
Solutions to exam in SF1811 Optimization, June 3, 2014

1.(a)

The considered problem may be modelled as a minimum-cost network flow problem with
six nodes F1, F2, K1, K2, K3, K4, here called 1,2,3,4,5,6,
and eight arcs (F1,K1), (F1,K2), (F1,K3), (F1,K4), (F2,K1), (F2,K2), (F2,K3), (F2,K4),
here called (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6).

The suggested solution corresponds to a spanning tree with the arcs (1,3), (1,4), (2,4), (2,5)
och (2,6), i.e. a basic solution. It is a feasible basic solution since all the balance equations
(in all nodes) are satisfied and all variables are non-negative.

The simplex variables yi are obtained from the equations yi − yj = cij for basic variables,
and y6 = 0. This gives y = (5, 3,−2,−1,−2, 0).
Then the reduced costs for the non-basic variables are obtained from rij = cij − yi + yj .

This gives: r15 = 8− 5 + (−2) = 1, r16 = 6− 5 + 0 = 1, r23 = 6− 3 + (−2) = 1.

Since all rij ≥ 0, the suggested solution is optimal.
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1.(b)

The vector x̂ is a global optimal solution to the problem of minimizing
the function f(x) = 1

2 xTHx if and only if H is positive semi-definite and Hx̂ = 0.

To check if H is positive semi-definite, we try to LDLT-factorize H.

H =

 1 −1 0
−1 2 −1

0 −1 k

 .
Add +1 times row 1 to row 2. Then add +1 times column 1 to column 2. This gives

E1 =

 1 0 0

1 1 0

0 0 1

 and E1HET
1 =

 1 0 0

0 1 −1

0 −1 k

 .
Add +1 times row 2 to row 3. Then add +1 times column 2 to column 3. This gives

E2 =

 1 0 0

0 1 0

0 1 1

 and E2E1HET
1 ET

2 =

 1 0 0

0 1 0

0 0 k−1

 .
The LDLT-factorization is ready, and one gets

H = LDLT =

 1 0 0

−1 1 0

0 −1 1


 1 0 0

0 1 0

0 0 k−1


 1 −1 0

0 1 −1

0 0 1

 .
From this, it follows that H is positive semi-definite if and only if k ≥ 1.
The system Hx = 0 always has at least the solution x = 0 (the trivial solution),
and it has an infinite number of solutions if and only if H is singular.
From above, H is both positive semi-definite and singular if and only if k = 1. Then

H =

 1 −1 0
−1 2 −1

0 −1 1

 .
Some calculations give that the set of solutions to Hx = 0 is x = (t, t, t)T for t ∈ IR,

and this is then the set of global optimal solutions to the problem of minimizing 1
2 xTHx.
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2.(a) (Sorry for the Swedish text)

Inför slackvariabler x4, x5 och x6 s̊a att problemet blir p̊a standardformen

minimera cTx

d̊a Ax = b,

x ≥ 0,

där A =

 1 1 0 −1 0 0
1 0 1 0 −1 0
0 1 1 0 0 −1

, b =

 2
2
2

 och c = (1, 1, 4, 0, 0, 0)T.

I startlösningen ska enligt uppgiftslydelsen x1, x2 och x3 vara basvariabler,
dvs β = (1, 2, 3) och δ = (4, 5, 6).

Motsvarande basmatris ges av Aβ =

 1 1 0
1 0 1
0 1 1

.

Basvariablernas värden i baslösningen ges av xβ = b̄, där vektorn b̄ beräknas ur
ekvationssystemet Aβb̄ = b,

dvs

 1 1 0
1 0 1
0 1 1

 b̄1
b̄2
b̄3

 =

 2
2
2

, med lösningen b̄ =

 b̄1
b̄2
b̄3

 =

 1
1
1

.

Här använde vi den givna räknehjälpen.

Vektorn y med simplexmultiplikatorerna värden erh̊alls ur systemet AT
βy = cβ,

dvs

 1 1 0
1 0 1
0 1 1

 y1
y2
y3

 =

 1
1
4

, med lösningen y =

 y1
y2
y3

 =

 −1
2
2

.

Här använde vi igen den givna räknehjälpen.

Reducerade kostnaderna för icke-basvariablerna ges av rTδ = cδ − yTAδ =

= (0, 0, 0)− (−1, 2, 2)

 −1 0 0
0 −1 0
0 0 −1

 = (−1, 2, 2).

Eftersom rδ1 = r4 = −1 är minst, och < 0, ska vi l̊ata x4 bli ny basvariabel.

D̊a behöver vi beräkna vektorn ā4 ur systemet Aβā4 = a4,

dvs

 1 1 0
1 0 1
0 1 1

 ā14
ā24
ā34

 =

 −1
0
0

, med lösningen ā4 =

 ā14
ā24
ā34

 =

 −0.5
−0.5

0.5

.

Här använde vi igen den givna räknehjälpen.

Det största värde som den nya basvariabeln x4 kan ökas till ges av

tmax= min
i

{
b̄i
āi4
| āi4 > 0

}
=

b̄3
ā34

=
2

0.5
.

