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Brief solutions

1. (a) A solution x̃ and Lagrange multiplier vector ỹ associated with (Pµ) also solve
the primal-dual nonlinear equations. Therefore,

x(µ) = x̃ ≈


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, y(µ) = ỹ ≈
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 .

Finally, we may obtain s(µ) from sj(µ) = µ/xj(µ), j = 1, . . . , 6. From the hint,
it follows that

s(µ) ≈


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.

(b) We expect the solutions to be in the order of 10−3 away from an optimal
solution. Therefore, rounding gives

x =
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 , s =
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.

We have Ax = b, ATy + s = c, x ≥ 0, s ≥ 0 and xTs = 0. Hence, the solutions
are optimal to the respective problem.

(c) The computed solution is a basic feasible solution. In addition, since strict com-
plementarity holds, the solution is unique. Consequently, the simplex method
would compute the same solution.

2. (a) The simplex multipliers are given by(
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)
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)
,

which gives y1 = 0, y2 = 1. The reduced costs are then given by
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This is a dual feasibls solution, because s ≥ 0.

(b) The corresponding basic variables are given by(
1 −1

2 0

)(
x2

x3

)
=

(
4

2

)
,

which gives x2 = 1, x3 = −3.

As x3 < 0, the dual solution is not optimal. If q denotes the step in the y-
direction and η denotes the step in the s-direction, dual feasibility requires
ATq + η = 0. Consequently, since x3 < 0, x3 becomes nonbasic, and we obtain

ηB =
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)
=
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)
.

. The step in the y-direction is given by BTq = −ηB, i.e.,(
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,

which gives q1 = 1, q2 = −1/2. With y ← y + αq, dual feasibility requires
s← s+αη, with ATq+ η = 0 and s+αη ≥ 0. Consequently, the nonnegativity
of s requires s− αATq ≥ 0, i.e.,
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The maximum value of α is given by αmax = 4/3 making component 1 of
s − αATq zero, so that the new basis becomes B = {1, 2}. The basic variables
are given by(
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)
=
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)
,

which gives x1 = 2, x2 = 2. As x ≥ 0, an optimal solution has been obtained.
Together with y+αmaxq and s−αmaxA

Tq the primal and dual optimal solutions
are given by
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3. (See the course material.)

4. (a) We have

ϕ(u) = u− maximize (3 + u)x1 + (4 + u)x2 + (3 + u)x3

subject to x1 + 2x2 + 3x3 ≤ 2,
xj ≥ 0, xj integer, j = 1, . . . , 3.
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For this small problem, we may enumerate the feasible solutions. They are (0
0 0)T , (1 0 0)T , (2 0 0)T , and (0 1 0)T . Hence,

ϕ(u) = u−max{0, 3 + u, 6 + 2u, 4 + u}.

Consequently, ϕ(u) = u for u ≤ −4, ϕ(u) = −4 for −4 ≤ u ≤ −2 and ϕ(u) =
−6 − 2u for u ≥ −2. The corresponding optimal solutions to the problem
that defines ϕ(u) are x(u) = (0 0 0)T for u ≤ −4, x(u) = (0 1 0)T for
−4 ≤ u ≤ −2 and x(u) = (2 0 0)T for u ≥ −2. (The optimal solution is
nonunique for u = −4 and u = −2.)

(b) The dual problem is defined as

(D)
maximize

u∈IR
ϕ(u)

subject to u ≥ 0.

Consequently, it is only u ≥ 0 that is considered, and for these values of u, we
have a relaxation. We do not consider u < 0.

(c) Since ϕ(u) = −6− 2u for u ≥ −2, the dual problem takes the form

(D)
maximize

u∈IR
−6− 2u

subject to u ≥ 0.

The optimal solution is given by u∗ = 0 with ϕ(u∗) = −6. By inspection, it
has been found that x = (2 0 0)T is optimal to (IP ) so that optval(IP ) = −6.
Hence, the duality gap is zero.

5. (a) For the given cut patterns, we obtain

B =
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 , xB = B−1b =
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1

 ,

with e = (1 1 1)T . As y ≥ 0 no slack variables enters the basis.

The subproblem is given by

1 − 1
6maximize 2α1 + 3α2 + 6α3

subject to 3α1 + 5α2 + 9α3 ≤ 11,
αi ≥ 0, integer, i = 1, 2, 3.

We may enumerate the feasible solutions for this small problem to conclude
that the optimal value of the subproblem is α∗ = (2 1 0)T with optimal value
−1/6. Hence, a4 = (2 1 0)T and the maximum step is given by

0 ≤ x = B−1b− ηB−1a4 =
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− η
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 .

Hence, ηmax = 30 and x1 leaves the basis, so that the basic variables are given
by x2 = 10, x3 = 40 and x4 = 30. The reduced costs are given by

y = B−Te =

 2 1 0

0 2 0

0 0 1


−1 1
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 ,
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which gives y1 = 1/4, y2 = 1/2 and y3 = 1.

The subproblem is given by

1 − 1
4maximize α1 + 2α2 + 4α3

subject to 3α1 + 5α2 + 9α3 ≤ 11,
αi ≥ 0, integer, i = 1, 2, 3.

We may enumerate the feasible solutions for this small problem to conclude
that the optimal value is zero, so that the linear program has been solved.
The optimal solution is x2 = 10, x3 = 40 and x4 = 30, with a2 = (0 2 0)T ,
a3 = (0 0 1)T and a4 = (2 1 0)T .

(b) The solution given by the linear programming relaxation happens to be integer
valued. This means that we have solved the original problem as well. The
optimal solution is to use 80 W -rolls, with 10 rolls cut according to pattern
(0 2 0)T , 40 rolls cut according to pattern (0 0 1)T and 30 rolls cut according
to pattern (2 1 0)T .

(Note that this is very special. In general one can not expect to obtain an
optimal integer solution in this way.)


