Solutions to exam in SF1811 Optimization, 18 Jan 2014

-
1.(a) Let x = (w12, 13, T14, T3, T25, T34, T35, T45)
where the variable z;; stands for the flow in the arc from node i to node j.

T T
Let ¢ = (ci2, c13, C14, C23, C25, €34, C35, Ca5)' = (1, k, k, 1, k, 1, k, 1)".

Then the total cost for the flow is given by ¢'x.
The flow balance conditions in the nodes can be written Ax = b, where

1 1 10 0 0 0 O 30

-1 0 0 1 1 0 0 O 20

A= 0 -1 0 -1 0 1 1 0 and b = 0
o 0 -1 0 0 -1 0 1 —35

o o o0 0 -1 0 -1 -1 —15

Finally, the given directions of the arcs imply the constraints x > 0.
(It is recommended to remove the last row in A and the corresponding last
component in b to get a system without any redundant equation.)

1.(b) If we let x19, wo3, x34 and x45 be basic variables, the values of these
basic variables can be calculated as follows:

x12 = 30, because of flow balance in node 1,

o3 = 50, because of flow balance in node 2,

x34 = 50, because of flow balance in node 3,

45 = 15, because of flow balance in node 4.

We see that the flow balance condition in node 5 also becomes fulfilled
(since the problem is balanced).

1.(c) The reduced costs for the nonbasic variables can be calculted by
r;j = ¢ij — y; +y; for all nonbasic arcs,

where the scalars (simplex multipliers) y; are calculated by

Yi — Y; = ¢;; for all basic arcs, and y5 = 0.

We get:

ys = 0, (by definition)

Yya=ca5+ys =1+0=1,

ys=csat+ys=1+1=2,

ya=c3+ys=1+2=3,

y1=ci2t+y2=1+3=4,

and then

r3=c3—ntys=k—4+2=~k—-2,
ruy=cua—y1+tyu=k—4+1=%k-3,

ros =Co5 — Yo+ ys =k —-3+0=Fk—3,

res=cC35 —Ys+yYs =k—2+0=Fk—2.

We se that if £ > 3 then all r;; > 0 and the given basic solution is optimal.
If £ < 3 then r14 < 0 and then we could let

T14 = t, T2 = 30—t, To3 = 50—t, T34 = 50—t and T45 = 15.

For ¢t € (0,30], this is a feasible solution with strictly decreasing cost when
t increases. Thus, the basic solution from (b) is optimal if and only if £ > 3.



2.(a) The considered LP problem is on the form

minimize ¢'x subject to Ax =b and x > 0,
/1 -1 1 -1 (2 T
WhereA—{1 1 1 _1], b—<4> and ¢’ = (1, 3,1, 1).

In the suggested solution, x; and z9 are basic variables, i.e. § = (1,2) and v = (3,4).

1 -1 1 -1
The corresponding basic matrix is Ag = [ 1 1 ] , while A, = [ 1 1 ]

The current values of the basic variables are xg = b, where b is obtained from

S I B B A "R N A N .= (b (3
Agb =D, ie. [1 1] <b2> = <4>, with the solution b = <b2> = (1>,

and thus x1 = 3 and x2 = 1, which agrees with the suggested solution.

The vector y with simplex multipliers is obtained from the system Agy = cg, i.e.

11 ) _ (1 . . (i (-1
[_1 1] <y2> = <3>, with the solution y = (y2> = < 2>.

The reduced costs for the non-basic variables are given by
- -yTA = - (12| -,

14

Since these reduced costs are non-negative, the suggested solution is optimal.
Thus, x = (3, 1, 0, 0)T is an optimal solution. The optimal value = ¢'x = 6.

2.(b) Since the primal problem is on the form
minimize ¢'x subject to Ax =b and x > 0,
the corresponding dual problem D1 is on the form
maximize b'y subject to ATy <,
which, written out in details, becomes

maximize 2y; + 4yo
subject to Y1 + Yo
—Yy1+ Y2

Y1 — Y2

1,
37
]"
—Y1 — Y2 1.
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A careful figure shows that the feasible region is a rectangle with corners (1,0), (—1,2), (—2,1)
and (0, —1). Level sets to the objective function 2y; 4+ 4y are parallel lines orthogonal to the
vector (2,4), with increasing values when moving “north-north-east”.

