Solutions to exam in SF1811 Optimization, Jan 14, 2015
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1.(a) Let x = ( 213, T14, T23, T24 )", where the variable x;; stands for
the flow in the link from node i to node j, and let ¢ = ( ¢13, c14, C23, C24
Then the total cost for the flow is given by c¢'x.

The flow balance conditions in the nodes can be written Ax = b, where

)T

1 1 0 0 300
0o 0 1 1 600
A= ¢ -1 o b= 40
0 -1 0 —1 —500

Finally, the given directions of the links imply the constraints x > 0.
(It is recommended to remove the last row in A and the corresponding last
component in b to get a system without any redundant equation.)

1.(b) The four different spanning trees are shown in the following figure,
together wih the unique link flows which satisfy Ax = b.
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The link flows in the first spanning tree are calculated as follows:

The only way to satisfy the supply constraint in node 2 is to let x93 = 600.

Then the only way to satisfy the demand constraint in node 3 is to let 13 = —200.
Then the only way to satisfy the supply constraint in node 1 is to let x14 = 500.
Then the demand constraint in node 4 is also satisfied.



The link flows for the other spanning trees are calculated in a similar way.

We thus have the following four basic solutions:

x = (—200, 500, 600, O)T7 corresponding to spanning tree number 1,

x = (400, —100, 0, 600)T, corresponding to spanning tree number 2,

x = (300, 0, 100, 5OO)T, corresponding to spanning tree number 3, and
x = (0, 300, 400, 200)T, corresponding to spanning tree number 4.

All these four solutions satisfy Ax = b, but only the last two satisfy x > 0.

Thus, the basic solutions corresponding to spanning trees 3 and 4 are feasible basic solutions,
while the basic solutions corresponding to spanning trees 1 and 2 are infeasible basic solutions.

1.(c) For a given feasible basic solution, the simplex multipliers y; for the different nodes
are calculated from y, = 0 and y; — y; = ¢;; for all links (¢, j) in the corresponding spanning
tree.

For the feasible basic solution corresponding to spanning tree 3, we get

Ya = 07

Y2 = Y4 + C24 = C24,

Y3 = Y2 — C23 = C24 — C23,

Y1 = Y3+ C13 = Ca4 — C23 + C13.

The reduced cost for the only non-basic variable is then given by

T14 = C14 — Y1 T Y4 = C14 — C24 + C23 — C13.

Thus, if ¢13 — c14 — c23 + 24 < 0 then r14 > 0, and then x = (300, 0, 100, 500)T
is the unique optimal solution to the considered problem.

For the feasible basic solution corresponding to spanning tree 4, we get

Yg = 07

Y2 = Y4 + C24 = C24,

Y1 = Y4 + C14 = C14,

Y3 = Y2 — C23 = C24 — €23,

The reduced cost for the only non-basic variable is then given by

713 = €13 — Y1 T Y3 = €13 — C14 + C24 — C23.

Thus, if ¢13 — ¢14 — c23 + c24 > 0 then ri13 > 0, and then x = (0, 300, 400, 200)T
is the unique optimal solution to the considered problem.

If ¢13 — ¢14 — €23 + 94 = 0 then both the above feasible basic solutions are

optimal solutions, and then every convex combination of these two solutions, i.e.

x = £ (300, 0, 100, 500)" 4 (1—¢) (0, 300, 400, 200)T, where t € [0, 1],

is also an optimal solution since the constraints and the objective function are linear.
As an example, the following three solutions (corresponding to ¢t = 1/3,1/2 and 2/3)
are optimal solutions for the case that ci13 — c14 — c23 + co4 = O:

x = (100, 200, 300, 300)T, x = (150, 150, 250, 350)T and x = (200, 100, 200, 400)T.



2.(a) We have an LP problem on the standard form

minimera c¢'x

da Ax=Db,
x>0,

101 2 3 4 (8 T
vvhereA—[4 3 9 1 0], b—<4>and c'=(4,4,2,4,4).

The starting solution should have the basic variables 1 and x5, which means that
f=(1,5) and v = (2,3,4).
0 4

4 0

| wane 4= [1 28]

The corresponding basic matrix is Ag = [

The values of the current basic variables are given by xg = b, where the vector b is
calculated from the system Agb = b, i.e.