Minimerande index är i = 3, varför xβ3 = x3 inte längre f̊ar vara kvar som basvariabel.
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Nu är allts̊a β = (1, 2, 4) och δ = (3, 5, 6).

Motsvarande basmatris ges av Aβ =

 1 1 −1
1 0 0
0 1 0

.

Basvariablernas värden i baslösningen ges av xβ = b̄, där vektorn b̄ beräknas ur
ekvationssystemet Aβb̄ = b,

dvs

 1 1 −1
1 0 0
0 1 0

 b̄1
b̄2
b̄3

 =

 2
2
2

, med lösningen b̄ =

 b̄1
b̄2
b̄3

 =

 2
2
2

.

Vektorn y med simplexmultiplikatorernas värden erh̊alls ur systemet AT
βy = cβ,

dvs

 1 1 0
1 0 1
−1 0 0

 y1
y2
y3

 =

 1
1
0

, med lösningen y =

 y1
y2
y3

 =

 0
1
1

.

Reducerade kostnaderna för icke-basvariablerna ges av rTδ = cδ − yTAδ =

= (4, 0, 0)− (0, 1, 1)

 0 0 0
1 −1 0
1 0 −1

 = (2, 1, 1).

Eftersom rδ ≥ 0 s̊a är den aktuella baslösningen optimal.
Allts̊a är punkten x1 = 2, x2 = 2, x3 = 0, x4 = 2, x5 = 0, x6 = 0 optimal.
Optimalvärdet är cTx = 4.

2.(b)
If the primal problem is on the standard form

minimize cTx

subject to Ax = b,

x ≥ 0,

then the dual problem is on the form

maximize bTy subject to ATy ≤ c,

which for the current example becomes

maximize 2y1 + 2y2 + 2y3

subject to y1 + y2 ≤ 1,
y1 + y3 ≤ 1,
y2 + y3 ≤ 4,
−y1 ≤ 0,
−y2 ≤ 0,
−y3 ≤ 0.

It is well known that an optimal solution to this dual problem is given by the vector y of
simplex multipliers in the optimal basic solution from 2.(a), i.e. y = (0, 1, 1)T.
We note that this is a feasible solution to the dual problem with bTy = 4 = the optimal
value of the primal problem.
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3.

The gradient of f is ∇f(x) =

(
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

)
, where

∂f

∂xj
= 4x3j + 3x2j + 2xj + 1.

The Hessian of f is F(x) =



∂ 2f

∂x21
0 0

0
∂ 2f

∂x22
0

0 0
∂ 2f

∂x23

 , where
∂ 2f

∂x2j
= 12x2j + 6xj + 2.

(b) f is convex on IR3 if and only if F(x) is positive semi-definite for all x ∈ IR3.
A diagonal matrix is positive semi-definite if and only if all diagonal elements are ≥ 0.

But
∂ 2f

∂x2j
= 12(x2j + 1

2xj + 1
6) = 12((xj + 1

4)2 − 1
16 + 1

6) > 0,

so F(x) is positive definite for all x ∈ IR3. Thus, f is (strictly) convex on IR3.

(a) The given starting point is x(1) =

 1
0
−1

.

If F(x(1)) is positive definite, which it is according to above, then the first Newton direction
d(1) is obtained as the solution to the system F(x(1))d = −∇f(x(1))T, i.e. 20 0 0

0 2 0
0 0 8

d = −

 10
1
−2

, with the unique solution d(1) =

−1/2
−1/2

1/4

.

We try first with t1 = 1, so that x(2) = x(1) + t1d
(1) = x(1) + d(1) =

 1/2
−1/2
−3/4

.

Then f(x(2)) = 85/256 < 4 = f(x(1)), so t1 = 1 is accepted.

Now we have made a complete iteration with Newtons method and obtained the next iteration

point x(2) =

 1/2
−1/2
−3/4

 with f(x(2)) = 85/256.

(c) Here comes a possible lower bound on f(x).

First, we note that x2j + xj = (xj + 1
2)2 − 1

4 ≥ −
1
4 .

From this, it follows that x4j + x3j = x2j (x
2
j + xj) ≥ −1

4 x
2
j , from which we get that

x4j + x3j + x2j + xj ≥ −1
4 x

2
j + x2j + xj = 3

4(x2j + 4
3xj) = 3

4((xj + 2
3)2 − 4

9) ≥= 3
4(−4

9) = −1
3 .

This holds for each j, so we obtain that

f(x) =

3∑
j=1

(x4j + x3j + x2j + xj) ≥ −
1

3
− 1

3
− 1

3
= −1.

Thus, L = −1 is a lower bound on f(x), but possibly not the highest one.
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4.(a)

The perimeter problem can be written as the following minimization problem:

minimize f(x) = −4x1 − 4x2

subject to h(x) =
x21
a21

+
x22
a22
− 1 = 0.

We assume that x1 and x2 are > 0, but don’t formulate that explicitly in the optimality
conditions, it will naturally be satisfied anyhow by the optimal solution.
The Lagrange conditions for the problem become:

−4 +
2λx1
a21

= 0,

−4 +
2λx2
a22

= 0,

x21
a2

+
x22
a22
− 1 = 0.

