
SF2812 Applied linear optimization, final exam
Monday March 12 2018 8.00–13.00

Examiner: Anders Forsgren, tel. 08-790 71 37.

Allowed tools: Pen/pencil, ruler and eraser. Note! Calculator is not allowed.

Solution methods: Unless otherwise stated in the text, the problems should be solved by
systematic methods, which do not become unrealistic for large problems. Motivate your
conclusions carefully. If you use methods other than what have been taught in the course,
you must explain carefully.

Note! Personal number must be written on the title page. Write only one exercise per
sheet. Number the pages and write your name on each page.

22 points are sufficient for a passing grade. For 20-21 points, a completion to a passing
grade may be made within three weeks from the date when the results of the exam are
announced.

1. Let (LP ) and its dual (DLP ) be defined as

(LP )

minimize cTx

subject to Ax = b,
x ≥ 0,

and (DLP )

maximize bTy

subject to ATy ≤ c,

where

A =


1 1 1 1 0 0

2 1 1 −1 0 0

1 3 1 0 1 0

−1 4 1 0 0 1

 , b =


3

5

6

5

 , and

c =
(

3 0 3 3 −1 0
)T

.

(a) A person named AF has used GAMS to model and solve this problem. AF
has been told that he can solve either (LP ) or (DLP ) for finding the optimal
solution to (LP ). He has chosen to solve (DLP ). The GAMS input file can be
found at the end of the exam, and a partial GAMS output file reads:

LOWER LEVEL UPPER MARGINAL

---- EQU obj . . . -1.000

obj objective function

---- EQU cons constraints

LOWER LEVEL UPPER MARGINAL

j1 -INF 3.000 3.000 2.000

j2 -INF . . 1.000

j3 -INF 2.000 3.000 .

j4 -INF 1.000 3.000 .

j5 -INF -1.000 -1.000 1.000

j6 -INF . . 3.000

1
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LOWER LEVEL UPPER MARGINAL

---- VAR objval -INF 5.000 +INF .

objval objective function value

---- VAR y dual variables

LOWER LEVEL UPPER MARGINAL

i1 -INF 2.000 +INF .

i2 -INF 1.000 +INF .

i3 -INF -1.000 +INF .

i4 -INF . +INF .

The only catch is that AF does not know how to extract the optimal solution
to (LP ) from the GAMS output. Help AF obtain the optimal solution to (LP )
from the GAMS output file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

(b) AF is worried about the precise value of c1 and wants to know how sensitive
the optimal value is to changes in c1. For c1 changed to 3 + δ, help AF to
predict k in an expression for the optimal value of the form 5 + kδ. Do so with
no calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(c) Give bounds on δ for which the linear variation in optimal value of Question 1b
is valid. The system of linear equations that arises need not be solved in a
systematic way. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

2. Consider the linear program (LP ) defined as

(LP )

minimize x1 + x2 + 3x3

subject to x1 + x2 + 2x3 = 2,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(a) For a fixed positive barrier parameter µ, formulate the primal-dual system of
nonlinear equations corresponding to the problem above. In addition, use the
fact that the problem is small to eliminate x and s and get an equation in y
only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5p)

(b) The solution of the equation in y only is given by

y(µ) =
5− 3µ

4
−
√

1 + 2µ+ 9µ2

4
= 1− µ− µ2 + o(µ2),

where the last equality, suitable for small positive µ, is obtained by Taylor series
expansion. Make use of your results in Question 2a and the given Taylor series
expansion of y(µ) to give approximate expressions for x(µ) and s(µ) that are
suitable for µ small and positive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(c) Calculate limµ→0 x(µ) for the x(µ) you derived in Question 2b. Is this an
optimal solution? Is this a basic feasible solution? Comment on the result.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)
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3. Consider the linear program (LP ) given by

(LP )

minimize 3x1 + x2 − x3 + 3x4

subject to 2x1 + x2 − x3 − x4 = −2,
−1 ≤ x1 + x2 ≤ 1,
−1 ≤ x1 − x2 ≤ 1,
−1 ≤ x3 + x4 ≤ 1,
−1 ≤ x3 − x4 ≤ 1.