[0 4] (b1 [(8) . o= (b (1
40 <b2> = <4>,Wlththe solution b = <b2> = (2>

The vector y with simplex multipliers is obtained by the system Agy = cg, i.e.

[0 4] (wn) _ [4) . . () _[1
40 (y2> = (4>,W1th the solution y = <y2> = <1>

Then the reduced costs for the non-basic variables are obtained from

rl=cl —yTA, =(4,24) - (1,1 [?1) 3 :1}’] = (0, -2, 0).

Since 1, = r3 = —2 is smallest, and < 0, we let 3 become the new basic variable.

Then we should calculate the vector az from the system Agas = a3, i.e.

0 4 d13_2 . .__EL13_0.5
[4 O] (d23> = (2), with the solution az = ((‘123) = (0.5).

The largest permitted value of the new basic variable x3 is then given by

bi 1 2 1 b
tmax: : RN >08 = 3 _ Y = — =
o { 2 | i } i {0.5’ 0.5 } 05  ar
Minimizing index is ¢ = 1, which implies that x3, = x1 should no longer be a basic variable.
Its place as basic variable is taken by x3, so that = (3,5) and v = (2,1,4).

> o white A= |3 0 T

The corresponding basic matrix is Ag = [ 9 0 3 4 1

The values of the current basic variables are xg = b, where the vector b is
calculated from the system Agb = b, i.e.

2 47 (b _ (8 _. = (b (2
[2 O] <b2> = <4>,w1ththe solution b = <b2> = (1>



The vector y with simplex multipliers is obtained from the system Agy = cg, i.e.

2 92 Y1 . 2 . . o Y1 o 1
[4 O] <y2) = <4>, with the solution y = (y2> = <O>

Then the reduced costs for the non-basic variables are obtained from

=l - yTA, = (4, 4, 4)—<1,0)[§ ) ‘i’] = (3,4,1).

Since r, > 0 the current feasible basic solution is optimal.

T

Thus, x = (0,0,2,0,1)T is an optimal solution, with optimal value ¢'x = 8.

2.(b) If the primal problem is on the standard form

minimize c¢'x
subject to Ax =Db,

x >0,

the corresponding dual problem is: maximize b’y subject to ATy < c,

which becomes
maximize 8y; + 4y

subject to dy, < 4,
y1 + 3y2 < 4,

21 + 2y2 < 2,

3y1 + Y2 < 4

4y1 S 4.

This dual problem can be illustrated by drawing the constraints and some level lines
for the objective function in a coordinate system with y; and y9 on the axes.
(The figure is omitted here.)

It is well known that an optimal solution to this problem is given by the vector y of
“simplex multipliers” for the optimal basic solution in (a) above, i.e. y = (1, 0)T.
Alternatively, this can be seen from the figure (which is omitted here).

Check: It is easy to verify that y = (1, 0)T satisfies the dual constraints, with
dual objective value 8y; + 4y» = 8 = the optimal value of the primal problem.
Thus, y = (1, 0)T is an optimal solution to the dual problem.



2.(c)
If the second constraint in the primal problem is removed, the corresponding dual problem

becomes
maximize 8y

subject to Oy < 4,
y < 4
2y < 2
y < 4,
4y < 4.

The optimal solution to this problem is clearly y = 1, with the optimal value 8y = 8.

But then the optimal value of the reduced primal problem must also be = 8.

Since the optimal solution x = (0,0,2,0,1)" from (a) above is feasible also to the reduced
primal problem, and still has the objective value ¢'x = 8, it follows that x = (0,0,2,0,1)7
is an optimal solution also to the reduced primal problem!

(But not a basic solution. Two optimal basic solutions are now x = (0,0,4,0,0)T and

x = (0,0,0,0,2)T, with objective values = 8.)

2.(d)
If the first constraint in the primal problem is removed, the corresponding dual problem

becomes
maximize 4y

subject to 4y < 4,
3y < 4,
2y < 2
y < 4
0oy < 4.

The optimal solution to this problem is clearly y = 1, with the optimal value 4y = 4,
and then the optimal value of the reduced primal problem must also be = 4.

