
Solutions to exam in SF1811 Optimization, March 14, 2014
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1. Here, a mainly “algebraic” solution is presented. However, it is permitted, easier, and
highly recommended, that all the calculations are made in figures of the network!

Let the two supply nodes be called “node 1” and “node 2”, the two transhipment nodes
“node 3” and “node 4”, and the two demand nodes “node 5” and “node 6”, see Figure 1.
Then the set of arcs is given by B = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 5), (3, 6), (4, 5), (4, 6)},
and the minimum cost network flow problem can be written as the LP problem

minimize cTv subject to Av = b, v ≥ 0, where

v = (v13, v14, v23, v24, v35, v36, v45, v46)
T = (x11, x12, x21, x22, z11, z12, z21, z22)

T,
c = (c13, c14, c23, c24, c35, c36, c45, c46)

T = (p11, p12, p21, p22, q11, q12, q21, q22)
T,

A =


1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
−1 0 −1 0 1 1 0 0

0 −1 0 −1 0 0 1 1
0 0 0 0 −1 0 −1 0

 and b =


30
20
0
0

−40

.

The equation corresponding to node 6 has been removed since it is a linear combination of
the other equations. (As always for balanced network flow problems.)

1.(a) The suggested solution corresponds to the spanning tree in Figure 2, consisting of the
basic arcs Bβ = {(1, 4), (2, 3), (3, 5), (3, 6), (4, 5)}, with the corresponding basis matrix

Aβ =


1 0 0 0 0
0 1 0 0 0
0 −1 1 1 0
−1 0 0 0 1

0 0 −1 0 −1

, which has linearly independent columns.

The values of the corresponding basic variables, i.e. the flows in the basic arcs,
can be determined as follows, which is equivalent to solving Aβvβ = b :
v14 = x12 = 30, due to the flow balance equation in node 1,
v23 = x21 = 20, due to the flow balance equation in node 2,
v45 = z21 = 30, due to the flow balance equation in node 4,
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v35 = z11 = 10, due to the flow balance equation in node 5,
v36 = z12 = 10, due to the flow balance equation in node 3,
which is the suggested solution! Since all vij ≥ 0, it is a feasible basic solution.
The objective value is

∑
(i,j) cijvij = 430.

1.(b) To check if the current solution is optimal, the vector y = (y1, . . . , y6)
T

of simplex multipliers is calculated from the equations AT
βy = cβ, which here

become: yi − yj = cij for all basic arcs, and y6 = 0.
The basic arc (3, 6) implies that y3 − y6 = c36, i.e. y3 = y6 + c36 = 0 + 5 = 5.
The basic arc (3, 5) implies that y3 − y5 = c35, i.e. y5 = y3 − c35 = 5− 5 = 0.
The basic arc (4, 5) implies that y4 − y5 = c45, i.e. y4 = y5 + c45 = 0 + 7 = 7.
The basic arc (2, 3) implies that y2 − y3 = c23, i.e. y2 = y3 + c23 = 5 + 3 = 8.
The basic arc (1, 4) implies that y1 − y4 = c14, i.e. y1 = y4 + c14 = 7 + 2 = 9.

Next step is to calculate the reduced costs from rν = cν −AT
νy, which here

becomes: rij = cij − yi + yj for all nonbasic arcs.
r13 = c13 − y1 + y3 = 5− 9 + 5 = 1,
r24 = c24 − y2 + y4 = 2− 8 + 7 = 1
r46 = c46 − y4 + y6 = 6− 7 + 0 = −1.

Since r46 < 0, the non-basic variable v46 should become a new basic variable.
Let v46 = t and let t increase from zero.
Then the basic variables, i.e. the flows in the basic arc, are affected as follows:
v14 = x12 = 30, due to the flow balance equation in node 1.
v23 = x21 = 20, due to the flow balance equation in node 2.
v45 = z21 = 30− t, due to the flow balance equation in node 4.
v35 = z11 = 10 + t, due to the flow balance equation in node 5.
v36 = z12 = 10− t, due to the flow balance equation in node 3.

