ fulfills the KKT-conditions above.

But according to above this is equivalent to that x̂ is an optimal solution to
the LP-problem which you obtain if you in P replace all functions with their
linearizations (computed in x̂).

14.7 (20041016-nr.4)

(a). The problem can be written as:

minimize f(x) = 1
2 xTATAx−(ATb)Tx+ 1

2 bTb, where ATA =

[
6 −3

−3 6

]

and ATb =

(
7

4

)
.

Since ATA is positive definite, f is a (strictly) convex quadratic function.
Therefore x is a global minpoint to f if and only if ∇f(x)T = 0, i.e. if and
only if ATAx−ATb = 0. (The Normal Equations.)

The unique solution to this simple system of equations is x =

(
12

6
,

10

6

)T

.

(b). The problem can be written on the following form:

minimize f(x) = 1
2 xTATAx− (ATb)Tx + 1

2 bTb

s.t. A x ≥ b.
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This is a convex QP-problem with linear inequality constraints.
x ∈ IR2 is a global minpoint to this problem if and only if there is a vector
y ∈ IR3 which together with x fulfills the following four optimality conditions:

ATAx−ATb = ATy, Ax ≥ b, y ≥ 0 and yT(Ax− b) = 0.

Insertion of the proposed point x =

(
13

6
,

11

6

)T

gives that Ax−b =

 1/2
1/2
0

.

The second optimality condition is hence fulfilled and the fourth gives that
y1 = y2 = 0.
The first optimality condition can then be written as:

0 = ATAx−ATb−ATy = AT(Ax− b− y) =

[
2 −1 1

−1 2 1

] 1/2
1/2
−y3

 =

(
1/2− y3
1/2− y3

)
,

with the solution y3 = 1/2, which is ≥ 0.

All optimality conditions are hence fulfilled with x =

(
13

6
,

11

6

)T

and y =(
0 , 0 ,

1

2

)T

.

14.8 (20040415-nr.5)

(a)

Let x be an arbitrary feasible solution to NLP, i.e. g(x) ≤ 0, and let z = f(x).

That f and g are convex and continuously differentiable implies that

f(x) ≥ f(xk) + ∇f(xk)(x − xk) and g(x) ≥ g(xk) + ∇g(xk)(x − xk), for
k = 1, . . . ,K.

Since z = f(x) and g(x) ≤ 0 this gives that

z ≥ f(xk)+∇f(xk)(x−xk) and 0 ≥ g(xk)+∇g(xk)(x−xk), for k = 1, . . . ,K,

which equivalently can be written as

z−∇f(xk) x ≥ f(xk)−∇f(xk) xk and −∇g(xk) x ≥ g(xk)−∇g(xk) xk,
for k = 1, . . . ,K.

Hence (x, z) is a feasible solution to the problem LP.

But since (x̂, ẑ) is an optimal solution to LP it follows that ẑ ≤ z, i.e. f(x) ≥ ẑ.
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(b)

Suppose that for example (x1, ẑ), where x1 is the first of the given points xk,
is an optimal solution to LP. We will show that x1 then is an optimal solution
to NLP.

That (x1, ẑ) is an optimal solution to LP implies that (x1, ẑ) is a feasible
solution to LP, i.e.

ẑ−∇f(xk) x1 ≥ f(xk)−∇f(xk) xk and −∇g(xk) x1 ≥ g(xk)−∇g(xk) xk,
for k = 1, . . . ,K.

For k = 1 this gives that

ẑ−∇f(x1) x1 ≥ f(x1)−∇f(x1) x1 and −∇g(x1) x1 ≥ g(x1)−∇g(x1) x1,

i.e. f(x1) ≤ ẑ and g(x1) ≤ 0.

x1 is hence a feasible solution to NLP with f(x1) ≤ ẑ.
But according to the (a)-task above f(x) ≥ ẑ for every feasible solution x to
NLP.

Hence f(x1) ≤ f(x) for every feasible solution x to NLP, which implies that
x1 is an optimal solution to NLP.

(Further is follows that f(x1) = ẑ, which implies that the optimal values to
NLP and LP are equal in this specific case.)
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