The level set which corresponds to the maximal value of the objective function is given, from
the figure, by the line 2y; + 4y2 = 6, which goes through the corner (y1,y2) = (—1,2). Thus,
this is the optimal solution to the dual problem D1. The optimal value = bTy = 6.



2.(c) With surplus variables x5 and zg, an LP problem on standard form is obtained:

minimize ¢'x subject to Ax =b and x > 0,

1 1 -1 -1 0 -1 4

where now A:[l b=l 0}, b:<2) and ¢' =(1,3,1,1,0,0).

We start from the solution from (a), with 5 = (1,2) and v = (3,4, 5,6),
which is a feasible basic solution also to this new problem.

1

The matrix Ag = [1 _i] and the vectors b = (?) and y = (_;> are the

same as in (a), while the matrix A, = [ _1 :1 _(1) _? ]

The reduced costs for the non-basic varibles are now give by

1 -1 -1 0

T _ T _ T — (=
r, =c¢, yAl/_(1717070) (172)|:_1 -1 0 -1

] = (4,2,—1, 2).

Since r,, = r5 = —1 is smallest, and < 0, we let x5 become a new basic variable.

The vector a5 is obtained from the system Agas = a5, which becomes

1 -1 ais \ -1 . . - (a5 _ —0.5
[1 1} <a25> = < 0>, with the solution a; = <a25> = ( 0'5>.

The value of the new basic variable x5 is given by
b; 1 bo
¥ —mind == | @ >0p = — = —.
Hliln { a;s | e } 0.5 ass
Here, the minimizing index is i = 2, so 25, = x2 should leave the basis.
Now 3 = (1,5) and v = (2, 3,4, 6).
1 -1
1 0

—1

],Whlle A,,:[ 1

The corresponding basic matrix is Ag = [

1

—1

-1
—1

The current values of the basic variables are xg = b, where b is obtained from

- 1 =17 (b1 _ (2 : .= (b
Agb =D, ie. [1 0] (52) = <4>, with the solution b = <l_)2)

The vector y with simplex multipliers is obtained from the system

AEych, ie. [1 (1)} <z;> = <(1)>, with the solution y = (Z;)

The reduced costs for the non-basic variables are given by
-1 1 -1 0

T _ ~T _ T — _ —
I.l/ - Cl/ y Al/ (37 17 ]-7 0) (0’ 1) |: 1 1 -1 _1:| (27 27 27 1)

(
(

)
)

Since these reduced costs are non-negative, the current basic solution is optimal.

Thus, x = (4, 0, 0, 0, 2, 0)T is an optimal solution. The optimal value = ¢

T

x = 4.

0

—1

|



2.(d) With slack variables z5 and g, an LP problem on standard form is obtained:

minimize ¢'x subject to Ax =b and x > 0,

1 1 -1 -1 0 1 4
As recommended, we now start with 8 = (5,6) and v = (1,2, 3,4).

10
01

where now A:[l Lol O}, b:(2> and ¢ =(1,3,1,1,0,0).

The corresponding basic matrix is Ag = [

},while A,,:[1 - _1}

1 1 -1 -1

The current values of the basic variables are xg = b, where b is obtained from

= [roo) e 2 . = (b (2
Agb =D, ie. [0 1] <b2> = <4>, with the solution b = <b2> = <4>

The vector y with simplex multipliers is obtained from the system Agy = cg, i.e.

1 0 Y1 . 0 . . . Y1 o 0
[O 1] <y2> = <0), with the solution y = <y2> = (0>

The reduced costs for the non-basic variables are given by

rlzcl—yTAyzu,s,l,1)—(0,0>“ B :H=<1,3,1,1>.

Since these reduced costs are non-negative, the current basic solution is optimal.
Thus, x = (0, 0, 0, 0, 2, 4)T is an optimal solution. The optimal value = ¢'x = 0.



3.(a) The considered problem can be written

minimize %XTHX +c'x subject to Ax = b,

100 -1
where H=|0 1 0|, c=| -1 ,A:[(l) 1 (1)} and bz(é).
0 01 -1

The matrix H =1 is positive definite, so we have a convex QP problem.

We use elementary row operations (Gauss-Jordan) to put the system Ax =b

11 01 1 0 —-1|-2
3

on reduced row echelon form: [ 01 13 0 1 1
The general solution to Ax = b is then obtained by letting x3 = v (an arbitrary

number) whereafter 21 = =24 v and z3 =3 —v.

Thus, the complete set of solutions to Ax = b is given by
X1 —2 1

x=| =z = 3|+ -1 |v =X+ zv,
T3 0 1

where X is one solution to Ax = b, and z is a basis for the null-space of A.

