Introduction to GAMS

Ulf Brännlund
What is GAMS?

GAMS: General Algebraic Modeling System

- High-level optimization modeling language.
- Makes interpretation from model to algorithm.
Advantages of GAMS:

- Efficient.
 - Create a set of equations by one statement.
 - Insert data only once.
 - Create prototypes fast.
 - State-of-the-art optimization software.

- Utilizes structure.
- Self-documenting.
- Algebraic representation.
- Large model library.
- Relatively easy to learn.
Other alternatives

Examples of other modeling languages:

- ILOG Studio
- AMPL
- MPL
- LINGO

Examples of other optimization tools:

- Your own C or Fortran code.
- Optimization packages, e.g., CPLEX, MPSX, OSL.
- Interactive optimization programs, e.g., LINDO, LP88.
- Matlab + Optimization Toolbox.
- Excel.
Assume that your model contains the following constraint:

$$\sum_{i} x_{ij} \geq b_{j} \text{ for all } j.$$

In GAMS you write

```plaintext
demand(j) .. sum(i, x(i,j)) =g= b(j);
```

Note:

- The format is general, in an algebraic notation.
- Not specific for the problem instance.
- The statements are independent of the solver.
- GAMS offers data manipulation of the solution.
A simple transportation problem

- **Sets:**
 - \(i \) factories
 - \(j \) customers

- **Given data:**
 - \(a_i \) supply at factory \(i \)
 - \(b_j \) demand of customer \(j \)
 - \(c_{ij} \) transportation cost per unit from factory \(i \) to customer \(j \)

- **Decision variables:**
 - \(x_{ij} \) amount transported from factory \(i \) to customer \(j \)
A simple transportation problem, cont.

Objective function

Transportation cost: $\sum_{i,j} c_{ij} x_{ij}$

Constraints

Supply: $\sum_j x_{ij} \leq a_i$ for all i.
Demand: $\sum_i x_{ij} \geq b_j$ for all j.
Nonnegativity: $x_{ij} \geq 0$ for all i, j.
Generating the instance of the demand constraints.

DEMAND (J) .. SUM (I, X (I, J)) =G= B(J);

DEMAND (NEW-YORK) .. X(SEATTLE,NEW-YORK) + X(SAN-DIEGO, NEW-YORK) =G= 325
DEMAND (CHICAGO) .. X (SEATTLE, CHICAGO) + X(SAN-DIEGO,CHICAGO) =G= 300;
DEMAND (TOPEKA) .. X (SEATTLE, TOPEKA) + X(SAN-DIEGO,TOPEKA) =G= 275;
Example of GAMS output, cont.

DISPLAY X.L. X.M;

OPTIMAL SOLUTION (IN CASES)
NEW-YORK CHICAGO TOPEKA
SEATTLE 50.000 300.000
SAN-DIEGO 275.000

MARGINAL COSTS (IN $K/CASE)
CHICAGO TOPEKA
SEATTLE 0.036
SAN-DIEGO 0.009
Sets

- Assignments within / /
- Hyphens (no spaces)
- "Specials":
 - SET M Machines /MACH01 * MACH24 /;
 Defines machine MACH01, MACH02, ..., MACH24.
 - ALIAS(T,TP);
 TP is another name for the index set T.
PARAMETER, TABLE

- Lists delimited by / /, elements delimited by comma or return.
- Zero is default.
- Domain check: GAMS’ compiler does not accept "SEATLE"
- SCALAR F
Assignment

PARAMETER C(I,J) transportation cost

\[C(I,J) = F \times D(I,J) / 1000; \]

- "=" is the assignment operator.
- \(F \) and \(D(I,J) \) must have been assigned first.
- \(C(J,I) \) is not tolerated by the compiler.
- There exist many mathematical functions.
- The right hand side of "=" must be computable for GAMS.
- Use assignments instead of "constraints" when possible.
Comments on the transportation problem, cont.

Variables

- Name, domain and comments in the first sentence.
- Type of variable assigned separately or directly.
 - Domain in type assignment.
 - Free variable is default.
- Types are FREE, POSITIVE, NEGATIVE, BINARY, INTEGER, SOS1, SOS2.

Note! There is no objective function. Use an equation to define a (free) variable that you want to optimize.
Comments on the transportation problem, cont.

Constraints

- **EQUATION** means equality or inequality.
- `=E=` is different from “=” and **EQ**.
- `=L=` instead of "≤" and **LE**.
- There must be at least one variable in each constraint.
- **Format:**

 NAME(DOMAIN) .. LHS =E= RHS;
Comments on the transportation problem, cont.

- **MODEL** means a set of constraints.
- **/ALL/** means all constraints.
- Alternatively one may specify them, i.e.,

  ```gams
  MODEL TRANSPRT /COST, SUPPLY, DEMAND/;
  ```
SOLVE MODELNAME USING

LP MINIMIZING OBJECTIVE
NLP MAXIMIZING
MIP
RMIP

Effect:

- Generates an instance of the model.
- Creates input to the solver and hands over the control to the solver.
- Puts the solver’s output in GAMS’ internal database.
- Gives the control back to GAMS.
Some basic rules

- Create GAMS files with a text editor, alternatively GAMS IDE. It is a pure ASCII file.
- No tabs. (OK with Emacs.)
- Do note use Swedish characters å, ä, ö.
- Arbitrary order of sentences, but declare before use.
- The layout is arbitrary, several rows per statement, several statements per row.
- End each statement by a “;”.
Some basic rules, cont.