We see that t can be increased to t = 10.
Then v36 has decreased to zero and should be replaced by v46 as basic variable.
The new feasible basic solution, corresponding to the spanning tree in Figure 3, is
v14= x12= 30, v23= x21= 20, v45= z21= 20, v35= z11= 20, v46= z22= 10,
v13= x11= 0, v24= x22= 0, v36= z12= 0, with objective value

∑
(i,j) cijvij = 420.

The corresponding vector y = (y1, . . . , y6)
T is calculated from the equations

yi − yj = cij for all basic arcs, and y6 = 0.
The basic arc (4, 6) implies that y4 − y6 = c46, i.e. y4 = y6 + c46 = 0 + 6 = 6.
The basic arc (4, 5) implies that y4 − y5 = c45, i.e. y5 = y4 − c45 = 6− 7 = −1.
The basic arc (3, 5) implies that y3 − y5 = c35, i.e. y3 = y5 + c35 = −1 + 5 = 4.
The basic arc (2, 3) implies that y2 − y3 = c23, i.e. y2 = y3 + c23 = 4 + 5 = 7.
The basic arc (1, 4) implies that y1 − y4 = c14, i.e. y1 = y4 + c14 = 6 + 2 = 8.

The corresponding reduced costs are calculated from the formula
rij = cij − yi + yj for all non-basic arcs.
r13 = c13 − y1 + y3 = 5− 8 + 4 = 1,
r24 = c24 − y2 + y4 = 2− 7 + 6 = 1
r36 = c36 − y3 + y6 = 5− 4 + 0 = 1.

Since all rij ≥ 0, the current solution is optimal!
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2.(a). The considered LP problem is on the form: minimize cTz subject to Gz = b, z ≥ 0,

where z = (x1, x2, x3, x4, v1, v2, v3)
T, c = ( 0, 0, 0, 0, 1, 1, 1)T,

G = [A I ] =

 1 0 −1 1 1 0 0

−1 1 0 1 0 1 0

0 1 −1 1 0 0 1

 and b =

 2

3

6

.

The suggested solution corresponds to a basis with β = (1, 2, 7). The values of the
basic variables in this basic solution are obtained from the system Gβzβ = b, i.e. 1 0 0

−1 1 0

0 1 1


 x1

x2

v3

 =

 2

3

6

, with the unique solution

 x1

x2

v3

 =

 2

5

1

 , OK!

The corresponding simplex multipliers are obtained from the system GT
βy = cβ, i.e.1 −1 0

0 1 1

0 0 1


 y1

y2

y3

 =

 0

0

1

, with the unique solution

 y1

y2

y3

 =

−1

−1

1

.

The reduced costs for the non-basic variables are obtained from

rTδ = cδ − yTGδ = ( 0, 0, 1, 1 )− (−1,−1, 1 )

−1 1 1 0

0 1 0 1

−1 1 0 0

 = ( 0, 1, 2, 2 ).

Since rδ ≥ 0, the suggested feasible basic solution is optimal.
The optimal value of the problem is cTz = 1.

2.(b). The answer is NO, because of the following arguments:

Assume that there were scalars xj ≥ 0 such that b = a1x1 + a2x2 + a3x3 + a4x4,
so that the vector x = (x1, x2, x3, x4)

T would satisfy Ax = b and x ≥ 0.
Then this vector x together with the vector v = 0 would be a feasible solution to the above
LP problem with objective value = v1 + v2 + v3 = 0 + 0 + 0 = 0. But this is a contradiction,
since we already know that the optimal value of the LP problem is = 1.

2.(c). The dual problem corresponding to the above “primal” LP problem can be written

maximize bTy

subject to ATy ≤ 0,

I y ≤ e.

The Duality Theorem for LP implies that since the primal LP problem has an optimal solution
with objective value = 1 (= the optimal value), the dual problem will also have an optimal
solution with (dual) objective value =1.
Any such optimal solution y to the dual problem thus satisfies bTy = 1, ATy ≤ 0 and
I y ≤ e, and thus, in particular, bTy > 0 and aT

j y ≤ 0 for all j.
But an optimal solution to the dual problem is given by the vector of simplex multipliers
corresponding to an optimal basis for the primal problem, in our case y = (−1,−1, 1 )T.
This vector satisfies bTy = 1 > 0, aT

1 y = 0, aT
2 y = 0, aT

3 y = 0 and aT
4 y = −1 ≤ 0.
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3.(a) Since 1
2‖x− q‖2 = 1

2(x− q)T(x− q) = 1
2 xTI x− qTx + 1

2 qTq, the considered

problem can be written: minimize 1
2 xTHx + cTx subject to Ax = b, where

H = I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, c = −q =


−q1
−q2
−q3
−q4

, A =

[
1 1 −1 −1
1 −1 1 −1

]
, b =

(
0
0

)
.