But the optimal solution x = (0,0,2,0,1)" from (a) above still has the objective value
c'x =8 > 4, so it can not be an optimal solution to the reduced primal problem!
(Two optimal basic solutions are now x = (0,0,2,0,0)T and x = (1,0,0,0,0)T,

with objective values = 4.)



3.(a)

1 -1 -1 0
The objective function is f(x) = x"Hx+c'x, with H= -1 2 -1|,c= |0
-1 -1 1 0

LDLT-factorization of H gives

1 0 0 10 0 1 -1 -1
H=LDL ' =|-1 1 0 01 0 0 1 -2
-1 -2 1 0 0 —4 0o 0 1

Since there is a negative diagonal element in D, the matrix H is not positive semidefinite,
which in turn implies that there is no optimal solution to the problemen of minimizing f(x)
without constraints. (With e.g. d = (1,1,1)T, f(td) = —t> - —oc0 when t — cc.)

3.(b)

We now have a QP problem with equality constraints, i.e. a problem of the form
minimize %XTHX +c'x subject to Ax = Db,

with H and c as above, A=[1 —1 1]and b=0.

The general solution to Ax = b, i.e. to x1 — 2 + x3 = 0, is given by

T 0 1 -1
zo | =0 +]|1 |- v+ 0 | -vg, for arbitrary values on vy and vs,
T3 0 0 1
0 1 -1
which means that X = | 0 | is a feasible solution, and Z = |1 0 | is a matrix
0 0 1

whos columns form a basis for the null space of A.
After the variable change x = X+ Zv we should solve the system (Z'HZ)v = —ZT(HX+c),

provided that ZTHZ is at least positive semidefinite.

1

We have that ZTHZ = [ 9

-2 C . . . . .
4 } , which is positive semidefinite (but not positive definite).

The system (ZTHZ)v = —Z"(HX + c) becomes L=2) (o _ (0 7
—2 4 () 0

with the solutions V(t) = (2; ), for arbitrary values on the real number ¢, which implies
t

that X(t) =X+ Zv(t) = | 2t |, for t € IR, are the (infinite number of) optimal solutions.
t

Note that f(%X(t)) =0 for all t € IR.



3.(c)

Again, we have a problem on the form: minimize %XTHX +c'x subject to Ax = Db,

with H and c as above, A = {1 ! 0],and b = <0>

01 1 0
T 1
The general solution to Ax =bisnow | zo | = | —1 |-v, for v € IR, which implies that
I3 1
0 1
X = | 0 | is a feasible solution, and z = | —1 | form a basis for the null space of A.
0 1
After the variable change x = X + zv, we should solve the system (z'Hz)v = —z' (HX + c),

provided that z"Hz is at least > 0.
We have that z"Hz = 6 > 0, so the system (z' Hz)v = —z' (HX + ¢) becomes 6v = 0,
with the unique solution 9 = 0, so that X =X 4+ z 9 = 0 is the unique optimal solution.



4.(a) The Lagrange function for the considered problem is given by
L(x,y) =1 (x—q)T(x—q) +y" (b — Ax), with x € [R" and y € IR™.

The Lagrange relaxed problem PRy is defined, for a given y > 0,
as the problem of minimizing L(x,y) with respect to x € IR".

Since L(x,y) = %XTIX —(ATy +q)"x+bTy + % q'q,
and the unit matrix I is positive definite, the unique optimal solution to PRy
is given by %(y) = ATy +q.

Then the dual objective function becomes
e(y) = L(X(y),y) = 3 (ATy + @) (ATy +a) +bTy + 39"q =
=3y AATy + (b Aq)T

y
1 1 -1 1 6
4.(b) ]F‘ronrlnowon,A—[1 11 _1],b—<3> and q=(1,2,2,1)T.
4 0 6 2 4

T _ — = — =
ThenAA—[0 4] and b — Aq <3> <4> (_1>,
so that the dual objective function becomes ¢(y) = —2y? — 2y2 + 4dy; — 2.
Alternative calculation of the dual function, without using the results from (a):

The considered problem is: minimize f(x) subject to gi(x) <0 and ga(x) <0,

where f(x) =3 (z1— 1)+ § (22 — 2)* + 1 (w3 — 2)2 + § (24 — 1)2,
g1(x) =6 —x1 —xo+ 23— 24 and ¢o(X) =3 — 1 — 22 — T3 + 24.

