
Solutions to exam in SF1811 Optimization, 18 Jan 2014

1.(a) Let x = ( x12, x13, x14, x23, x25, x34, x35, x45 )T,
where the variable xij stands for the flow in the arc from node i to node j.
Let c = ( c12, c13, c14, c23, c25, c34, c35, c45 )T = ( 1, k, k, 1, k, 1, k, 1)T.
Then the total cost for the flow is given by cTx.
The flow balance conditions in the nodes can be written Ax = b, where

A =


1 1 1 0 0 0 0 0
−1 0 0 1 1 0 0 0

0 −1 0 −1 0 1 1 0
0 0 −1 0 0 −1 0 1
0 0 0 0 −1 0 −1 −1

 and b =


30
20
0

−35
−15

.

Finally, the given directions of the arcs imply the constraints x ≥ 0.
(It is recommended to remove the last row in A and the corresponding last
component in b to get a system without any redundant equation.)

1.(b) If we let x12, x23, x34 and x45 be basic variables, the values of these
basic variables can be calculated as follows:
x12 = 30, because of flow balance in node 1,
x23 = 50, because of flow balance in node 2,
x34 = 50, because of flow balance in node 3,
x45 = 15, because of flow balance in node 4.
We see that the flow balance condition in node 5 also becomes fulfilled
(since the problem is balanced).

1.(c) The reduced costs for the nonbasic variables can be calculted by
rij = cij − yi + yj for all nonbasic arcs,
where the scalars (simplex multipliers) yi are calculated by
yi − yj = cij for all basic arcs, and y5 = 0.
We get:
y5 = 0, (by definition)
y4 = c45 + y5 = 1 + 0 = 1,
y3 = c34 + y4 = 1 + 1 = 2,
y2 = c23 + y3 = 1 + 2 = 3,
y1 = c12 + y2 = 1 + 3 = 4,
and then
r13 = c13 − y1 + y3 = k − 4 + 2 = k − 2,
r14 = c14 − y1 + y4 = k − 4 + 1 = k − 3,
r25 = c25 − y2 + y5 = k − 3 + 0 = k − 3,
r35 = c35 − y3 + y5 = k − 2 + 0 = k − 2.
We se that if k ≥ 3 then all rij ≥ 0 and the given basic solution is optimal.
If k < 3 then r14 < 0 and then we could let
x14 = t, x12 = 30−t, x23 = 50−t, x34 = 50−t and x45 = 15.
For t ∈ (0, 30 ], this is a feasible solution with strictly decreasing cost when
t increases. Thus, the basic solution from (b) is optimal if and only if k ≥ 3.
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2.(a) The considered LP problem is on the form

minimize cTx subject to Ax = b and x ≥ 0,

where A =

[
1 −1 1 −1
1 1 −1 −1

]
, b =

(
2
4

)
and cT = (1, 3, 1, 1).

In the suggested solution, x1 and x2 are basic variables, i.e. β = (1, 2) and ν = (3, 4).

The corresponding basic matrix is Aβ =

[
1 −1
1 1

]
, while Aν =

[
1 −1
−1 −1

]
.

The current values of the basic variables are xβ = b̄, where b̄ is obtained from

Aβb̄ = b, i.e.

[
1 −1
1 1

](
b̄1
b̄2

)
=

(
2
4

)
, with the solution b̄ =

(
b̄1
b̄2

)
=

(
3
1

)
,

and thus x1 = 3 and x2 = 1, which agrees with the suggested solution.

The vector y with simplex multipliers is obtained from the system AT
βy = cβ, i.e.[

1 1
−1 1

](
y1
y2

)
=

(
1
3

)
, with the solution y =

(
y1
y2

)
=

(
−1

2

)
.

The reduced costs for the non-basic variables are given by

rTν = cTν − yTAν = (1, 1)− (−1, 2)

[
1 −1
−1 −1

]
= (4, 2).

Since these reduced costs are non-negative, the suggested solution is optimal.
Thus, x = (3, 1, 0, 0)T is an optimal solution. The optimal value = cTx = 6.

