
SF2812 Applied linear optimization, final exam
Thursday May 22 2014 14.00–19.00

Brief solutions

1. (See the course material.)

2. (a) The system of primal-dual nonlinear equations is given by

x1 + x2 = 1, (1a)

y + s1 = 1, (1b)

y + s2 = 3, (1c)

x1s1 = µ, (1d)

x2s2 = µ. (1e)

where we also implicitly require x > 0 and s > 0. We may use (1b)–(1e) to
express x1, x2, s1 and s2 as a function of y according to

s1 = 1− y, s2 = 3− y, x1 =
µ

1− y
, x2 =

µ

3− y
.

Insertion into (1a) gives µ
1−y + µ

3−y = 1 or equivalently

y2 − 2(2− µ)y + 3− 4µ = 0.

Solving this equation gives

y = 2− µ−
√

(2− µ)2 − 3 + 4µ = y = 2− µ−
√

1 + µ2,

where the minus sign has been chosen to make y < 1, required by s = 1−y > 0.

With that we can, after simplification, express the solution as

x(µ) =
1

2

(
1− µ+

√
1 + µ2

1 + µ−
√

1 + µ2

)
,

y(µ) = 2− µ−
√

1 + µ2,

s(µ) =

(
−1 + µ+

√
1 + µ2,

1 + µ+
√

1 + µ2

)
.

(b) Letting µ→ 0 gives

x =

(
1

0

)
, y = 1, s =

(
0

2

)
.

It is straightforward to very that Ax = b, x ≥ 0, ATy + s = c, s ≥ 0. Conse-
quently, optimality holds.

3. The values of b1 and b2 must be such that Ax̂ = b, which gives b1 = 6 and b2 = 10.
For these values of b1 and b2, the given x̂ is feasible.

The given x̂ is not a basic feasible solution. In order for x̂ to be optimal, there
cannot be a basic feasible solution with lower objective function value. To find a
basic feasible solution, we may compute directions in the null space of A+, and
successively add constraints. The v given in the hint is such that A+v+ = 0, v0 = 0.
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Hence, if x̂ is optimal, it must hold that cTv = 0. This implies that c1 = 3. If we
compute the maximum value of α such that of x̂ + αv ≥ 0, we obtain αmax = 1.
The point x̂ + αmaxv has one more active constraint, and is in fact a basic feasible
solution, with x1 = 4 and x3 = 2 as basic variables. The simplex multipliers are
given by BTy = cB, i.e.,(

1 1

1 3

)(
y1

y2

)
=

(
3

−1

)
,

which gives y = (5 − 2)T . The reduced costs are now given by s = c − ATy =
(0 0 0 c4 + 3)T . Consequently, s ≥ 0 if c4 ≥ −3. As the basic variables are strictly
positive, it follows that the basic feasible solution is not optimal if c4 < −3. Hence,
we conclude that x̂ is optimal if and only if b1 = 6, b2 = 10, c1 = 3 and c4 ≥ −3.

4. (a) For a fix vector u ∈ IRn, Lagrangian relaxation of the first set of constraints
gives

minimize
n∑
i=1

−ui +
n∑
j=1

(ui − cij)xij

+
n∑
j=1

fjzj

subject to
n∑
i=1

aixij ≤ bjzj , j = 1, . . . , n,

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n,
zj ∈ {0, 1}, j = 1, . . . , n,

where ai, i = 1, . . . , n, bj , j = 1, . . . , n, fj , j = 1, . . . , n, and cij , i = 1, . . . , n,
j = 1, . . . , n, are nonnegative integer constants.

(b) For a fix nonnegative vector v ∈ IRn, Lagrangian relaxation of the second group
of constraints gives

minimize
n∑
i=1

n∑
j=1

(aivj − cij)xij +
n∑
j=1

(fj − bjvj)zj

subject to
n∑
j=1

xij = 1, i = 1, . . . , n,

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n,
zj ∈ {0, 1}, j = 1, . . . , n,

where ai, i = 1, . . . , n, bj , j = 1, . . . , n, fj , j = 1, . . . , n, and cij , i = 1, . . . , n,
j = 1, . . . , n, are nonnegative integer constants.