The Lagrange function then becomes:
L(x,y) = 5 (a1 = 1) + g (22 = 2)* + 5 (x3 = 2)* + 5 (w4 — 1)* +

y(6—z1—xo+a3—24)+y2(3—21 — 22 — 23+ 74) =

=1 (x1 -1 = (n+y2) 21+ 5 (z2 — 2)* — (y1+y2) z2 +

3 (23— 2)? — (yo—y1) z3 + 5 (22 — 1)% — (y1—y2) T4 + 6y1 + 3y2.
Minimizing this with respect to x gives:
T1(y) = 1+yity2, 22(y) =2+yi+ye, T3(y) =2+y2—v1, Ta(y) = 1+y1—y2,
so that X(y) = (1+y1+y2, 2+y1+y2, 24y2—y1, 1+ —12)7,
and then the dual function becomes p(y) = L(xX(y),y) =

@)L — 12— (1) Fy)1 + 3 (E(y)2 — 2)% — (n1+y2) E(y)2 +
$(E(y)s—2)%— (r2—y1) E(y)3 + 3 (E(y)a — 1) = (y1—y2) E(y)a + 6y1 + 3y2 =
3 (1 42)? = (1+y2) — (1+92)° + 5 W1+y2)? — 21 +12) — (N1 +42) +

3 (2=y2)? = 2(y2—y1) — (Y2—v1)* + 5 (W1—42)* — (Yy1—42) — (y1—12)* +

6y1 +3y2=...... = —2y? — 2y2 + 4y; — yo, as above.



The dual problem then becomes:

D: maximize ¢(y) = —2yF — 2y3 + 4y1 — y2 subject to y; > 0 and ya > 0,
which decomposes into the two separate problems

Di: maximize —ny + 4y, subject to y; > 0, and

Ds: maximize —2y3 — y2 subject to ya > 0.

Clearly, the optimal solution to the first problem is ¢; = 1,
while the optimal solution to the second problem is g = 0.

Thus, § = (1,0)7 is the unique optimal solution to D, with ¢(§) = 2.

4.(c) Let X =%(§) = (1+G1+J2, 2401472, 2+G2—1, 1+51—02)" = (2,3,1,2)7.
Then A% —b = (6,4)"T — (6,3)T > 0, so % is a feasible solution to the primal problem.
Further, the primal objective value is f(X) = % (x—q)T(%x—q) = % (1,1, -1, 1)T|2 = 2.

Since X is feasible to P and f(%X) = ¢(¥), we conclude that X is an optimal solution to P.

z1—1 -1 -1
4'(d) Since Vf(X) = ) v.gl (X) = ) VQZ (X) - ’
T3 — 2 1 -1
x4 —1 -1 1
the KKT conditions become:
1 — 1 -1 -1 0
' To — 2 -1 -1 10
(KKT-1): oo [t | e | = o
x4 —1 -1 1 0

(KKT-2): 6 —21 —a2+ax3—24 <0 and 3 —x; —x9 —x3+ x4 < 0.
(KKT-3): y;1 >0 and y2 > 0.
(KKT-4): 11 (6 —x1 —x2+a3—2x4) =0 and y2 (3 —x1 —x2 — 23+ x4) = 0.

With x =% =(2,3,1,2)T and y =3 = (1,0)T, we get that

21 -1 -1 0
32 -1 -1 0

-1): . . = !

(KKT-1): | {5+ 1| +0]_, o |- OK!
2-1 -1 1 0

(KKT-2): 6—2-3+1-2=0<0 and 3—2—-3—-1+2=-1<0. OK!
(KKT-3): 1>0 and 0> 0. OK!
(KKT-4): 1-0=0 and 0-(—1)=0. OK!

Thus, X and ¥ satisfy the KKT conditions, and since the considered problem is
a convex problem, we can conclude (again) that X is a global optimal solution.