2.(b) Since the primal problem is on the form

minimize cTx subject to Ax = b and x ≥ 0,

the corresponding dual problem D1 is on the form

maximize bTy subject to ATy ≤ c,

which, written out in details, becomes

maximize 2y1 + 4y2

subject to y1 + y2 ≤ 1,
−y1 + y2 ≤ 3,
y1 − y2 ≤ 1,
−y1 − y2 ≤ 1.

A careful figure shows that the feasible region is a rectangle with corners (1, 0), (−1, 2), (−2, 1)
and (0,−1). Level sets to the objective function 2y1 + 4y2 are parallel lines orthogonal to the
vector (2, 4), with increasing values when moving “north-north-east”.

The level set which corresponds to the maximal value of the objective function is given, from
the figure, by the line 2y1 + 4y2 = 6, which goes through the corner (y1, y2) = (−1, 2). Thus,
this is the optimal solution to the dual problem D1. The optimal value = bTy = 6.
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2.(c) With surplus variables x5 and x6, an LP problem on standard form is obtained:

minimize cTx subject to Ax = b and x ≥ 0,

where now A =

[
1 −1 1 −1 −1 0
1 1 −1 −1 0 −1

]
, b =

(
2
4

)
and cT = (1, 3, 1, 1, 0, 0).

We start from the solution from (a), with β = (1, 2) and ν = (3, 4, 5, 6),
which is a feasible basic solution also to this new problem.

The matrix Aβ =

[
1 −1
1 1

]
and the vectors b̄ =

(
3
1

)
and y =

(
−1

2

)
are the

same as in (a), while the matrix Aν =

[
1 −1 −1 0
−1 −1 0 −1

]
.

The reduced costs for the non-basic varibles are now give by

rTν = cTν − yTAν = (1, 1, 0, 0)− (−1, 2)

[
1 −1 −1 0
−1 −1 0 −1

]
= (4, 2,−1, 2).

Since rν3 = r5 = −1 is smallest, and < 0, we let x5 become a new basic variable.

The vector ā5 is obtained from the system Aβā5 = a5, which becomes[
1 −1
1 1

](
ā15
ā25

)
=

(
−1

0

)
, with the solution ā1 =

(
ā15
ā25

)
=

(
−0.5

0.5

)
.

The value of the new basic variable x5 is given by

tmax= min
i

{
b̄i
āi5
| āi5 > 0

}
=

1

0.5
=

b̄2
ā25

.

Here, the minimizing index is i = 2, so xβ2 = x2 should leave the basis.

Now β = (1, 5) and ν = (2, 3, 4, 6).

The corresponding basic matrix is Aβ =

[
1 −1
1 0

]
, while Aν =

[
−1 1 −1 0

1 −1 −1 −1

]
.

The current values of the basic variables are xβ = b̄, where b̄ is obtained from

Aβb̄ = b, i.e.

[
1 −1
1 0

](
b̄1
b̄2

)
=

(
2
4

)
, with the solution b̄ =

(
b̄1
b̄2

)
=

(
4
2

)
.

The vector y with simplex multipliers is obtained from the system

AT
βy = cβ, i.e.

[
1 1
−1 0

](
y1
y2

)
=

(
1
0

)
, with the solution y =

(
y1
y2

)
=

(
0
1

)
.

The reduced costs for the non-basic variables are given by

rTν = cTν − yTAν = (3, 1, 1, 0)− (0, 1)

[
−1 1 −1 0

1 −1 −1 −1

]
= (2, 2, 2, 1).

Since these reduced costs are non-negative, the current basic solution is optimal.
Thus, x = (4, 0, 0, 0, 2, 0)T is an optimal solution. The optimal value = cTx = 4.
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2.(d) With slack variables x5 and x6, an LP problem on standard form is obtained:

minimize cTx subject to Ax = b and x ≥ 0,

where now A =

[
1 −1 1 −1 1 0
1 1 −1 −1 0 1

]
, b =

(
2
4

)
and cT = (1, 3, 1, 1, 0, 0).

As recommended, we now start with β = (5, 6) and ν = (1, 2, 3, 4).

The corresponding basic matrix is Aβ =

[
1 0
0 1

]
, while Aν =

[
1 −1 1 −1
1 1 −1 −1

]
.

