
Solutions to exam in SF1811 Optimization, April 7, 2015

1.(a)+(b)

The network corresponding to the given LP problem can be illustrated by the left figure
below, where the supply at the nodes (i.e. the components in the vector b), and the unit
costs of the arcs (i.e. the components in the vector c) are written in the figure.
All arcs are directed from left to right. Negative supply means demand.
The suggested solution x̂ = (4, 0, 9, 0, 15, 0, 8)T can be illustrated by the spanning tree in the
right figure below, with the arc-flows written on the arcs.
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The simplex multipliers yi for the nodes are calculated from y5 = 0 and yi−yj = cij for all ars
(i, j) in the spanning tree (left figure below), whereafter the reduced cost for the non-basic
variables are calculated from rij = cij − yi + yj (right figure below).
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Since all rij ≥ 0, the suggested solution x̂ is optimal.
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1.(c) When the primal problem is on the standard form

minimize cTx
subject to Ax = b,

x ≥ 0,

the corresponding dual problem becomes maximize bTy subject to ATy ≤ c ,
which here becomes

maximize 4y1 + 5y2 + 6y3 − 7y4 − 8y5
subject to y1 − y2 ≤ 5,

y1 − y3 ≤ 7,
y2 − y3 ≤ 1,
y2 − y4 ≤ 4,
y3 − y4 ≤ 2,
y3 − y5 ≤ 6,
y4 − y5 ≤ 3.

It is well known that an optimal solution to this dual problem is given by the vector y with
simplex multipliers from 1.(b), i.e. y = (11, 6, 5, 3, 0)T.
Then the right hand sides minus the left hand sides of the dual constraint become
c−ATy = (0, 1, 0, 1, 0, 1, 0)T ≥ 0T, so y is a feasible solution to the dual problem.

Moreover, since x̂ = (4, 0, 9, 0, 15, 0, 8)T, we have that x̂T(c −ATy) = 0, which shows that
the complementarity conditions are satisfied. Thus y is optimal to the dual problem, and x̂
is optimal to the primal problem (which we already knew).

1.(d) If the right hand side vector b is changed from ( 4, 5, 6,−7,−8)T to ( 7, 8,−4,−5,−6)T,
the arc-flows corresponding to the spanning tree from 1.(b) become
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Since all the arc-flows xij become non-negative, this new solution x = (7, 0, 15, 0, 11, 0, 6)T

is a feasible basic solution. Moreover, since the cost-vector c is the same as in 1.(b), the
simplex multipliers yi and the reduced costs rij become exactly the same as in 1.(b), i.e
rij ≥ 0. Therefore, this new solution x is an optimal solution to the new problem.

The corresponding dual problem looks the same as in 1.(c), except for the objective function
which is now 7y1 + 8y2 − 4y3 − 5y4 − 6y5.
With b = ( 7, 8,−4,−5,−6)T and y = (11, 6, 5, 3, 0)T, the dual objective value now becomes
bTy = 77 + 48− 20− 15− 0 = 90,
while the primal objective value, with cT = (5, 7, 1, 4, 2, 6, 3) and x = (7, 0, 15, 0, 11, 0, 6)T,
becomes cTx = 35 + 15 + 22 + 18 = 90. Thus, cTx = bTy, as it should be.
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2.

The search for the optimal points y ∈ L1 and z ∈ L2 can be formulated as the QP problem

minimize 1
2‖y − z ‖2 = 1

2(y − z)T(y − z)

subject to

[
1 −1 1
1 1 −1

]
y =

(
1
1

)
,[

1 −1 −1
−1 1 −1

]
z =

(
1
1

)
.

As the hint indicates, a nullspace method may make sense:

The system

[
1 −1 1
1 1 −1

]
y =

(
1
1

)
is equivalent to

[
1 0 0
0 1 −1

]
y =

(
1
0

)
, with the

general solution y =

1
0
0

+ t·

0
1
1

= y0 + t·d, where t is an arbitrary real number.

The system

[
1 −1 −1
−1 1 −1

]
z =

(
1
1

)
is equivalent to

[
1 −1 0
0 0 1

]
z =

(
0
−1

)
, with the

general solution z =

 0
0
−1

+ s·

1
1
0

= z0 + s·p, where s is an arbitrary real number.

If these expressions are plugged into the objective function, the following unconstrained QP
problem in the variables t and s is obtained: minimize 1

2‖y0 + t·d− z0 − s·p ‖2.

One of several methods for solving this problem is as the least squares problem

minimize 1
2‖Ax− b ‖2, where x =

(
t
s

)
, A =

 0 −1
1 −1
1 0

 and b = z0 − y0 =

−1
0
−1

.

The normal equations ATAx = ATb become

[
2 −1
−1 2

](
t
s

)
=

(
−1

1

)
⇒
(
t̂
ŝ

)
=

(
−1/3

1/3

)
.