Changing variables from x to v leads to a quadratic objective function which is
uniquely minimized by the solution © to the system (z'Hz)v = —z' (HX + c),
provided that z"Hz is positive definite (> 0 in this one-variable case).

We get that zT Hz=2"2=3 >0 and —z' (HX +¢) = —z'(X+c) = 6,
so the unique solution to the system above is v =6/3 = 2,

and the unique global optimal solution to the original problem is

—2 2 0
X=X+2z0= 31+ 2]=01
0 2 2



3.(b) The Lagrange optimality conditions for the considered convex

. Hx - ATu = -
QP problem are given by the system A;( v _ E
The equations Hx — ATu = —c are in our case equivalent to x = ATu — c.

If this is combined with the remaining equations Ax = b, we get that
AATu = Ac + b, which in our case becomes

oMy =( i : |
[1 2}(1@)—( 1),Wlththeumquesolu‘mom u_< 1>.

The corresponding unique X (which together with @ satisfies the Lagrange conditions)

1 0 1 1 0
is then given by x=ATda—c=| 1 1 <1>— -1]=11

0 1 -1 2
Since H is positive definite, the Lagrange conditions are both necessary and sufficient
for a global optimum, and thus X is the unique global optimal solution to the considered
QP problem. As expected, the obtained results in (a) and (b) agree.

3.(c)
Let f(x)=1(2?4+234+23) —a1—20—23, qi(x) =21 +22—1, g2(x) =3 — a2 — 73.
Then the considered problem becomes: minimize f(x) subject to g;(x) <0 for i = 1, 2.

The KKT conditions for this problem become

of og1 dgo . .
KKT-1) —— — —2= =0 f =1,2,3, i.e.
( ) 8%+y18%+y28x] or j y 4,9, 1.€

x1—1+y1:0,

ro—1+y1—y2=0,

x3—1—y2:O,
(KKT-2) gi(x) <0fori=1,2,ie.

1 +x2 —1<0,

3—x9 —x3 <0,
(KKT-3) 31 >0 och yp >0.

(KKT-4) y;gi(x)=0fori=1,2, ie.

yi(z1 + a2 —1) =0,

y2(3 — w2 —x3) = 0.
Let % = (0,1,2)T, as in (a) and (b). Then g;(%X) = 0 and go(%) = 0 so that
(KKT-2) and (KKT-4) are satisfied by %, for all y; and ys.
Further, the conditions (KKT-1) are satisfied by % = (0,1,2)T and § = (1,92)"
if and only if § = (1,1)T. But § = (1,1)T satisfies also (KKT-3).
Thus, % = (0,1,2)T is a KKT point. Since f, g1 and go are convex functions,

every KKT point is a global optimal solution, and thus X is a global optimal
solution to the considered inequality-constrained QP problem.



3.(d)
Now let f(x) = 3(2?+23+23) —a1 — 20— 23, g1(x)=1—21 — 22, go(X) =122+ 23—3.

The KKT conditions for this problem become

of dg1 dgo . .
KKT-1) —— — —= =01 =1,2,3, i.e.
( ) ax]—i_ylam‘y—i_yan] or j y 4,9, 1.€

xl—l—ylz(),

zo—1—y1+y2=0,

x3—1+y2:0,

(KKT-2) gi(x) <0fori=1,2,ie.
1- 1 —x2 < 07
T2+ w3 —3 <0,

(KKT-3) 31 >0 och yo >0.

(KKT-4) y;gi(x)=0fori=1,2,ie.

yi(l =z —22) =0,

ya2(x2 + 23 —3) = 0.
The result from (c) indicate that the objective function would be decreased (compared
to the solution in (c)) if 21 + 22 > 1 and x2 + 3 < 3, i.e. if the constraints in (d) are
not satisfied with equality. So let us try with y; = y2 = 0 in the KKT conditions above.

Then (KKT-3) and (KKT-4) are satisfied for all x.

Further, the conditions (KKT-1) are satisfied if and only if x = (1,1,1)7.
But this x satisfies also (KKT-2)!

Thus, x = (1,1,1)T is a KKT point. Again, since f, g; and go are convex functions,
every KKT point is a global optimal solution, and thus x = (1,1,1)T is a global
optimal solution.