The current values of the basic variables are xβ = b̄, where b̄ is obtained from

Aβb̄ = b, i.e.

[
1 0
0 1

](
b̄1
b̄2

)
=

(
2
4

)
, with the solution b̄ =

(
b̄1
b̄2

)
=

(
2
4

)
.

The vector y with simplex multipliers is obtained from the system AT
βy = cβ, i.e.[

1 0
0 1

](
y1
y2

)
=

(
0
0

)
, with the solution y =

(
y1
y2

)
=

(
0
0

)
.

The reduced costs for the non-basic variables are given by

rTν = cTν − yTAν = (1, 3, 1, 1)− (0, 0)

[
1 −1 1 −1
1 1 −1 −1

]
= (1, 3, 1, 1).

Since these reduced costs are non-negative, the current basic solution is optimal.
Thus, x = (0, 0, 0, 0, 2, 4)T is an optimal solution. The optimal value = cTx = 0.
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3.(a) The considered problem can be written

minimize 1
2 xTHx + cTx subject to Ax = b,

where H =

 1 0 0
0 1 0
0 0 1

, c =

−1
−1
−1

, A =

[
1 1 0
0 1 1

]
and b =

(
1
3

)
.

The matrix H = I is positive definite, so we have a convex QP problem.

We use elementary row operations (Gauss-Jordan) to put the system Ax = b

on reduced row echelon form:

[
1 1 0 1
0 1 1 3

]
−→

[
1 0 −1 −2
0 1 1 3

]
The general solution to Ax = b is then obtained by letting x3 = v (an arbitrary
number) whereafter x1 = −2 + v and x2 = 3− v.
Thus, the complete set of solutions to Ax = b is given by

x =

 x1
x2
x3

 =

 −2
3
0

+

 1
−1

1

 v = x̄ + z v,

where x̄ is one solution to Ax = b, and z is a basis for the null-space of A.

Changing variables from x to v leads to a quadratic objective function which is
uniquely minimized by the solution v̂ to the system (zTHz) v = −zT(Hx̄ + c),
provided that zTHz is positive definite (> 0 in this one-variable case).

We get that zTHz = zTz = 3 > 0 and −zT(Hx̄ + c) = −zT(x̄ + c) = 6,

so the unique solution to the system above is v̂ = 6/3 = 2,

and the unique global optimal solution to the original problem is

x̂ = x̄ + z v̂ =

 −2
3
0

+

 2
−2

2

 =

 0
1
2

.
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3.(b) The Lagrange optimality conditions for the considered convex

QP problem are given by the system
Hx−ATu = −c
Ax = b

The equations Hx−ATu = −c are in our case equivalent to x = ATu− c.
If this is combined with the remaining equations Ax = b, we get that
AATu = Ac + b, which in our case becomes[

2 1
1 2

](
u1
u2

)
=

(
−1

1

)
, with the unique solution û =

(
−1

1

)
.

The corresponding unique x̂ (which together with û satisfies the Lagrange conditions)

is then given by x̂ = ATû− c =

 1 0
1 1
0 1

(−1
1

)
−

−1
−1
−1

 =

0
1
2

.

Since H is positive definite, the Lagrange conditions are both necessary and sufficient
for a global optimum, and thus x̂ is the unique global optimal solution to the considered
QP problem. As expected, the obtained results in (a) and (b) agree.

3.(c)

Let f(x) = 1
2(x21 + x22 + x23)− x1 − x2 − x3, g1(x) = x1 + x2 − 1, g2(x) = 3− x2 − x3.

Then the considered problem becomes: minimize f(x) subject to gi(x) ≤ 0 for i = 1, 2.

The KKT conditions for this problem become

(KKT–1)
∂f

∂xj
+ y1

∂g1
∂xj

+ y2
∂g2
∂xj

= 0 for j = 1, 2, 3 , i.e.

x1 − 1 + y1 = 0,
x2 − 1 + y1 − y2 = 0,
x3 − 1− y2 = 0,

(KKT–2) gi(x) ≤ 0 for i = 1, 2 , i.e.
x1 + x2 − 1 ≤ 0,
3− x2 − x3 ≤ 0,

(KKT–3) y1 ≥ 0 och y2 ≥ 0.

