
SF2812 Applied linear optimization, final exam
Tuesday October 23 2007 14.00–19.00

Brief solutions

1. (a) From the GAMS output file, the values of “VAR x” suggest x = (5/3 0 0 13/3 4/3),
the marginal costs for “EQU cons” suggest y = (1/3 0 0)T , and the marginal
costs for “VAR x” suggest s = (0 5/3 5/3 0 0)T . We have Ax = b, ATy + s = c,
x ≥ 0, s ≥ 0 and xTs = 0. Hence, the solutions are optimal to the respective
problem.

(b) Since s2 = s3 = 5/3, it follows that the optimal solution is unchanged as long as
the costs of x2 or x3 are not decreased more than 5/3. Hence, the solution is not
at all sensitive to changes considered by AF. The computed optimal solution is
optimal also considering the fluctuations.

(c) Since y1 = 1/3, the optimal value is expected to change with 1/3 per unit
change of b1.

2. (a) Since x(µ) and y(µ) that are solution and Lagrange multipliers to (Pµ) also
solve the primal-dual nonlinear equations, we immediately obtain

x(µ) ≈



0.0008
2.9614
3.0185
1.0006
0.0199
0.0010


, y(µ) ≈


0.2502

−0.2003
0.7497

 .

Finally, we may obtain s(µ) from sj(µ) = µ/xj(µ), j = 1, . . . , 6, and it follows
that

s(µ) ≈



1.2992
0.0003
0.0003
0.0010
0.0503
1.0000


.
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(b) Since we expect the solutions to be in the order of 10−3 away from an optimal
solution, rounding gives

x =



0
3
3
1
0
0


, y =


1
4

−1
5
3
4

 .

We may then compute

s = c−ATy =



13
10

0
0
0
1
20

1


.

We have Ax = b, ATy + s = c, x ≥ 0, s ≥ 0 and xTs = 0. Hence, the solutions
are optimal to the respective problem.

(c) The computed solution is a basic feasible solution. In addition, since strict com-
plementarity holds, the solution is unique. Consequently, the simplex method
would compute the same solution.

3. (See the course material.)

4. (a) For a fix vector u ∈ IRn, Lagrangian relaxation of the first group of constraints
gives

minimize
n∑

i=1

n∑
j=1

cijxij −
n∑

j=1

fjzj −
n∑

i=1

ui

 n∑
j=1

xij − 1


subject to

n∑
i=1

aixij ≥ bjzj , j = 1, . . . , n,

xij ∈ {0, 1}, zj ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n,

This problem decomposes into one problem for each j as

minimize
n∑

i=1

(cij − ui)xij − fjzj

subject to
n∑

i=1

aixij ≥ bjzj ,

xij ∈ {0, 1}, zj ∈ {0, 1}, i = 1, . . . , n,

for j = 1, . . . , n. For each j, we may solve two problem by equating zj = 0
and zj = 1 respectively. For zj = 0 we obtain xij = 0 or xij = 1 depending on
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whether cij −ui is positive or negative. For zj = 1 we obtain a “knapsack-like”
problem in the xij-variables.

(b) For a fix nonnegative vector v ∈ IRm, Lagrangian relaxation of the second group
of constraints gives

minimize
n∑

i=1

n∑
j=1

cijxij −
n∑

j=1

fjzj −
n∑

j=1

vj

(
n∑

i=1

aixij − bjzj

)

subject to
n∑

j=1

xij = 1, i = 1, . . . , n,

xij ∈ {0, 1}, zj ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n,

This problem separates into two separate problems in the xij-variables and
the zj-variables respectively. The problem in the xij-variables decomposes into
trivial problems for each i according to

minimize
n∑

j=1

(cij − aivj)xij

subject to
n∑

j=1

xij = 1,

xij ∈ {0, 1}, j = 1, . . . , n,

for i = 1, . . . , n. These can be solved directly by noting which xij-variable that
has the smallest coefficient in the objective function. Similarly, the problem in
the zj-variables decomposes into trivial problems for each j according to

minimize (bjvj − fj)zj

subject to zj ∈ {0, 1},
for j = 1, . . . , n. Here, zj = 0 or zj = 1 depending on whether bjvj − fj is
positive or negative.

(c) The second relaxation gives a relaxed problem with integer optimal solutions
even if the integrality requirement is relaxed. Hence, the corresponding dual
underestimate become identical with the one obtained from an LP-relaxation.
The first relaxation gives a more complicated relaxed problem, where the inte-
grality requirement is essential, in general. Hence, one would here expect the
underestimate to be better than what the LP-relaxation would give. (We know
that it is always at least as good.)

5. The suggested initial extreme points v1 = (1 0 0 1)T and v2 = (−1 0 0 1)T give the
initial basis matrix

B =

(
8 2
1 1

)
.

The right-hand side in the master problem is b = (6 1)T . Hence, the basic variables
are given by(

α1

α2

)
=

(
8 2
1 1

)−1(
6
1

)
=

(
2
3
1
3

)
.
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The cost of the basic variables are given by (cTv1 cTv2) = (10 − 4). Consequently,
the simplex multipliers are given by(

y1

y2

)
=

(
8 1
2 1

)−1(
10
−4

)
=

(
7
3

−26
3

)
.

By forming c− y1A = (0 4/3 − 13/3 − 26/3) we obtain the subproblem

26
3 + 1

3 minimize 4x2 − 13x3 − 26x4

subject to −1 ≤ x1 + x2 ≤ 1,
−1 ≤ x1 − x2 ≤ 1,
−1 ≤ x3 + x4 ≤ 1,
−1 ≤ x3 − x4 ≤ 1.

The resulting optimal solution gives a new extreme point v3 = (0 − 1 0 1)T with
reduced cost −4/3. The corresponding column in the master problem is (3 1)T , and
we obtain

pB = −B−1

(
3
1

)
= −

(
1
6
5
6

)
.

By considering the step from αB along pB an requiring nonnegativity, we obtain the
maximum steplength as 2/5, and α2 leaves the basis. Hence, α3 replaces α2 as basic
variable.

The basic variables are now given by(
α1

α3

)
=

(
8 3
1 1

)−1(
6
1

)
=

(
3
5
2
5

)
.

The cost of the basic variables are given by (cTv1 cTv2) = (10 − 3). Consequently,
the simplex multipliers are given by(

y1

y2

)
=

(
8 1
3 1

)−1(
10
−3

)
=

(
13
5

−54
5

)
.

By forming c− y1A = (−4/5 4/5 − 27/5 − 10) we obtain the subproblem

54
5 + 1

5 minimize −4x1 + 4x2 − 27x3 − 50x4

subject to −1 ≤ x1 + x2 ≤ 1,
−1 ≤ x1 − x2 ≤ 1,
−1 ≤ x3 + x4 ≤ 1,
−1 ≤ x3 − x4 ≤ 1.

The resulting optimal solutions are v1 and v3, which both give reduced cost 0. Hence,
we have found an optimal solution to the original problem. The solution is given by

v1α1 + v3α3 =


1
0
0
1


3
5

+


0

−1
0
1


2
5

=


3
5

−2
5

0
1

 .