- Not case sensitive.
- Documenting text in three ways:
 1. Within a declaration, less than 80 characters, no "", ",", "/".
 2. Asterisk, "*", at beginning of row.
 3. $ONTEXT ($ at beginning of row)
 This is an explanation of the model ...
 $OFFTEXT
Some basic rules, cont.

- **Rules for naming parameters, variables, etc.**
 - Referred to as *identifiers* in user’s guide and error output.
 - At most 10 characters (letters or digits).
 - First character must be a letter.
 - Do not use reserved words.

- **Rules for naming **SETS**.**
 - Referred to as *labels* in user’s guide and error output.
 - At most 10 characters (letters or digits).
 - First character may be a letter or a digit.
 - Do not use reserved words.

- Declaration and assignment separately or jointly.
GAMS’ internal database

GAMS has the following four attributes for variables and equations.

- .LO Lower bound.
- .UP Upper bound.
- .L "Level" (Primal value).
- .M "Marginal" (Dual value).

These values may be read and written at any time.

The solver reads all attributes, but only writes in .L and .M.

The format is: IDENTIFIER.ATTRIBUTE (DOMAIN)
Example

- Assigning attributes:

 \[
 X.UP(I,J) = \text{CAPACITY}(I,J); \\
 X.LO(I,J) = 10; \\
 X.FX("SEATTLE", "NEW-YORK") = 180;
 \]

 .FX means fixing, i.e., setting .LO = .UP.

- Setting initial values:

 \[
 \text{QUANTITY.L}(K) = 0.5 \times \text{EOQ}(K);
 \]

- Reading attributes:

 \[
 \text{DISPLAY X.L, X.M;} \\
 \text{REPORT(I,"CASES") = SUM(J, X.L(I,J));}
 \]
GAMS output

All output given on a file (filename.lst).

- In case of error
 - Program listing
 - Error messages
 - Cross references
 - List of symbols

- No error
 - Program listing
 - Cross references
 - List of symbols
 - List of equations
 - List of variables
 - Model statistics
 - Status report
 - Solution report
Dollar commands controls GAMS’ output. The “$” sign must be in the first column.

Example:

- **$TITLE A transportation model** Title on top of each page.
- **$OFFUPPER** Output as upper case and lower case.
- **$OFFSYMLIST OFFSYMREF** Eliminates symbol listing and cross reference listing.
- **$ONTEXT and OFFTEXT** GAMS ignores all commands between these statements.
Search for “****”.
Accept error messages.
Concentrate on one error message at a time.
Undesirable domain control for tables:

SETS I car types /VOLVO, BMW, SAAB /
 J years /Y96*Y99/
TABLE DATA(I,J,*)
 Y96."HAVE" Y96."NEED" Y97."HAVE" Y97."NEED"
VOLVO 1 4 4 6
BMW 2 1 6 0
SAAB 3 5 3 4
Advanced features

Undesirable domain control for variables.

SOLVE TRANSPRT USING LP MINIMIZING Z

PARAMETER REPORT(I,*) optimal produktion per fabrik
REPORT(I,"CASES") = SUM(J, X.L(I,J));
REPORT(I,"SHIP-COST") = SUM(J, C(I,J)*X.L(I,J));
REPORT(I,"SHIPMENTS") = SUM(J$X.L(I,J), 1);

DISPLAY REPORT;
Lags and leads may be constructed via the functions \texttt{ORD(T)} and \texttt{CARD(T)}.

Example:

```gams
SET T time periods /SPRING, SUMMER, FALL, WINTER /;
PARAMETERS TEST1(T), TEST2(T), TEST3(T), TEST4(T), REPORT(T,*);
TEST1(T) = ORD(T);
TEST2(T) = TEST1(T+1);
TEST3(T) = TEST1(T) + 1;
TEST4(T) = TEST1(T++1);
REPORT(T, "TEST1") = TEST1(T);
REPORT(T, "TEST2") = TEST2(T)
REPORT(T, "TEST3") = TEST3(T);
REPORT(T, "TEST4") = TEST4(T);

NB! \texttt{ORD("FALL") = 3}, and \texttt{CARD(T) = 4}.
```
Here is the result:

<table>
<thead>
<tr>
<th></th>
<th>TEST1</th>
<th>TEST2 (T)</th>
<th>TEST3 (T)</th>
<th>TEST4 (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPRING</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>SUMMER</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>FALL</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>WINTER</td>
<td>4</td>
<td>5</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

$T-1$ and $T-1$ are analogous.
Dynamic modeling

SET T weeks /W1*W4/;
PARAMETER D(T) /W1 10, W2 12, W3 14, W4 16/;
POSITIVE variables
 X(T) produced quantity
 I(T) storage;
EQUATIONS
 STOREBAL(T) storage balance equations;

