SF2822 Applied nonlinear optimization, final exam

Saturday December 152007 8.00-13.00 Brief solutions

1. (a) We have

$$
\nabla f(x)=\left(\begin{array}{c}
2 e^{\left(x_{1}-1\right)}+2 x_{1}-2 x_{2} \\
2 x_{2}-2 x_{1} \\
2 x_{3}
\end{array}\right) \quad \text { and in particular } \quad \nabla f\left(x^{*}\right)=\left(\begin{array}{l}
2 \\
0 \\
2
\end{array}\right)
$$

Since $\nabla f\left(x^{*}\right) \neq 0$, the point x^{*} does not satisfy the first-order optimality conditions for an unconstrained problem. Hence, at least one constraint must be active. The point x^{*} is feasible, and the only potentially active constraint is constraint 2 for $c=2$. Since

$$
\nabla g_{2}(x)=\left(\begin{array}{lll}
1 & 0 & 2
\end{array}\right)^{T}
$$

it follows that for $c=2$, the first-order necessary optimality conditions require a $\lambda_{2} \geq 0$ such that

$$
\left(\begin{array}{l}
2 \\
0 \\
2
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \lambda_{2},
$$

which holds for $\lambda_{2}=2$. Hence, for $c=2$, it holds that x^{*} satisfies the first-order necessary optimality conditions
(b) The objective function is convex, and the only active constraint is linear. Hence, x^{*} is a global minimizer to

$$
\begin{array}{lll}
\left(N L P^{\prime}\right) & \text { minimize } & 2 e^{\left(x_{1}-1\right)}+\left(x_{2}-x_{1}\right)^{2}+x_{3}^{2} \\
& \text { subject to } & x_{1}+x_{3} \geq 2
\end{array}
$$

But since x^{*} is feasible to $(N L P)$ as well, and the only difference between $(N L P)$ and $\left(N L P^{\prime}\right)$ is that we have omitted the constraints that are not active at x^{*}, it follows that x^{*} is globally optimal to ($N L P$) as well.
2. (a) The iterates are illustrated in the figure below:

Since $\nabla f\left(x^{*}\right) \neq 0$, the point x^{*} does not satisfy the first-order optimality con-
O o such tirat is a global minimizer to

The iterates are illustrated in the figure below:

At the first iteration constraint 3 is in the working set. The direction points at $(30)^{T}$, which is infeasible. The maximum step gives the new point ($\left.3 \frac{5}{2}\right)^{T}$. Constraint 5 is added, which gives a vertex and hence a zero step. Constraint 3 has a negative multiplier, and it is hence deleted. The direction points at $\left(\frac{305}{76} \frac{60}{19}\right)^{T}$, which is feasible. Constraint 5 has a negative multiplier, and it is hence deleted. The direction points at (32) which is feasible. No constraints are active, and we have found the optimal solution.
(b) The iterates are illustrated in the figure below:

At the first iteration constraint 2 is in the working set. The direction point at $(20)^{T}$, which is feasible. Constraint 2 has a negative multiplier, and it is hence deleted. The direction points at (3 2) which is feasible. No constraints are active, and we have found the optimal solution
3. We have

$$
\nabla f\left(x^{(0)}\right)=\binom{1}{0}, \quad g\left(x^{(0)}\right)=\left(\begin{array}{l}
2 \\
1 \\
4
\end{array}\right)
$$

$$
A\left(x^{(0)}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right), \quad \nabla_{x x}^{2} \mathcal{L}\left(x^{(0)}, \lambda^{(0)}\right)=\left(\begin{array}{rr}
15 & -5 \\
-5 & 9
\end{array}\right) .
$$

(a) The QP subproblem becomes

$$
\text { minimize } \frac{1}{2} p^{T} \nabla_{x x}^{2} \mathcal{L}\left(x^{(0)}, \lambda^{(0)}\right) p+\nabla f\left(x^{(0)}\right)^{T} p
$$

$$
\text { då } \quad A\left(x^{(0)}\right) p \geq-g\left(x^{(0)}\right) \text {. }
$$