(c) The first relaxation decomposes into one separate problem for each j according
to

minimize
n∑
i=1

(ui − cij)xij + fjzj

subject to
n∑
i=1

aixij ≤ bjzj ,

xij ∈ {0, 1}, i = 1, . . . , n,
zj ∈ {0, 1},

for j = 1, . . . , n. We can here solve two problems, for zj = 0 and zj = 1,
and then take the minimum. For zj = 0, the solution is given by xij = 0,
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j = 1, . . . , n. For zj = 1, we obtain a binary knapsack problem, which may for
example be solved using dynamical programming.

The second relaxation decomposes into trivial problems. For the z-variables we
obtain for each i according to

minimize
n∑
j=1

(fj − bjvj)zj

subject to zj ∈ {0, 1}, j = 1, . . . , n,

which can be solved directly with zj = 1 if fj−bjvj < 0 and zj = 0 if fj−bjvj ≥ 0
for j = 1, . . . , n. For the x-variables we obtain

minimize
n∑
j=1

(aivj − cij)xij

subject to
n∑
j=1

xij = 1,

xij ∈ {0, 1}, j = 1, . . . , n,

for i = 1, . . . , n. These can be solved directly by noting which xij-variable
having the smallest coefficient in the objective function.

(d) The second relaxation gives a relaxed problem which gives integer optimal so-
lutions even if one relaxes the integer constraint. Hence, the corresponding
dual underestimation becomes identical with the one obtained if performing an
LP-relaxation.

The first relaxation gives a more complicated relaxed problem, and here one
can expect the underestimation to be better than one would obtain with an
LP-relaxation.

5. (a) For the given cut patterns, we obtain

B =


3 0 0

0 2 0

0 0 1

 , xB = B−1b =


20

25

40

 , y = B−Te =


1
3
1
2

1

 ,
with e = (1 1 1)T . As y ≥ 0 no slack variables enters the basis.

The subproblem is given by

1 − 1
6maximize 2α1 + 3α2 + 6α3

subject to 3α1 + 5α2 + 9α3 ≤ 11,
αi ≥ 0, integer, i = 1, 2, 3.

We may enumerate the feasible solutions for this small problem to conclude
that the optimal value of the subproblem is α∗ = (2 1 0)T with optimal value
−1/6. Hence, a4 = (2 1 0)T and the maximum step is given by

0 ≤ x = B−1b− ηB−1a4 =


20

25

40

− η


2
3
1
2

0

 .
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Hence, ηmax = 30 and x1 leaves the basis, so that the basic variables are given
by x2 = 10, x3 = 40 and x4 = 30. The reduced costs are given by

y = B−Te =


2 1 0

0 2 0

0 0 1


−1

1

1

1

 ,
which gives y1 = 1/4, y2 = 1/2 and y3 = 1.

The subproblem is given by

1 − 1
4maximize α1 + 2α2 + 4α3

subject to 3α1 + 5α2 + 9α3 ≤ 11,
αi ≥ 0, integer, i = 1, 2, 3.

We may enumerate the feasible solutions for this small problem to conclude
that the optimal value is zero, so that the linear program has been solved.
The optimal solution is x2 = 10, x3 = 40 and x4 = 30, with a2 = (0 2 0)T ,
a3 = (0 0 1)T and a4 = (2 1 0)T .

(b) The solution given by the linear programming relaxation happens to be integer
valued. This means that we have solved the original problem as well. The
optimal solution is to use 80 W -rolls, with 10 rolls cut according to pattern
(0 2 0)T , 40 rolls cut according to pattern (0 0 1)T and 30 rolls cut according
to pattern (2 1 0)T .

(Note that this is very special. In general one can not expect to obtain an
optimal integer solution in this way.)