Then ŷ =

1
0
0

+ t̂·

0
1
1

=

 1
−1/3
−1/3

 and ẑ =

 0
0
−1

+ ŝ·

1
1
0

=

1/3
1/3
−1


are the optimal points we searched for.

Thus, the shortest distance between the lines is ‖ ŷ − ẑ ‖ =
2√
3

.
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3.

The objective function is f(x) = x31 − 3x1 + x1x2 + 1
2x

2
1x

2
2,

with gradient ∇f(x)T =

(
3x21 − 3 + x2 + x1x

2
2

x1 + x21x2,

)
,

and Hessian F(x) =

[
6x1 + x22 1 + 2x1x2
1 + 2x1x2 x21

]
.

We will use the well known fact that a symmetric 2× 2 matrix H =

[
a b
b c

]
* is positive definite if and only if a > 0, c > 0 and ac− b2 > 0,
* is positive semidefinite if and only if a ≥ 0, c ≥ 0 and ac− b2 ≥ 0,
which is easily verified, e.g. by an LDLT factorization.

3.(a) If x = (0, 3)T then ∇f(x) =

(
0
0

)
and F(x) =

[
9 1
1 0

]
, which is not positive

semidefinite. Thus, x = (0, 3)T is not a local minimum point.

If x = (1,−1)T then ∇f(x) =

(
0
0

)
and F(x) =

[
7 −1
−1 1

]
, which is positive

definite. Thus, x = (1,−1)T is a local minimum point.

If x = (−1, 1)T then ∇f(x) =

(
0
0

)
and F(x) =

[
−5 −1
−1 1

]
, which is not positive

semidefinite. Thus, x = (−1, 1)T is not a local minimum point.

3.(b) The given starting point for Newtons method is x(1) =

(
1
0

)
, with f(x(1)) = −2.

Then ∇f(x(1))T =

(
0
1

)
, and F(x) =

[
6 1
1 1

]
, which is positive definite.

The Newton direction d(1) is then obtained as the solution to F(x(1))d = −∇f(x(1))T,

which becomes

[
6 1
1 1

]
d =

(
0
−1

)
, with the unique solution d(1) =

(
0.2
−1.2

)
.

We first try the step parameter t1 = 1, so that x(2) = x(1) + t1d
(1) = x(1) + d(1) =

(
1.2
−1.2

)
.

Then f(x(2)) = 1.23 − 3 · 1.2− 1.22 + 0.6 · 1.23 = 1.22 · (1.2− 2.5− 1 + 0.72) =
= −1.44 · 1.58 = −2.2752 < −2 = f(x(1)), so the step is accepted.

The Newton iteration is thus completed and we have obtained the new iteration point

x(2) =

(
1.2
−1.2

)
with f(x(2)) = −2.2752.
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3.(c)

First note that for all x with both x1 ≥ 0 and x2 ≥ 0 the following holds:

f(x) = x31 − 3x1 + x1x2 + 1
2x

2
1x

2
2 ≥ x31 − 3x1.

Then consider the one-variable function g(x1) = x31 − 3x1,
with g ′(x1) = 3x21 − 3 and g ′′(x1) = 6x1.

Since g ′′(x1) ≥ 0 for all x1 ≥ 0, g(x1) is a convex function on
the convex set {x1 ∈ IR | x1 ≥ 0}.

But since g ′(1) = 0, it then follows that x1 = 1 is global minimum point
of the convex function g(x1) on the convex set {x1 ∈ IR | x1 ≥ 0},
which means that x31 − 3x1 ≥ g(1) = −2 for all x1 ≥ 0.

By combining the above observations, we get that the following inequalities
hold for all x with x1 ≥ 0 and x2 ≥ 0:

f(x) = x31 − 3x1 + x1x2 + 1
2x

2
1x

2
2 ≥ x31 − 3x1 ≥ −2.

But the point x̂ = (1, 0)T satisfies x̂1 ≥ 0, x̂2 ≥ 0 and f(x̂) = −2.

Thus, x̂ = (1, 0)T is a global optimal solution to the problem of
minimizing f(x) subject to the constraints x1 ≥ 0 and x2 ≥ 0.
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4.(a)

With β = (1, 21) and ν = (2, 3, . . . , 19, 20) we get that Aβ =

[
20 0
0 20

]
.

The vector b̄ is obtained from Aβb̄ = b = (40, 20)T, with the solution b̄ = (2, 1)T,
i.e. x1 = 2 and x21 = 1 in the first feasible basic solution.

Reduced costs for the non-basic variables are given by rTν = cTν − yTAν ,
where y is obtained from AT

βy = cβ = (10, 10)T, with the solution y = (0.5, 0.5)T.

For each non-basic index j, we then get that
rj = cj − yTaj = | j − 11 | − 0.5(21− j)− 0.5(j − 1) = | j − 11 | − 10.

The smallest reduced cost is obtained for j = 11 so we let k = 11.
Then rk = −10 < 0 and the non-basic variable xk = x11 should become a basic variable.

