
SF2812 Applied linear optimization, final exam
Tuesday June 5 2018 14.00–19.00

Brief solutions

1. (a) Since ỹ, s̃ is a feasible solution to (DLP ) and (DLP ) is a maximization problem,
bTỹ is a lower bound for optval(DLP ).

(b) By strong duality for linear programming, the optimal values of (PLP ) and
(DLP ) are equal, if both problems are feasible. Therefore, bTỹ is a lower bound
for optval(PLP ). There is no implication that optval(PLP ) <∞ by existence
of dual feasible solution.

(c) It holds that ỹ+αη, s̃+αq is feasible for all α ≥ 0, since AT(ỹ+αη)+ s̃+αq = c
and s̃ + αq ≥ 0 for α ≥ 0. Since bT(y + αη) tends to infinity as α → ∞, we
conclude that optval(PLP ) = optval(DLP ) =∞.

(d) If x̃ is feasible to (PLP ) and ỹ, s̃ is feasible to (DLP ), it holds that x̃Ts̃ =
cTx̃− bTỹ. Therefore, by strong duality for linear programming, we must have
x̃Ts̃ = 0 if the solutions are optimal to the respective problems. Therefore, if x̃
is optimal to (PLP ) and x̃Ts̃ = 1, it cannot hold that ỹ, s̃ is optimal to (DLP ).

2. (a) The primal variables x are given by the values (“LEVEL”) of “VAR x” as x =
(0 2 1 1 3 0)T . The dual variables y are given as the the marginal values of
the constraints Ax = b, i.e., the marginal values (“MARGINAL”) of “EQU cons”,
y = (1 –1 1 –1)T . The dual variables s are given as the the marginal values
of the constraints x ≥ 0, i.e., the marginal values (“MARGINAL”) of “VAR x”,
s = (2 0 0 0 0 5))T . The GAMS output file gives “MODEL STATUS Optimal”,
so the solutions are optimal.

(b) We see that components 2, 3, 4, and 5 of x are positive. The corresponding
columns of A form a triangular nonsingular basis matrix B. As long as the
change in b gives the same optimal basis, strong duality shows that the change
in optimal value is given by bTy + δeT2 y + δeT3y, i.e., 4.

(c) We have BxB = b. If b is changed to b + δe2 + δe3, we get the corresponding
primal solution xδB by BxδB = b + δe2 + δe3, i.e., xδB = xB + δpB, where
BpB = e2 + e3. Insertion of numerical values gives
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The solution is given by pB = (0 1 0 –1)T . The bound on δ is then given by
primal feasibility, i.e., xB + δpB ≥ 0. Insertion of numerical values gives
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 ≥


0

0

0

0

 .

i.e.,

1 + δ ≥ 0,

3− δ ≥ 0.
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The bound is consequently given by −1 ≤ δ ≤ 3. Therefore, the optimal value
is given by 4 for −1 ≤ δ ≤ 3.

3. (a) The optimality conditions of (Pµ) may be written as

c− µX−1e = ATy,

Ax = b,

in addition to x > 0, where X = diag(x) and e is the vector of ones.

It is given that x̃ is feasible, so Ax̃ = b holds.

The matrix Z is a 4× 2 matrix of full column rank such that AZ = 0. Hence,
since A is a 2 × 4 matrix of full row rank, the columns of Z form a basis for
the nullspace of A. Therefore, the condition c− µX−1e = ATy is equivalent to
ZT(c− µX−1e) = 0.

Evaluation gives ZTc = (3 1)T , so that

ZT(c− µX̃−1e) =

(
3

1

)
− 0.1 ·

(
30

10

)
=

(
0

0

)
,

verifying the second optimality condition for µ = 0.1. Finally, x̃ > 0. Therefore,
x̃ is optimal to (Pµ), i.e., x̃ = x(µ) for µ = 0.1.

