
SF2812 Applied linear optimization, final exam
Thursday October 18 2012 14.00–19.00

Brief solutions

1. As x̂j > 0, j = 1, 2, 3, 4, the active constraints at x̂ are given by


2 1 −1 0 0
0 1 0 −1 0
1 2 0 0 −1
0 0 0 0 1




x̂1

x̂2

x̂3

x̂4

x̂5

 =


5
1
7
0

 .

These constraints remain active for x̂ + αp, where p satisfies


2 1 −1 0 0
0 1 0 −1 0
1 2 0 0 −1
0 0 0 0 1




p1

p2

p3

p4

p5

 =


0
0
0
0

 .

From the given hint we obtain p = (2 − 1 3 − 1 0)T . The additional requirement
x̂ + αp ≥ 0 gives

3
2
3
1
0

+ α


2

−1
3

−1
0

 ≥


0
0
0
0
0

 .

It follows that x̂+αp ≥ 0 for −1 ≤ α ≤ 1. In addition, it holds that cTp = 0, so that
x̂ + αp has the same objective function value as x̂ for all α. By taking the limiting
values of α, we get two new points at which five constraints are active, namely

x(1) = x̂− p =


1
3
0
2
0

 , x(2) = x̂ + p =


5
1
6
0
0

 .
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As there are five active constraints at these points, we expect them to be basic feasible
solutions. By assuming that x1, x2 and x4 are basic variables, corresponding to x(1),
we may compute y and s from BTy = cB, s = c−ATy, i.e., 2 0 1

1 1 2
0 −1 0


 y1

y2

y3

 =

 −1
1
0

 ,

with solution y = (−1 0 1)T , so that s = c − ATy = (0 0 0 0 1)T . As s ≥ 0,
we have verified optimality of x(1), and hence x̂ and x(2) are optimal as well. It is
straightforward to verify that x(2) is also a basic feasible solution at which x1, x2

and x3 are basic variables.

2. (a) With X = diag(x) and S = diag(s), the linear system of equations takes the
form  A 0 0

0 AT I

S 0 X


 ∆x

∆y

∆s

 = −

 Ax− b

ATy + s− c

XSe− µe

 ,

for a suitable value of the barrier parameter µ. We may for example let µ =
xTs/n = 5. Insertion of numerical values gives

1 1 1 1 0 0 0 0 0 0
1 −1 1 −1 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 0 0 1 −1 0 1 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 1 −1 0 0 0 1
4 0 0 0 0 0 1 0 0 0
0 3 0 0 0 0 0 2 0 0
0 0 2 0 0 0 0 0 3 0
0 0 0 1 0 0 0 0 0 4





∆x1

∆x2

∆x3

∆x4

∆y1

∆y2

∆s1

∆s2

∆s3

∆s4



=



−6
6

−4
−2

0
0
1

−1
−1

1



.

(b) We would compute x(1), y(1) and s(1) as x(1) = x(0) + α∆x(0), y(1) = y(0) +
α∆y(0), s(1) = s(0) + α∆s(0), where α is a positive steplength. In a pure
Newton step, α = 1, but we must also maintain x(1) > 0 and s(1) > 0. We may
compute αmax as the largest step α for which x + α∆x ≥ 0 and s + α∆s ≥ 0.
We may then let α = min{1, 0.99αmax} to ensure positivity of x(1) > 0 and
s(1) > 0. (In order to get a convergent method, some additional condition on
α ensuring proximity to the barrier trajectory may need to be imposed.)

3. (See the course material.)
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4. The suggested initial extreme points v1 = (1 1 1)T and v2 = (–1 –1 –1)T give the
initial basis matrix

B =

(
Av1 Av2

1 1

)
=

(
2 −2
1 1

)
.

The right-hand side in the master problem is b = (0 1)T . Hence, the basic variables
are given by(

2 −2
1 1

)(
α1

α2

)
=

(
0
1

)
, which gives

(
α1

α2

)
=

(
1
2
1
2

)
.

The cost of the basic variables are given by (cTv1 cTv2) = (3 − 3). Consequently,
the simplex multipliers are given by(

2 1
−2 1

)(
y1

y2

)
=

(
3

−3

)
, which gives

(
y1

y2

)
=

(
3
2

0

)
.

By forming cT − y1A = (1/2 –8 15/2) we obtain the subproblem

minimize 1
2x1 − 8x2 + 15

2 x3

subject to −1 ≤ xj ≤ 1, j = 1, 2, 3.