The matrix H = I is positive definite, so we have a convex QP problem for which
the following Lagrange optimality conditions are both necessary and sufficient
conditions for a global optimum:

Hx−ATu = −c
Ax = b

The equations Hx−ATu = −c are in our case equivalent to x = ATu + q.

If this is combined with the remaining equations Ax = 0, we get that AATu = −Aq,

which in our case becomes

[
4 0
0 4

](
u1
u2

)
=

(
−q1− q2+ q3+ q4
−q1+ q2− q3+ q4

)
,

with the unique solution û =

(
û1
û2

)
=

1

4

(
−q1− q2+ q3+ q4
−q1+ q2− q3+ q4

)
.

The corresponding unique x̂, which together with û satisfies the Lagrange conditions,

is then given by x̂ = ATû + q =


1 1
1 −1
−1 1
−1 −1

( û1û2
)

+


q1
q2
q3
q4

 =
1

2


q1+ q4
q2+ q3
q3+ q2
q4+ q1

.

3.(b) With y = ATv, the objective function becomes

1
2‖A

Tv − q‖2 = 1
2(ATv − q)T(ATv − q) = 1

2vTAATv − qTATv + 1
2qTq.

Since AAT =

[
4 0
0 4

]
is positive definite, the necessary and sufficient optimality

conditions for the considered minimization problem are given by the equations AATv = Aq,

which in our case becomes

[
4 0
0 4

](
v1
v2

)
=

(
q1+ q2− q3− q4
q1− q2+ q3− q4

)
,

with the unique solution v̂ =

(
v̂1
v̂2

)
=

1

4

(
q1+ q2− q3− q4
q1− q2+ q3− q4

)
.

The corresponding unique ŷ is then given by ŷ = ATv̂ =


1 1
1 −1
−1 1
−1 −1

( v̂1v̂2
)

=
1

2


q1− q4
q2− q3
q3− q2
q4− q1

.

We note that ŷTx̂ = 0 and x̂ + ŷ = q, as it should be.
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4.(a)
The objective function is f(x) = x21x

2
2 + x21 + 3x22 − 2x1x2 − 4x1 − 4x2.

The gradient of f becomes ∇f(x) = (2x1x
2
2 + 2x1 − 2x2 − 4, 2x21x2 + 6x2 − 2x1 − 4).

The Hessian of f becomes F(x) =

[
2x22 + 2 4x1x2 − 2

4x1x2 − 2 2x21 + 6

]
.

The starting point is given by x(1) =

(
0
0

)
, with f(x(1)) = 0.

F(x(1)) =

[
2 −2
−2 6

]
is positive definite since 2 > 0, 6 > 0 and 2 · 6− (−2)·(−2) > 0.

Then the first Newton search direction d(1) is obtained by solving the system

F(x(1))d = −∇f(x(1))T, i.e.

[
2 −2
−2 6

]
d =

(
4
4

)
, with the solution d(1) =

(
4
2

)
.

First try t1 = 1, so that x(2) = x(1) + t1d
(1) = x(1) + d(1) =

(
4
2

)
.

Then f(x(2)) = 52 > f(x(1)), so t1 = 1 is not accepted.

Then try t1 = 0.5, so that x(2) = x(1) + t1d
(1) = x(1) + 0.5d(1) =

(
2
1

)
.

Then f(x(2)) = −5 < f(x(1)), so t1 = 0.5 is accepted, and the first iteration is completed.

4.(b)

f is convex on IR2 if and only if the Hessian F(x) =

[
2x22 + 2 4x1x2 − 2

4x1x2 − 2 2x21 + 6

]
is positive semidefinite for all x ∈ IR2.