The vector āk is obtained from Aβāk = ak = (10, 10)T, whith the solution āk = (0.5, 0.5)T.

Since both ā1k and ā2k are > 0, we should compare
b̄1
ā1k

=
2

0.5
and

b̄2
ā2k

=
1

0.5
.

The second ratio is smallest, so xβ2 = x21 should become a non-basic variable.

Now β = (1, 11) and Aβ =

[
20 10
0 10

]
.

The vector b̄ is obtained from Aβb̄ = b = (40, 20)T, with the solution b̄ = (1, 2)T,
i.e. x1 = 1 and x11 = 2 in the current feasible basic solution.

Reduced costs for the non-basic variables are given by rTν = cTν − yTAν ,
where y is obtained from AT

βy = cβ = (10, 0)T, with the solution y = (0.5, −0.5)T.

For each non-basic index j, we then get that
rj = cj − yTaj = | j − 11 | − 0.5(21− j) + 0.5(j − 1) = | j − 11 |+ j − 11 ≥ 0.

Thus, the current feasible basic solution x1 = 1, x11 = 2 and xj = 0 for j /∈ {1, 11}
is an optimal solution, with the optimal value = c1x1 + c11x11 = 10.
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4.(b): Assume that β = (1, q) where q ∈ {2, 3, . . . , 21}. Then Aβ =

[
20 21−q
0 q−1

]
.

The vector b̄ is obtained from Aβb̄ = b = (40, 20)T, with the solution

b̄ =

(
3q − 23

q − 1
,

20

q − 1

)T

, i.e. x1 =
3q − 23

q − 1
and xq =

20

q − 1
when β = (1, q).

This is a feasible basic solution if and only if 3q−23 ≥ 0, i.e. if and only if q ∈ {8, 9, . . . , 21}.

Thus, there are 14 different feasible basic solutions with x1 as one of the basic variables.

When β = (1, q) and q ∈ {8, 9, . . . , 21}, the objective value for the corresponding feasible
basic solution is c1x1 + cqxq = 10x1 + | q − 11 |xq
We get two cases:

Case 1: q ∈ {8, 9, 10, 11}, for which | q − 11 | = 11− q.

Then c1x1 + cqxq = 10x1 + (11− q)xq =
10(3q − 23)

q − 1
+

20(11− q)
q − 1

=
10q − 10

q − 1
= 10.

Case 2: q ∈ {12, 13, . . . , 21}, for which | q − 11 | = q − 11.

Then c1x1 + cqxq = 10x1 + (11− q)xq =
10(3q − 23)

q − 1
+

20(q − 11)

q − 1
=

50q − 450

q − 1
=

= 10 +
40q − 440

q − 1
> 10, since q ≥ 12.

Thus, there are 4 different optimal basic solutions with x1 as one of the basic variables,
namely the ones in Case 1 above.
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5.(a)

With y = (y1, . . . , ym)T, the Lagrange function becomes

L(z,x,y) = 1
2z

2 +
m∑
i=1

yi(‖x− pi‖2 − z) =

= 1
2z

2 −
m∑
i=1

yiz +
m∑
i=1

yi ( xTx− 2 pT
i x + pT

i pi) =

= 1
2z

2 − (eTy)z + xTx eTy − 2 xTPy + qTy,

where P is a marix with the columns p1, . . . ,pm,
while q = (‖p1‖2, . . . , ‖pm‖2)T and e = (1, . . . , 1)T.

To get the dual objective function, L(z,x,y) should be minimized with respect to z and x.

If y = 0 then L(z,x,0) = 1
2z

2, and then minimizing z is z = 0
while x can be anything. The dual objective function then becomes ϕ(0) = 0.

If y 6= 0 (and y ≥ 0 of course) then eTy > 0, and the minimizing z is z(y) = eTy

and the minimizing x is x(y) =
Py

eTy
. Then the dual objective function becomes

ϕ(y) = L(z(y),x(y),y) = −1
2(eTy)2 + qTy − yTPTPy

eTy
.

5.(b)

If P = I (2×2), and thus q = e = (1, 1)T, then

ϕ(y) = −1
2(y1 + y2)

2 + y1 + y2 −
y21 + y22
y1 + y2

.

In particular, the suggested vector ŷ = (0.25, 0.25)T is a feasible solution to the dual problem,
with the dual objective value ϕ(ŷ) = 0.25.

Let ẑ = z(ŷ) = eTŷ = 0.5 and x̂ = x(ŷ) =
Pŷ

eTŷ
= (0.5, 0.5)T.

Then ẑ and x̂ satisfy the constraints in the original (primal) problem P, and is thus a feasible
solution to P. The primal objective value of this solution is 1

2 ẑ
2 = 0.25 = ϕ(ŷ).

According to a well known theorem, this implies that ẑ and x̂ is an optimal solution to P
while ŷ is an optimal solution to D.
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