(b) In case of strict complementarity, we expect x(µ) to differ by O(µ) from the
optimal solution x∗. Since x̃ = x(µ) for µ = 0.1, we expect O(µ) ≈ 0.1, and
therefore guess x∗ = (0 5 0 10)T . This would correspond to x2 and x4 being
basic variables. Then, ATBy

∗ = cB gives(
1 3

0 −1

)(
y∗1
y∗2

)
=

(
1

0

)
,

i.e., y∗ = (1 0)T . Evaluating s∗ = c−ATy∗ gives s∗ = (1 0 1 0)T . Since s∗ ≥ 0,
we conclude that x∗ is optimal to (LP ).

(c) The primal-dual system of nonlinear equations take the form

ATy + s− c = 0,

Ax− b = 0,

XSe− µe = 0.

They are equivalent to the optimality conditions of (Pµ). Therefore, we know
x(µ), since x(µ) = x̃. We therefore need to find s(µ) from

si(µ) =
µ

xi(µ)
=

µ

x̃i
, , i = 1, . . . , 4,

and y(µ) from the relation

c− s(µ) = ATy(µ).

We get

s(µ) ≈ 0.1


10.9135

0.2032

9.4925

0.1014

 ≈


1.0914

0.0203

0.9493

0.0101

 .
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Finally,

c− s(µ) ≈


3

1

0

0

−


1.0914

0.0203

0.9493

0.0101

 ≈


1.9086

0.9797

−0.9493

−0.0101

 ,

so that
1.9087

0.9797

−0.9492

−0.0101

 =


2 1

1 3

−1 0

0 −1


(
y1(µ)

y2(µ)

)
.

The last two equations give

y(µ) ≈

(
0.9492

0.0101

)
.

Since y(µ) is unique, and we know there is a solution, we need not verify the
first two equations.

(As a check, we note that y(µ) is close to y∗ and s(µ) is close to s∗, by O(µ) ≈
0.1.)

4. (See the course material.)

5. (a) The given cut pattern give an initial basis in the master problem, corresponding
to a basic feasible solution. We obtain

B =

 4 0 0

0 2 0

0 0 1

 , xB = B−1b =

 15

25

40

 , y = B−Te =


1
4
1
2

1

 ,

with e = (1 1 1)T . As y ≥ 0 no slack variables enter the basis.

The subproblem is given by

1 − 1
4maximize α1 + 2α2 + 4α3

subject to 3α1 + 5α2 + 9α3 ≤ 12,
αi ≥ 0, integer, i = 1, 2, 3.

We may enumerate the feasible solutions for this small problem to conclude
that the optimal value of the subproblem is α∗ = (1 0 1)T with optimal value
−1/4. Hence, a4 = (1 0 1)T and the maximum step is given by

0 ≤ x = B−1b− ηB−1a4 =

 15

25

40

− η


1
4

0

1

 .
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Hence, ηmax = 40 and x3 leaves the basis, so that the basic variables are given
by x1 = 5, x2 = 25 and x4 = 40. The simplex multipliers y are given by

y = B−Te =

 4 0 0

0 2 0

1 0 1


−1 1

1

1

 ,

which gives y1 = 1/4, y2 = 1/2 and y3 = 3/4.

The subproblem is given by

1 − 1
4maximize α1 + 2α2 + 3α3

subject to 3α1 + 5α2 + 9α3 ≤ 12,
αi ≥ 0, integer, i = 1, 2, 3.

We may enumerate the feasible solutions for this small problem to conclude
that the optimal value is zero, so that the linear program has been solved.
The optimal solution is x1 = 5, x2 = 25 and x4 = 40, with a1 = (4 0 0)T ,
a2 = (0 2 0)T and a4 = (1 0 1)T .

(b) The solution given by the linear programming relaxation happens to be integer
valued. This means that we have solved the original problem as well. The
optimal solution is to use 70 W -rolls, with 5 W -rolls cut according to pattern
(4 0 0)T , 25 W -rolls cut according to pattern (0 2 0)T and 40 W -rolls cut
according to pattern (1 0 1)T .

(Note that this is very special. In general one can not expect to obtain an
optimal integer solution in this way.)