Both the diagonal elements in F(x) are clearly always > 0, so F(x) is is positive semidefinit
if and only if (2x22 + 2)(2x21 + 6)− (4x1x2 − 2)(4x1x2 − 2) ≥ 0.

But (2x22 + 2)(2x21 + 6)− (4x1x2 − 2)(4x1x2 − 2) = 8 + 4x21 + 12x22 + 16x1x2 − 12x21x
2
2,

which becomes negative if both x1 and x2 are sufficiently large numbers:
If x1= x2= 10 then 8 + 4x21 + 12x22 + 16x1x2− 12x21x

2
2 = 8 + 400 + 1200 + 1600− 120000 < 0.

The conclusion is that f is not convex on IR2.

4.(c)
Now f(x) should be minimized subject to the constraint x1 − x2 = 0.

We will use a nullspace approach: The complete set of feasible solutions to the constraint

is given by x(t) =

(
t
t

)
, with t ∈ IR. If this is plugged into the objective function, it becomes:

h(t) = f(x(t)) = t4 + 2t2 − 8t, with h′(t) = 4t3 + 4t− 8 and h′′(t) = 12t2 + 4 > 0 for all t.

Thus h(t) is strictly convex, so if we find a t0 ∈ IR such that h′(t0) = 0 then t0 must be the
unique optimal solution to the problem of minimizing h(t).

But we immediatly see that t0 = 1 is such a solution, which means that x̂ = (1, 1)T is
a globally optimal solution to the problem of minimizing f(x) subject to x1 − x2 = 0.
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5. The feasible region of P is a convex set, since all the constraints are linear.

Further, the objective function f(x) =

2∑
i=1

3∑
j=1

(xij ln(xij)−xij) may be written

f(x) =
2∑
i=1

3∑
j=1

fij(xij), where fij(xij) = xij ln(xij)− xij .

Some calculus give that f ′ij(xij) = ln(xij) and f ′′ij(xij) = 1/xij > 0, which implies that the
Hessian matrix F(x) is a diagonal matrix with diagonal elements 1/xij > 0 for all x ∈ X,
which in turn implies that f is a strictly convex function on X.

5.(a) Let a1 = 2/5, a2 = 3/5, b1 = 1/6, b2 = 1/3 and b3 = 1/2.

Further, let (λ, µ) be a shorter notation for (λ1, λ2, µ1, µ2, µ3).

Then the Lagrange function for the considered problem is given by

L(x, λ, µ) =
2∑
i=1

3∑
j=1

(xij ln(xij)− xij) + λ1(x11 + x12 + x13 − a1) + λ2(x21 + x22 + x23 − a2) +

+ µ1(x11 + x21 − b1) + µ2(x12 + x22 − b2) + µ3(x13 + x23 − b3) =
2∑
i=1

3∑
j=1

(xij ln(xij)− xij + λixij + µjxij)−
2∑
i=1

aiλi −
3∑
j=1

bjµj .

The Lagrange relaxed problem PRλ,µ is defined, for a given vector (λ, µ)T ≥ 0,
as the problem of minimizing L(x, λ, µ) with respect to x > 0.
But this problem separates into one problem for each variables xij , namely the problem
of minimizing `ij(xij) = xij ln(xij)− xij + λixij + µjxij subject to xij > 0.

Some calculus give that ` ′ij(xij) = ln(xij) + λi + µj and ` ′′ij(xij) =
1

xij
> 0,

which implies that `ij(xij) is strictly convex on the set xij > 0, and a minimizing xij
is obtained from the equation ` ′ij(xij) = 0, which has the unique solution

x̃ij(λ, µ) = e−λi−µj , and then the dual objective function becomes

ϕ(λ, µ) = L(x̃(λ, µ), λ, µ) = −
2∑
i=1

3∑
j=1

e−λi−µj −
2∑
i=1

aiλi −
3∑
j=1

bjµj .

The dual problem consists of maximizing ϕ(λ, µ) with respect to (λ, µ)T ≥ 0.

5.(b) The following solution is suggested: (note that ln(5/2) = − ln(a1), etc.)