STOREBAL(T) .. I(T-1) + X(T) =E= D(T) + I(T);

NB! GAMS ignores indices outside their domains.
GAMS generates the following equations:

--- STOREBAL =E= storage balance equations
STOREBAL(W1) .. + X(W1) - I(W1) =E= 10;
STOREBAL(W2) .. I(W1) + X(W2) - I(W2) =E= 12;
STOREBAL(W3) .. I(W2) + X(W3) - I(W3) =E= 14;
STOREBAL(W4) .. I(W3) + X(W4) - I(W4) =E= 16;

Special cases "at the ends" are handled separately.
The dollar operator is helpful in handling exception in summations or definitions of equations etc.

Example in assignment:

\[
\text{REPORT}(I,"\text{SHIPMENTS}") = \text{SUM}(J$X.L(I,J), 1);
\]

Example in definition of equation:

\[
\begin{align*}
\text{DEMAND}(J) \ .. \ & \text{SUM}(I, X(I,J)$ (D(I,J) LT DMAX)) = G= B(J); \\
\text{DEMAND}(J) \ .. \ & \text{SUM}(I$(D(I,J) LT DMAX), X(I,J)) = G= B(J);
\end{align*}
\]
The dollar operator, cont.

Rules:

- $(condition)$ means “such that condition is fulfilled”. The condition must be computable for GAMS.

Format:

- $(expression1 \ GT expression2)$ (GT, GE, LT, LE, EQ, NE)
- $(expression1)$ is short for $(expression1 \ NE 0.0)$
- $(expression1 \ AND \ condition2)$ (OR, XOR, NOT)
In an assignment using “=”, there is a difference between dollar sign to the left and to the right.

- **To the left**: A(condition) = B;
 Meaning: If the condition is fulfilled, let $A = B$. Otherwise, do nothing.

- **To the right**: $A = B$(condition);
 Meaning: If the condition is fulfilled, let $A = B$. Otherwise, let $A=0$.
The dollar operator, cont.

- **End conditions**

 SCALARS

 INITLAB initial experienced labor force /75/
 ENDLAB ending experience labor force /90/;
 EW.FX(T)$(ORD(T) EQ 1) = INITLAB;
 EW.FX(T)$(ORD(T) EQ CARD(T)) = ENDLAB;

- **Abort**

 SCALARS TOTCAP, TOTDEM;
 TOTCAP = SUM(I, A(I));
 TOTDEM = SUM(J, B(J));
 ABORT$(TOTDEM GT TOTCAP) TOTCAP, TOTDEM,
 "Total demand exceeds total capacity"

- **Conditional DISPLAY**

 DISPLAY $SHOWX X.L;
Sometimes it may be useful to loop over an index. There is a LOOP statement for this purpose. It may be particularly useful prior and after a solution.

Example:

```gams
SET T years /1985 * 1995/;
SCALARS INITBUD first year budget / 100000 /
    GROWTH budget growth rate /0.05/ ;
PARAMETER BUDGET(T);
BUDGET(T)$(ORD(T) EQ 1) = INITBUD;
LOOP(T,
    BUDGET(T+1) = (1+GROWTH)*BUDGET(T);
);
```

There may be an arbitrary number of statements inside the loop, including SOLVE statements.
Other flow controls

GAMS has the usual flow controls: for, while and if/else. They are seldom used.

- **if/else**

  ```gams
  IF(( X.L GT 0 ),
    S = 1;
  ELSEIF( X.L LT 0 ),
    S = -1;
  ELSE
    S = 0;
  );
  ```
while

MODEL DSGN /ALL/;
OPTION SOLPRINT = OFF;
SCALAR T /1/;
WHILE((T LE 20),
 X.L(J) = UNIFORM(X.LO(J), X.UP(J));
 SOLVE DSGN USING NLP MINIMIZING COST;
 DISPLAY X.L, COST.L;
 T = T + 1;
);
for

MODEL DSGN /ALL/;
OPTION SOLPRINT = OFF;
SCALAR T;
FOR(T = 1 TO 20,
 X.L(J) = UNIFORM(X.LO(J), X.UP(J));
 SOLVE DSGN USING NLP MINIMIZING COST;
 DISPLAY X.L, COST.L;
);
A comment on tolerances

For integer programming, there are two optimality tolerances:

- \texttt{optca} absolute optimality tolerance
- \texttt{optcr} relative optimality tolerance

These are rather “loose” by default.

To obtain best possible tolerance:

\begin{verbatim}
 option optca=0;
 option optcr=0;
\end{verbatim}
Please make interpretation of **optimal solution** for nonconvex problems.

If the method uses first-derivatives only, the point is known to (approximately) satisfy the first-order necessary optimality conditions.

You may want to try with different initial points.
A warning on powers

The operator “**” requires a positive argument. This may cause runtime interrupt due to a nonnegative variable being slightly negative.

The operator \texttt{power} with argument “2” works for negative variables too.