An optimal extreme point to the subproblem is given by v3 = (–1 1 –1)T with
optimal value -16. Hence, α3 should enter the basis. The corresponding column in
the master problem is given by(

Av3

1

)
=

(
6
1

)
.

The change to the basic variables is given by(
2 −2
1 1

)(
p1

p2

)
= −

(
6
1

)
, which gives

(
p1

p2

)
=

(
−2

1

)
.

Finding the maximum step η for which α + ηp ≥ 0 gives(
1
2
1
2

)
+ η

(
−2

1

)
≥

(
0
0

)
,

i.e., η = 1/4 so that α1 leaves the basis.

Hence, the new basis corresponds to v2 and v3 so that

B =

(
Av3 Av2

1 1

)
=

(
6 −2
1 1

)
.

The right-hand side in the master problem is b = (0 1)T . Hence, the basic variables
are given by(

6 −2
1 1

)(
α3

α2

)
=

(
0
1

)
, which gives

(
α3

α2

)
=

(
1
4
3
4

)
.
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The cost of the basic variables are given by (cTv3 cTv2) = (−7 − 3). Consequently,
the simplex multipliers are given by(

6 1
−2 1

)(
y1

y2

)
=

(
−7
−3

)
, which gives

(
y1

y2

)
=

(
−1

2

−4

)
.

By forming cT − y1A = (5/2 0 3/2) we obtain the subproblem

4+ minimize 5
2x1 + 3

2x3

subject to −1 ≤ xj ≤ 1, j = 1, 2, 3.

Both v2 and v3 are optimal extreme points to the subproblem, so the optimal value
of the subproblem is 0. Hence, the master problem has been solved. The solution
to the original problem is given by

v3α3 + v2α2 =

 −1
1

−1

 1
4

+

 −1
−1
−1

 3
4

=

 −1
−1

2

−1

 .

The optimal value is -4.

5. (a) We obtain

ϕ(u) = minimize (2− u)x1 − 2(1 + 2u)x2 + 3(1 + u)x3

subject to xj ∈ {−1, 0, 1}, j = 1, 2, 3.

It is optimal to let xj be plus or minus one, with opposite sign to the corre-
sponding coefficient in the objective function. This gives

ϕ(u) = −|2− u| − 2|1 + 2u| − 3|1 + u|.

The absolute value functions change sign at three distinct points, u = −1,
u = −1/2 and u = 2.
If u ≤ −1, then ϕ(u) = (u− 2) + 2(1 + 2u) + 3(1 + u) = 8u + 3.
If −1 ≤ u ≤ −1/2, then ϕ(u) = (u− 2) + 2(1 + 2u)− 3(1 + u) = 2u− 3.
If −1/2 ≤ u ≤ 2, then ϕ(u) = (u− 2)− 2(1 + 2u)− 3(1 + u) = −6u− 7.
If u ≥ 2, then ϕ(u) = −(u− 2)− 2(1 + 2u)− 3(1 + u) = −8u− 3.
Consequently, we obtain

ϕ(u) =


8u + 3 if u ≤ −1,

2u− 3 if − 1 ≤ u ≤ −1
2 ,

−6u− 7 if − 1
2 ≤ u ≤ 2,

−8u− 3 if u ≥ 2.

It follows that u∗ = −1/2 is optimal to (D) with ϕ(u∗) = −4.
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(b) For u∗ = −1/2, the Lagrangian relaxation problem is given by

ϕ(u∗) = minimize 5
2x1 + 3

2x3

subject to xj ∈ {−1, 0, 1}, j = 1, 2, 3.

Hence, it follows that x1(u∗) = −1 and x3(u∗) = −1 in an optimal solution, but
x2(u∗) could be −1, 0 or 1. Hence, we get three optimal solutions, x1(u∗) =
(−1 − 1 − 1)T , x2(u∗) = (−1 0 − 1)T and x3(u∗) = (−1 1 − 1)T . By
evaluating the relaxed constraint with reversed sign, −x1 − 4x2 + 3x3, at these
three points we get three subgradients, s1 = 2, s2 = −2 and s3 = −6.

(c) Since the only constraint in the Lagrangian relaxation problem is xj ∈ {−1, 0, 1},
j = 1, 2, 3, the optimal value will be unchanged if the integrality requirement
is relaxed in that problem. Hence, the optimal values of the Lagrangian dual
problem (D) and the LP relaxation (LP ) will be identical. This is indeed the
case, they are both -4.