Since every feasible point is also a regular point (the gradient of the only constraint function
is never the zero vector) the Lagrange conditions are necessary conditons for an optimal
solution. Some calculation give that the only solution (with x1 > 0 and x2 > 0) is

x1 =
a21√
a21 + a22

, x2 =
a22√
a21 + a22

, u = 2
√
a21 + a22, with perimeter 4x1 + 4x2 = 4

√
a21 + a22.

4.(b)

The area problem can be written as the following minimization problem:

minimize f(x) = −4x1x2

subject to h(x) =
x21
a21

+
x22
a22
− 1 = 0.

Again, we assume that x1 and x2 are > 0, but don’t formulate that explicitly in the optimality
conditions. The Lagrange conditions for the problem become:

−4x2 +
2λx1
a21

= 0,

−4x1 +
2λx2
a22

= 0,

x21
a2

+
x22
a22
− 1 = 0.

Since every feasible point is also a regular point (the gradient of the only constraint function
is never the zero vector) the Lagrange conditions are necessary conditons for an optimal
solution. Some calculation give that the only solution (with x1 > 0 and x2 > 0) is

x1 =
a1√

2
, x2 =

a2√
2

, u = 2a1a2, with area 4x1x2 = 2a1a2.
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5.(a)

The Lagrange function for the problem is given by

L(x, y) = f(x) + y g(x) =

n∑
j=1

cj
xj

+ y (

n∑
j=1

xj − V ) = −yV +

n∑
j=1

(
cj
xj

+ yxj).

The Lagrange relaxed problem PRy is defined, for a given y ≥ 0,
as the problem of minimizing L(x, y) with respect to x ∈ IRn.
But this problem separates into one problem for each variable xj , namely

minimize `j(xj) =
cj
xj

+ yxj subject to xj ∈ [ 0.1, 1 ]. (0.1)

We have that ` ′j(xj) = − cj
x2j

+ y and ` ′′j (xj) =
2cj
x3j

> 0, which implies

that `j(xj) is strictly convex on the interval [ 0.1, 1 ].

If y = 0 then `j(xj) is strictly decreasing, and then xj = 1 is the unique optimal
solution to the subproblem (0.1).

If y > 0 the unique solution to ` ′j(xj) = 0 is xj =

√
cj
y

which belongs

to the interval [ 0.1, 1 ] if and only if cj ≤ y ≤ 100cj .

From this, we conclude that the unique optimal solution x̃j(y) to the
subproblem (0.1) is as follows:

x̃j(y) =


1 if 0 ≤ y ≤ cj ,√
cj
y

if cj ≤ y ≤ 100cj ,

0.1 if y ≥ 100cj ,

The dual objective function is then given by

ϕ(y) = L(x̃(y), y) = −yV +

n∑
j=1

(
cj

x̃j(y)
+ y x̃j(y)).

The dual problem consists of maximizing ϕ(y) with respect to y ≥ 0.
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5.(b)

Assume now that n = 2, V = 1.5, c1 = 1 and c2 = 9.

Then we get the following different expressions for ϕ(y), depending on which of five intervals
y belongs to:

1.) 0 ≤ y ≤ 1 ⇒ x̃1(y) = 1, x̃2(y) = 1, ϕ(y) = 10 + 0.5y, ϕ ′(y) = 0.5.

2.) 1 ≤ y ≤ 9 ⇒ x̃1(y) =
1
√
y

, x̃2(y) = 1, ϕ(y) = 9 + 2
√
y − 0.5y. ϕ ′(y) =

1
√
y
− 0.5.

3.) 9 ≤ y ≤ 100 ⇒ x̃1(y) =
1
√
y

, x̃2(y) =
3
√
y

, ϕ(y) = 8
√
y − 1.5y. ϕ ′(y) =

4
√
y
− 1.5.

4.) 100 ≤ y ≤ 900 ⇒ x̃1(y) = 0.1, x̃2(y) =
3
√
y

, ϕ(y) = 10 + 6
√
y− 1.4y. ϕ ′(y) =

3
√
y
− 1.4.

5.) 900 ≤ y ⇒ x̃1(y) = 0.1, x̃2(y) = 0.1, ϕ(y) = 100− 1.3y. ϕ ′(y) = −1.3.

We note that ϕ and ϕ ′ are continuous, and ϕ ′ is decreasing. In particular,

ϕ ′(1) = 0.5 > 0 and ϕ ′(9) = −1/6 < 0. from which it follows that the optimal solution to

the dual problem is to be found in the interval 1 ≤ y ≤ 9, where ϕ ′(y) =
1
√
y
− 0.5.

The unique solution ŷ to ϕ ′(y) = 0 is then given by ŷ = 4, with ϕ(ŷ) = 11.

The corresponding primal solution is (x̂1, x̂2) = (x̃1(ŷ), x̃2(ŷ)) = (0.5, 1),
which is a feasible solution to the primal problem with f(x̂1, x̂2) = 2 + 9 = 11 = ϕ(ŷ).

Thus, (x̂1, x̂2) = (0.5, 1) is a global optimal solution to the primal problem.
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