(KKT–4) yigi(x) = 0 for i = 1, 2 , i.e.
y1(x1 + x2 − 1) = 0,
y2(3− x2 − x3) = 0.

Let x̂ = (0, 1, 2)T, as in (a) and (b). Then g1(x̂) = 0 and g2(x̂) = 0 so that
(KKT–2) and (KKT–4) are satisfied by x̂, for all y1 and y2.

Further, the conditions (KKT–1) are satisfied by x̂ = (0, 1, 2)T and ŷ = (ŷ1, ŷ2)
T

if and only if ŷ = (1, 1)T. But ŷ = (1, 1)T satisfies also (KKT–3).

Thus, x̂ = (0, 1, 2)T is a KKT point. Since f , g1 and g2 are convex functions,
every KKT point is a global optimal solution, and thus x̂ is a global optimal
solution to the considered inequality-constrained QP problem.
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3.(d)

Now let f(x) = 1
2(x21 + x22 + x23)− x1 − x2 − x3, g1(x) = 1− x1 − x2, g2(x) = x2 + x3 − 3.

The KKT conditions for this problem become

(KKT–1)
∂f

∂xj
+ y1

∂g1
∂xj

+ y2
∂g2
∂xj

= 0 for j = 1, 2, 3 , i.e.

x1 − 1− y1 = 0,
x2 − 1− y1 + y2 = 0,
x3 − 1 + y2 = 0,

(KKT–2) gi(x) ≤ 0 for i = 1, 2 , i.e.
1− x1 − x2 ≤ 0,
x2 + x3 − 3 ≤ 0,

(KKT–3) y1 ≥ 0 och y2 ≥ 0.

(KKT–4) yigi(x) = 0 for i = 1, 2 , i.e.
y1(1− x1 − x2) = 0,
y2(x2 + x3 − 3) = 0.

The result from (c) indicate that the objective function would be decreased (compared
to the solution in (c)) if x1 + x2 > 1 and x2 + x3 < 3, i.e. if the constraints in (d) are
not satisfied with equality. So let us try with y1 = y2 = 0 in the KKT conditions above.

Then (KKT–3) and (KKT–4) are satisfied for all x.

Further, the conditions (KKT–1) are satisfied if and only if x = (1, 1, 1)T.
But this x satisfies also (KKT–2)!

Thus, x = (1, 1, 1)T is a KKT point. Again, since f , g1 and g2 are convex functions,
every KKT point is a global optimal solution, and thus x = (1, 1, 1)T is a global
optimal solution.

Interpretation (and a shorter way to solve the problem): If the constraints are completely
neglected, so that the problem becomes simply to minimize 1

2(x21 + x22 + x23) − x1 − x2 − x3
without any constraints, then the unique optimal solution would clearly be x = (1, 1, 1)T.
But since this solution happens to satisfy the constraints in (d), it must be the unique optimal
solution also to the problem in (d). (Note that x = (1, 1, 1)T is not feasible, and thus not
optimal, to the problems in (a)–(c).)
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4.

Change notation on the constant from c to x.

Then we should minimize f(x) = 1
2 h(x)Th(x) = 1

2(h1(x)2 + h2(x)2),

where h(x) =

(
h1(x)

h2(x)

)
, with

h1(x) =
1

1 + x t1
− w1 =

1

1 + x
− 0.46,

h2(x) =
1

1 + x t2
− w2 =

1

1 + 3x
− 0.22.

This is a nonlinear least-squares problem with n = 1 (one single variable x)
and m = 2 (two terms in the quadratic sum).

Differentiation gives that

∇h(x) =

[
h′1(x)

h′2(x)

]
, where h′1(x) =

−1

(1 + x)2
and h′2(x) =

−3

(1 + 3x)2
.

We should start in x(1) = 1. Then

h(x(1)) =

(
0.04
0.03

)
and ∇h(x(1)) =

[
−1/4
−3/16

]
=

[
−4/16
−3/16

]
.

In Gauss-Newtons method, ∇h(x(1))T∇h(x(1)) d = −∇h(x(1))Th(x(1)) should be solved.