Interpretation (and a shorter way to solve the problem): If the constraints are completely
neglected, so that the problem becomes simply to minimize %(ﬂs% + 23 + x%) — X1 — T2 — T3
without any constraints, then the unique optimal solution would clearly be x = (1,1,1)T.
But since this solution happens to satisfy the constraints in (d), it must be the unique optimal
solution also to the problem in (d). (Note that x = (1,1,1)T is not feasible, and thus not

optimal, to the problems in (a)—(c).)



4.
Change notation on the constant from ¢ to x.

Then we should minimize f(z) = 3 h(z)Th(z) = (h1(2)? + ha(2)?),
()
where h(z) = , with

ha(z)
h = —wy = - 0.4
1) 1+zty b 1+=z 046,
1 1
ha(z) = —wy = —0.22.
2(2) 1+ xts w2 14+ 3z 0

This is a nonlinear least-squares problem with n = 1 (one single variable x)
and m = 2 (two terms in the quadratic sum).

Differentiation gives that

hi (@)
hy()

i
(14 3x)2°

Vh(z) = [ ], where h)(z) = -1 and hb(z) =

(1+2)?

We should start in (1) = 1. Then

- (1) s s — [ 4] - (4]

In Gauss-Newtons method, Vh(zM)TVh(z(M)d = —Vh(zM)Th(z(™) should be solved.
In our case, Vh(zM)TVh(z(") = (-4/16)% + (—3/16)% = 25/256

and —Vh(z(")Th(2M) = (4/16)(4/100) + (3/16)(3/100) = 25/1600,

so we get the equation (25/256)d = 25/1600, with the solution d® = 256/1600 = 0.16.
We try with ¢; = 1, so that 2@ =M 4 tld(l) =1+4+0.16 = 1.16. Then

1 1-046-2.16 0.0064
1 1-0.22-4.48 0.0144
hao(x'\?)) 148 0.22 143 143 < 0.03 = ha(z'V).

Since |hy(z@)| < [hi(zM)] and |ho(z@)] < |ha(zM)] it follows that f(z?) < f(zM),
which means that we should accept t; = 1.

Now we have made an iteration with Gauss-Newtons method and obtained the new suggested
value ¢ = 1.16, which is better than the starting value ¢ = 1 since the quadratic sum

m
1
%;( Ttct wi)Q has decreased.



5.(a) The Lagrange function for the considered problem is given by
L(x,y) = (x—q)T(x—q) + y-(x"Dx — 1), with x € IR” and y € IR.

The Lagrange relaxed problem PR, is defined, for a given y > 0,
as the problem of minimizing L(x,y) with respect to x € IR".

Since L(x,y) =x'I+yD)x—-2q"x+q'q—y,
the optimal solution to PR, is given by

X(y) =T +yD) lq, ie. Tj(y) =

1+q a yforj=1,...,n.
Then the dual objective function becomes

n 2

~ — q
ely) = L(X(y),y) = —q' (I+yD) 1<1+qT01—y:qTq—y—Z1+]yd,-
j=1 J

The dual problem consists of maximizing ¢(y) with respect to y > 0.

5.(b) Some calculus give that
n 2d2

_ qJ J
—_1+Z 2 and ¢"(y) ;1+yd
In particular, ¢’(0) = —1 + Z q]zdj —q'Dg-1>0.
j=1
Further, ¢”(y) < 0 for all y > 0, which implies that ¢'(y) is continuous and strictly
decreasing for y > 0, and also that ¢(y) is strictly concave for y > 0.

q 1 n q2 n q2
Finally, ¢ 1+Z JJ —_1+724201f y%:Zi>0
y1j:1dj jzldj

5.(c) The results in (b) imply that there is a unique § > 0 such that ¢'(9) = 0.
In addition, since ¢(y) is strictly concave for y > 0, this unique § > 0 which
satisfies /() = 0 is the unique optimal solution to the dual problem.

Now let X = X(y). Then &; = Z;(y) = % , so that ¢/(9) =0 implies that
1+9d;
g ~ T
0=>» —L—5-1=> djz;-1=%'Dx-1
Liirggp 1T b 1= XDs

Then X, together with g, satisfies the global optimality conditions (GOC):
(i) L(x,9) < L(x,9) for all x € IR". (Since X = X(y).)

(i) *' Dx—-1<0. (Sincex'Dx=1.)

(iii) y > 0. (Since g > 0.)

(iv) 9-(x"™D%—1)=0. (Since x' D% =1.)

This implies that X is a global optimal solution to P.