5.(a)
Change notation and let the variable vector be called x, i.e.
= (21, 29,23)" = (z,y,7)7.

m
Then f(x) = Y _hi(x)* = $h(x)Th(x), where
=1

hi(x) = \/(:cl —a;)?+ (2 — b;)? — x3 and h(x) = (h1(x),..., hm(x))T.
The gradient of h; is given by

Vhi(x) = - , 2 1),
\/(m —a;)? + (w9 — b;)? \/(xl —a;)? + (w9 — b;)?
and Vh(x) is the m x 3 matrix with these gradients as rows.

With the given data, we get that f(x) = 5(h1(x)% + ha(x)? + h3(x)? + ha(x)?), where

hi(x) = /(21 —5) + 23 — 3,
ha(x) = + (22 — 6)? — 3,
h3(x) = /(21 +4) + 23 — x3,
ha(x) = /22 F (@2 + B2 — a3,

The starting point should be x() = (0, 0, 5)T. and then

0 —1 0 —1
1 0 -1 -1
Dy = 1y — (1Y) —
h(x'") R f(x")=1and Vh(x'V) 1 0 -1
0 0 1 -1
In Gauss-Newtons method, we should solve Vh(xM)TVh(x1)d = —Vh(x(M)Th(xM),
200 di 1 0.5
which becomes | 0 2 0 do | = | 1], with the solution dV) = | 0.5
0 0 4 ds 0 0

We try t; = 1, so that x®) = x® +¢;,dM =x® +d® = (0.5, 0.5, 5)T. Then

h(x?) = (V452 + 0.52 — 5, v/5.52 + 0.52 — 5, V4.52 + 0.52 — 5, v/5.52 + 0.52 — 5)T =
3(v/82 —10, v122 — 10, /82 — 10, V122 —10)T ~ (-1, 1,—1, 1)7, so that

Jx®) = th(x®)Th(x®) ~ H(1+1+1+1) = <1 = f(x0),

Thus, the choice t; = 1 is accepted, and x@ = (0.5, 0.5, 5)T is the next iteration point.

10



5.(b) Let (x1,z2) = the location of the (common) center of C1 and Cy,
z1 = the square of the radius of the small circle C', and
23 = the square of the radius of the large circle Cs.

Then the problem can be formulated as follows in the variables are x1, x2, 21 and zo:
minimize wzo — T2

subject to (z1 —a;)? + (va — b;)? — 21

v

0, i=1,...,m,

(.rl—ai)Q—l-(CEQ—bz‘)Z—ZQ <0, z=1,...,m.

5.(c) For each given point (z1, xg)T € IR?, the corresponding optimal values of z; and z
in the above problem are clearly

Z1(x1, ) = miin{(azl —a;)? + (zo — b;)?} and
21(.%‘1,.%’2) = mlaX{(.%'l — CLi)2 + (.%'2 — bz)Z}
Thus, the above problem can be written
minimize 7 max{(z; — a;)* + (2 — b;)*} — T min{(z; — a;)* + (x2 — b;)?},
7 7
which is a problem in just the two variables 21 and xs.
(However, the objective function is not differentiable, so this is not a correct answer to 5.(b).)
But min{(z; — a;)* + (2 — b;)*} = min{z? — 2a;21 + a? + 23 — 2b;x5 + b2} =
? 2
22 + 22 + min{—2a;x1 + a? — 2b;xo + b7}, and
(2
max{(z1 — a;)? + (2 — b;)?} = max{z} — 2a;x1 + aF + 3 — 2b;xo + b2} =
(2 (2
22 + 23 + max{—2a;x; + a? — 2b;zo + b7},
7
Therefore, max{(z; — a;)*> 4 (2 — b;)*} — min{(z; — a;)* + (2 — b;)*} =
7 (2
max{—2aix1 + a? — 2b;xo + bi2} — mjn{—Qaixl + a? — 2b;xo + bZ?},
(2 (2
so the above problem can be written

minimize 7 max{—2a;71 +a; — 2b;x2 + b7} — mmin{—2a;71 + a7 — 2b;x2 + b7},
1 1

which may equivalently be written
minimize wTwo — TW}
subject to wy + 2a;x1 + 2bjxe < a? + bf, 1=1,...,m,
wy + 2a;x1 + 2b;xe > a?—l—bf, 1=1,...,m,

which is an LP problem in the variables x1, x5, w; and ws.
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