In our case, ∇h(x(1))T∇h(x(1)) = (−4/16)2 + (−3/16)2 = 25/256

and −∇h(x(1))Th(x(1)) = (4/16)(4/100) + (3/16)(3/100) = 25/1600,

so we get the equation (25/256) d = 25/1600, with the solution d(1) = 256/1600 = 0.16.

We try with t1 = 1, so that x(2) = x(1) + t1d
(1) = 1 + 0.16 = 1.16. Then

h1(x
(2)) =

1

2.16
− 0.46 =

1− 0.46 · 2.16

2.16
=

0.0064

2.16
< 0.04 = h1(x

(1)) and

h2(x
(2)) =

1

4.48
− 0.22 =

1− 0.22 · 4.48

4.48
=

0.0144

4.48
< 0.03 = h2(x

(1)).

Since |h1(x(2))| < |h1(x(1))| and |h2(x(2))| < |h2(x(1))| it follows that f(x(2)) < f(x(1)),
which means that we should accept t1 = 1.

Now we have made an iteration with Gauss-Newtons method and obtained the new suggested
value c = 1.16, which is better than the starting value c = 1 since the quadratic sum

1
2

m∑
i=1

(
1

1 + c ti
− wi)2 has decreased.
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5.(a) The Lagrange function for the considered problem is given by

L(x, y) = (x−q)T(x−q) + y ·(xTDx− 1), with x ∈ IRn and y ∈ IR.

The Lagrange relaxed problem PRy is defined, for a given y ≥ 0,
as the problem of minimizing L(x, y) with respect to x ∈ IRn.

Since L(x, y) = xT(I + yD)x− 2qTx + qTq− y,
the optimal solution to PRy is given by

x̃(y) = (I + yD)−1q, i.e. x̃j(y) =
qj

1 + y dj
, for j = 1, . . . , n.

Then the dual objective function becomes

ϕ(y) = L(x̃(y), y) = −qT(I + yD)−1q + qTq− y = qTq− y −
n∑
j=1

q2j
1 + y dj

.

The dual problem consists of maximizing ϕ(y) with respect to y ≥ 0.

5.(b) Some calculus give that

ϕ ′(y) = −1 +
n∑
j=1

q2jdj

(1 + y dj)2
and ϕ ′′(y) = −

n∑
j=1

2q2jd
2
j

(1 + y dj)3
.

In particular, ϕ ′(0) = −1 +
n∑
j=1

q2jdj = qTD q− 1 > 0.

Further, ϕ ′′(y) < 0 for all y ≥ 0, which implies that ϕ ′(y) is continuous and strictly
decreasing for y ≥ 0, and also that ϕ(y) is strictly concave for y ≥ 0.

Finally, ϕ ′(y1) < −1 +
n∑
j=1

q2jdj

(y1dj)2
= −1 +

1

y21

n∑
j=1

q2j
dj

= 0 if y21 =
n∑
j=1

q2j
dj

> 0.

5.(c) The results in (b) imply that there is a unique ŷ > 0 such that ϕ ′(ŷ) = 0.
In addition, since ϕ(y) is strictly concave for y ≥ 0, this unique ŷ > 0 which
satisfies ϕ ′(ŷ) = 0 is the unique optimal solution to the dual problem.

Now let x̂ = x̃(ŷ). Then x̂j = x̃j(ŷ) =
qj

1 + ŷ dj
, so that ϕ ′(ŷ) = 0 implies that

0 =

n∑
j=1

q2jdj

(1 + ŷ dj)2
− 1 =

n∑
j=1

dj x̂
2
j − 1 = x̂TD x̂− 1.

Then x̂, together with ŷ, satisfies the global optimality conditions (GOC):

(i) L(x̂, ŷ) ≤ L(x, ŷ) for all x ∈ IRn. (Since x̂ = x̃(ŷ).)

(ii) x̂TD x̂− 1 ≤ 0. (Since x̂TD x̂ = 1.)

(iii) ŷ ≥ 0. (Since ŷ > 0.)

(iv) ŷ ·(x̂TD x̂− 1) = 0. (Since x̂TD x̂ = 1.)

This implies that x̂ is a global optimal solution to P.
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