Insertion of numerical values gives
$\min \frac{15}{2} p_{1}^{2}-5 p_{1} p_{2}+\frac{9}{2} p_{2}^{2}+p_{1}$
då $\quad p_{1}+p_{2} \geq-2$,
$p_{2} \geq-1$,
$p_{1} \geq-4$
If we let $p^{(0)}$ denote the optimal solution of the QP subproblem, we obtain $x^{(1)}=$
$x^{(0)}+p^{(0)}$. We obtain $\lambda^{(1)}$ as the Lagrange multipliers of the QP subproblem.
(b) If no slack variables are added, the linear system of equations becomes

$$
\left(\begin{array}{cc}
\nabla_{x x}^{2} \mathcal{L}\left(x^{(0)}, \lambda^{(0)}\right) & A\left(x^{(0)}\right)^{T} \\
\Lambda^{(0)} A\left(x^{(0)}\right) & -G\left(x^{(0)}\right)
\end{array}\right)\binom{\Delta x}{-\Delta \lambda}=-\binom{\nabla f\left(x^{(0)}\right)-A\left(x^{(0)}\right)^{T} \lambda^{(0)}}{G\left(x^{(0)}\right) \lambda^{(0)}-\mu e} .
$$

Insertion of numerical values gives

$$
\left(\begin{array}{rrrrr}
15 & -5 & 1 & 0 & 1 \\
-5 & 9 & 1 & 1 & 0 \\
1 & 1 & -2 & 0 & 0 \\
0 & 2 & 0 & -1 & 0 \\
3 & 0 & 0 & 0 & -4
\end{array}\right)\left(\begin{array}{r}
\Delta x_{1} \\
\Delta x_{2} \\
-\Delta \lambda_{1} \\
-\Delta \lambda_{2} \\
-\Delta \lambda_{3}
\end{array}\right)=\left(\begin{array}{c}
3 \\
3 \\
\mu-2 \\
\mu-2 \\
\mu-12
\end{array}\right)
$$

where the value of μ has not been specified. We may for example let $\mu=1$. We obtain $x^{(1)}=x^{(0)}+\alpha \Delta x$ and $\lambda^{(1)}=\lambda^{(0)}+\alpha \Delta \lambda$, where α is a nonnegative steplength such that $g\left(x^{(0)}+\alpha \Delta x\right)>0$ and $\lambda^{(0)}+\alpha \Delta \lambda>0$.
4. (See the course material.)
5. (a) The first-order optimality conditions may be written as

$$
\left(\begin{array}{lllll}
2 & 1 & 0 & 0 & 1 \\
1 & 2 & 0 & 0 & 1 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 2 & 1 & 0 \\
1 & 1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
-\lambda
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3 \\
3 \\
2
\end{array}\right)
$$

The equations may be separated as one system for $x_{1}, x_{2}, \lambda_{1}$, and one system for x_{3}, x_{4}. The solution is

$$
x^{*}=\left(\begin{array}{llll}
\frac{1}{2} & \frac{3}{2} & 1 & 1
\end{array}\right)^{T}, \quad \lambda^{*}=\frac{3}{2} .
$$

(b) To check whether x^{*} is a minimizer, we need to know the definiteness of $Z^{T} H Z$ We may compute Z as

$$
Z=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { which gives } Z^{T} H Z=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right)
$$

We see that $Z^{T} H Z$ is block diagonal with the second diagonal block indefinite With $d=\left(\begin{array}{ll}0 & 1\end{array}-1\right)$, we obtain $d^{T} Z^{T} H Z d<0$, so that H is not positive semidefinite. Hence, x^{*} is not a local minimizer to $(E Q P)$.
(c) Since x^{*} is feasible to the added constraint, it follows that a solution to the first-order optimality conditions is given by

$$
x^{*}=\left(\begin{array}{llll}
\frac{1}{2} & \frac{3}{2} & 1 & 1
\end{array}\right)^{T}, \quad \lambda^{*}=\left(\begin{array}{ll}
\frac{3}{2} & 0
\end{array}\right)^{T} .
$$

(d) We may compute Z as

$$
Z=\left(\begin{array}{rr}
-1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right) \quad \text { which gives } \quad Z^{T} H Z=\left(\begin{array}{cc}
2 & 0 \\
0 & 6
\end{array}\right)
$$

We see that $Z^{T} H Z$ is diagonal and positive definite. Hence, x^{*} is a global minimizer to $(E Q P)$. Global optimality follows since for an equality-constrained quadratic program, all local minimizers are global minimizers.