(λ̂, µ̂) = (λ̂1, λ̂2, µ̂1, µ̂2, µ̂3) = − ( ln(a1), ln(a2), ln(b1), ln(b2), ln(b3)).

We should try to find a corresponding vector x̂ such that x̂ and (λ̂, µ̂) satisfy the
global optimality conditions (GOC).

In order to satisfy the first GOC condition, i.e. L(x̂, λ̂, µ̂) ≤ L(x, λ̂, µ̂) for all x ∈ X,
x̂ must be chosen according to the formula

x̂ij = x̃ij(λ̂, µ̂) = e−λ̂i−µ̂j = e−λ̂ie−µ̂j = aibj , i.e.

x̂ = (x̂11, x̂12, x̂13, x̂21, x̂22, x̂23) = (2/30, 4/30, 6/30, 3/30, 6/30, 9/30).
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Then the five explicit constraints in P are satisfied with equality (x̂11 + x̂12 + x̂13 = 2/5, etc.)
so that both the second and the fourth GOC are satisfied. Finally, the third GOC is satisfied
since λ̂i = − ln(ai) = ln(1/ai) > 0 and µ̂j = − ln(bj) = ln(1/bj) > 0 for all i and j.

Thus x̂ is a global optimal solution to P and (λ̂, µ̂) is a global optimal solution to D.

As a check, the primal optimal value is equalt to f(x̂) =
2∑
i=1

3∑
j=1

(x̂ij ln(x̂ij)− x̂ij),

while the dual optimal value is ϕ(λ̂, µ̂) = L(x̃(λ̂, µ̂), λ̂, µ̂) = L(x̂, λ̂, µ̂) =
f(x̂) + λ̂1(x̂11 + x̂12 + x̂13 − a1) + λ̂2(x̂21 + x̂22 + x̂23 − a2) +
µ̂1(x̂11 + x̂21 − b1) + µ̂2(x̂12 + x̂22 − b2) + µ̂3(x̂13 + x̂23 − b3) = f(x̂),
since, according to above, all the other terms are zero.

5.(c)
As pointed out above, f(x) is a strictly convex function on the convex feasible region of P.

We know from 5.(b) that x̂ defined by x̂ij = aibj is an optimal solution to P.
Assume that there is also another optimal solution x̄ 6= x̂ (which thus satisfies f(x̄) = f(x̂)).
Then (due to the convexity of the feasible region) 1

2(x̂ + x̄) is also a feasible solution to P,
and (due to the strict convexity of f)

f(12(x̂ + x̄)) < 1
2f(x̂) + 1

2f(x̄) = f(x̂), which is a contradiction.

Thus, x̂ is the unique optimal solution to P.

We also know from 5.(b) that (λ̂, µ̂) = − ( ln(a1), ln(a2), ln(b1), ln(b2), ln(b3))
is an optimal solution to D. In particular, this optimal dual solution satisfies

x̃ij(λ̂, µ̂) = e−λ̂i−µ̂j = eln ai+ln bj = aibj = x̂ij for all i and j.

The question is if there is some other dual solution (λ, µ)T ≥ 0 such that

x̃ij(λ, µ) = e−λi−µj = aibj = x̂ij for all i and j.

The answer is yes! By letting

(λ, µ) = (λ1, λ2, µ1, µ2, µ3) = − ( ln(a1)+c, ln(a2)+c, ln(b1)−c, ln(b2)−c, ln(b3)−c)

for some constant c, it follows that

x̃ij(λ, µ) = e−λi−µj = eln ai+c+ln bj−c = aibj = x̂ij .

This dual solution satisfies (λ, µ)T ≥ 0 if and only if ln(bj) ≤ c ≤ − ln(ai) for all i and j,
which in our case is satisfied if and only if ln(1/2) ≤ c ≤ ln(5/3).

Since ln(1/2) < 0 and ln(5/3) > 0, there are such constants, e.g. c = ln(5/6),

in which case (λ, µ) = (λ1, λ2, µ1, µ2, µ3) = (ln(3), ln(2), ln(5), ln(5/2), ln(5/3)).

This dual solution, together with x̂, also satisfies the global optimality conditions,
and it is therefore also an optimal solution to D.
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