Solve (LP ) by Dantzig-Wolfe decomposition. Consider 2x1 + xx− x3− x4 = −2 the
complicating constraint. Use the extreme points v1 = (–1 0 1 0)T and v2 = (–1 0
–1 0)T for obtaining an initial feasible solution to the master problem.

The subproblem(s) that arise may be solved in any way, that need not be systematic.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

Hint: The following figure may be helpful:

4. Consider the integer program (IP ) defined by

(IP )

minimize cTx

subject to Ax ≥ b,
Cx ≥ d,
x ≥ 0, x integer.

Let zIP denote the optimal value of (IP ).

Associated with (IP ) we may define the dual problem (D) as

(D)
maximize ϕ(u)

subject to u ≥ 0,

where ϕ(u) = min{cTx + uT(b − Ax) : Cx ≥ d, x ≥ 0 integer}. Let zD denote the
optimal value of (D).

Let (LP ) denote the linear program obtained from (IP ) by relaxing the integer
requirement, i.e.,

(LP )

minimize cTx

subject to Ax ≥ b,
Cx ≥ d,
x ≥ 0.
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Let zLP denote the optimal value of (LP ).

Show that zIP ≥ zD ≥ zLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

5. Conditional value at risk (CVaR) is a risk measure used for example in optimization
of radiation therapy or finance. In radiation therapy, one situation is when a sensitive
organ is to be protected from too high level of radiation. The organ is divided
into m volume elements, where element i has relative volume ∆i and receives dose
di. Relative volume means that the volume of the target is normalized so that∑m
i=1∆i = 1. The radiation is sent through a grid of n beam elements, where the

nonnegative fluence in beam element j is denoted by xj . There is a linear relationship
between x and d through a constant matrix P , so that d = Px.

In this setting, the conditional value at risk is defined for a fixed parameter α, with
0 < α < 1, as the optimal value of the optimization problem

(Pα)
minimize

d∈IRm,x∈IRn,λ∈IR
λ+

1

α

m∑
i=1

∆i(di − λ)+,

subject to d = Px, x ≥ 0.

where (di − λ)+ denotes max{di − λ, 0}.
For a fixed x, d is given by d = Px, and we may define

φx(λ) = λ+
1

α

m∑
i=1

∆i(di − λ)+.

(a) For simplicity of notation, assume that the volume elements are ordered so that
d1 ≥ d2 ≥ . . . ≥ dm.

Show that a global minimizer to minλ{φx(λ)} is given by λ = dmα , where mα

is the smallest index j for which
∑j
i=1∆i > α. . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Hint: It may be helpful to first show that, if λ 6= di, i = 1, . . . ,m, then

φx(λ) = λ+
1

α

mλ∑
i=1

∆i(di − λ) and
dφx(λ)

dλ
= 1− 1

α

mλ∑
i=1

∆i,

where mλ is the largest index j for which dj > λ.

Remark: A consequence of this result is that the optimal value of minλ{φx(λ)}
is the average dose of the fraction α of the organ that receives the highest dose.

(b) Reformulate (Pα) as a linear program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Hint: It may be helpful to introduce a new variable to be minimized, the way
it would be done in GAMS.

Remark: Note that Question 5a and Question 5b can be solved independently of
each other.

Good luck!
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GAMS file for Question 1:

sets

i rows / i1*i4 /

j columns / j1*j6 /;

table A(i,j) values of the blocks

j1 j2 j3 j4 j5 j6

i1 1 1 1 1

i2 2 1 1 -1

i3 1 3 1 1

i4 -1 4 1 1 ;

parameter b(i)

/ i1 3

i2 5

i3 6

i4 5 /;

parameter c(j)

/ j1 3

j2 0

j3 3

j4 3

j5 -1 /;

variables

objval objective function value

y(i) dual variables;

equations

obj objective function

cons(j) constraints;

obj .. sum(i,b(i)*y(i)) =e= objval;

cons(j) .. sum(i,A(i,j)*y(i)) =l= c(j);

model lpex / all /;

solve lpex using lp maximizing objval;


